USB 3.0 Architecture Overview

Bob Dunstan
Principal Engineer
Intel Corporation
USB 3.0 Technical Workgroup Chair
Agenda

- What is USB 3.0
- Connectors/cables
- Physical Layer
- Link Layer
- Protocol Layer
- Power Management
- Summary
USB 3.0 Features

- 10x performance increase over USB 2.0
- Backward compatible
 - Legacy devices continue to work when plugged into new host connector
 - New devices work when plugged in legacy systems albeit at USB 2.0 speeds
 - Existing class drivers continue to work
- Same USB Device Model
 - Pipe Model
 - USB Framework
 - Transfer types
- Power Efficient
 - Provides excellent power characteristics (especially for idle links)
 - Both on the device and the platform
 - Eliminate need for polling
- Extensible
 - Protocol designed to efficiently scale up
USB 3.0 Bus Architecture

- Dual-bus architecture
 SuperSpeed bus operates concurrently with USB 2.0
 - Electrically/mechanically backward & forward compatible
 - Devices discovered/configured at fastest signaling rate
 - Hubs provide additional connection points
- SuperSpeed USB
 - Dual simplex signaling
 - Packets routed to device
 - Hubs store and forward
 - Asynchronous notifications

Note: Simultaneous operation of SuperSpeed and non-SuperSpeed modes is not allowed for peripheral devices.
SuperSpeed Layered Architecture

Diagram showing the layered architecture with components like Device Driver/Application, USB System Software, Pipe Bundle (per Function Interface), Default Control Pipe, Function, and Device along with various sub-components such as Notifications, Transactions, Transaction Packets, Data Packets, Link Management Packets, Pkt Delims, Link Control/Mgmt, Link Cmds, 8b/10b encode/decode, LFPS, Scramble/descramble, Spread Clock CDR, Elasticity Buffer/Skips.
USB 3.0 Connector & Cable Goals and Objectives

• Deliver low cost connectors and cable assemblies solutions to meet USB 3.0 architecture and performance needs
 • Support 5 Gbps data rate
 • Manage compatibility with USB 2.0
 • Minimize connector form factor variations
 • Contain EMI
 • Comprehend ease-of-use aspects
Connector Interoperability Summary

<table>
<thead>
<tr>
<th>Receptacle</th>
<th>Plugs Accepted</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB 2.0 Standard-A</td>
<td>USB 2.0 Standard-A or USB 3.0 Standard-A</td>
</tr>
<tr>
<td>USB 3.0 Standard-A</td>
<td>USB 3.0 Standard-A or USB 2.0 Standard-A</td>
</tr>
<tr>
<td>USB 2.0 Standard-B</td>
<td>USB 2.0 Standard-B</td>
</tr>
<tr>
<td>USB 3.0 Standard-B</td>
<td>USB 3.0 Standard-B or USB 2.0 Standard-B</td>
</tr>
<tr>
<td>USB 3.0 Powered-B</td>
<td>USB 3.0 Powered-B, USB 3.0 Standard-B, or USB 2.0 Standard-B</td>
</tr>
<tr>
<td>USB 2.0 Micro-B</td>
<td>USB 2.0 Micro-B</td>
</tr>
<tr>
<td>USB 3.0 Micro-B</td>
<td>USB 3.0 Micro-B or USB 2.0 Micro-B</td>
</tr>
<tr>
<td>USB 2.0 Micro-AB</td>
<td>USB 2.0 Micro-B or USB 2.0 Micro-A</td>
</tr>
<tr>
<td>USB 3.0 Micro-AB</td>
<td>USB 3.0 Micro-B, USB 3.0 Micro-A, USB 2.0 Micro-B, or USB 2.0 Micro-A</td>
</tr>
</tbody>
</table>
USB 3.0 Standard-A Connector

- Same interface as the USB 2.0 Standard-A connector, but with added pins for SuperSpeed USB signals
- Complete compatibility with USB 2.0 Standard-A connector
- Double-stacked connectors supported
USB 3.0 Standard-B Connector

- Defined for relatively large, stationary peripherals such as hard drives and printers
- Visually different from USB 2.0 Standard-B connector
 - But the receptacle accepts a USB 2.0 Standard-B plug
USB 3.0 Micro Connector Family

- Defined for hand held devices
- Backward compatible with USB 2.0 Micro connectors
- Based on USB 2.0 Micro-B connector with an extended portion for the SuperSpeed USB signals
- USB 3.0 Micro-A and –AB connectors are identical to USB 3.0 Micro-B connector except for different keying
Cables

• Unshielded twisted pair (UTP) cable used for USB 2.0 cannot be used for SuperSpeed USB

• Shielded differential pair (SDP, twisted or twinax) is needed for SuperSpeed USB
 • Signal integrity and EMI containment

![Graph showing signal integrity and EMI containment](image-url)

![Diagram of cable construction](image-url)
SuperSpeed Physical Layer

[Diagram showing the flow of information between Host, Hub, and Device layers, with layers including Device Driver/Application, USB System Software, Pipe Bundle (per Function Interface), Default Control Pipe, Function, and Device. The diagram also includes symbols for 8b/10b encode/decode, Scramble/descramble, LFPS, Spread Clock CDR, Elasticity Buffer/Skips, and Sideband Signaling.]
Physical Layer

- Support up to a 3 Meter cable
- Based on existing specs
 - Signaling similar to mix of high-speed serial buses (PCIe/SATA)
 - 2 differential pairs – dual simplex
 - Retain sideband functionality (e.g. reset, wake) without additional wires
 - Low Frequency Periodic Signaling (LFPS) – similar to PCIe beaconing
- Retain USB Hot Plug functionality
 - Rx termination for connect/disconnect detect
SuperSpeed Link Layer

Diagram showing the flow of packets and link commands between Host, Hub, and Device, with details on the processes such as 8b/10b encode/decode, Scramble/descramble, Spread Clock CDR, and Elasticity Buffer/Skips.
• Robust & Reliable
 • Redundancy, advanced encoding techniques and retries
 • $>10^{-20}$ undetectable error rate for link commands
• Effective Power Management
 • Four link power states
 • Either port can initiate link power state change
 • Low Frequency Periodic Signaling (LFPS)
• Link Commands
 • Link flow control
 • Link power state change
• Packets
 • Header Packets
 • Store and forward
 • Link level retries guarantee reliability
 • Contain information consumed by link or host or device
 • Data Packet
 • Compound packet contains header plus data payload
Protocol Layer

- Preserved legacy SW stack
 - USB 2.0 transfer types (bulk, control, interrupt, isochronous)
- Streams enhance bulk’s capabilities
 - Multiple commands on a pipe
 - Out of order completion
- Optimized for good power management
 - Routable Packet Architecture
 - Asynchronous notifications
- Efficient use of bandwidth
 - Simultaneous IN / OUTs
Packet Basics

- Header & Data Packets
 - Move between host and device
 - Address triple: device address, endpoint number, direction
 - Route String describes path between host and device
- Host initiates ALL data transfers

- Devices
 - Either respond immediately or defer the packet
 - Hubs proxy for target device by deferring packets routed to a downstream port whose link is not active
- Deferred requests restarted asynchronously
 - Device notifies host which responds with a new transfer request
- Bus active only when moving data
Example IN Transaction
Power Management Overview
Power Management Overview

- Power Management is at all levels
 - PHY layer, e.g. remote wakeup signaling
 - Link layer, e.g. low power link state entry & exit
 - Protocol layer, e.g. endpoint busy / ready notifications
 - Devices, e.g. function suspend
 - Hubs, e.g. “bubble up” link PM
 - Hosts, e.g. ping / ping response messaging

- Power efficiency at system level
 - Async endpoint busy / ready notifications – no polling
 - Packets routed, not broadcast
 - Low power link states entered automatically when idle
SuperSpeed USB
Power Management Primitives

• Physical Layer
 • Lower power per bit
 • Dual simplex - don’t need to turn around the bus
 • Low Frequency Periodic Signaling

• Link Layer
 • Four Link States - trade lower power for increased latency
 • U0: operational, U1: link idle with fast exit (PLL remains on)
 • U2: link idle with slow exit (PLL may be off), U3: suspend

• Protocol Layer
 • Deferring & asynchronous device notifications
 • Packets Pending flag
 • Ping/Ping Response
 • Selective Suspend
 • Isochronous Timestamp packets
 • Latency Tolerance Message
• SuperSpeed hubs are more than port expanders
• Hubs central to SuperSpeed USB power management
 • A hub adjusts its upstream port link state based in its downstream ports’ link state
 • A hub routes a downstream flowing packet only to the specified port
 • A hub defers packets directed to ports whose links are not in the active state
 • A hub has programmable inactivity timers on its downstream ports
 • A hub only forwards multicast timestamp packets to downstream ports whose link is active
 • A hub marks timestamp packets that are delayed
Simple Deferring Example
Deferring Balances Performance with Power Management
Host Support for Bus Power Management - Interrupt Endpoints

- Interrupt transfers must get completed within service interval
 - Devices may use U1 / U2
 - Host sends transfer far enough ahead of time to compensate for worst case link exit latency
- Host stops interrupt endpoint activity upon receipt of an NRDY
 - Resumes upon receipt of an ERDY
 - No polling – links can enter U1 / U2 when there is no activity
Host Support for Bus Power Management
Isochronous Endpoints and Timestamp TPs

- Isochronous transfers must get completed within service interval
 - Devices want to use U1 / U2 for improved power efficiency
 - Devices must comprehend U1 / U2 exit latencies
- Ping / ping response messaging
 - Host sends a ping to isochronous device ahead of an isoch transfer
 - Gets all links in path to device back to U0 prior to transfer
 - Device responds with a ping response to host
 - Host then schedules isochronous transfer
 - Device keeps link in U0 until transfer occurs
 - Host can perform other transfers while waiting for ping response

- Timestamp packets sent at bus interval boundaries
 - Only sent on downstream ports in U0
 - U1 / U2 link inactivity timers ignore timestamp packets
Function Suspend and Device Suspend

- **Function suspend**
 - Individual functions* placed into *function* suspend independently
 - Controlled by FUNCTION_SUSPEND feature selector

- **Device suspend**
 - Device-wide state coupled to U3
 - Entered / exited intrinsically as a result of U3 entry / exit
 - SetPortFeature(PORT_LINK_STATE U3)
 - Device suspend entered regardless of function suspend state

- **Selective suspend also supported**
 - System software may initiate device suspend when all of a device’s functions are in function suspend

* Composite devices contain multiple functions
SuperSpeed USB Power Management

• Fine grain power management controlled by devices
 • Devices control their own link state
 • Host provides ‘packets pending transfer’ information to device
 • When no transfers are pending, devices can put their link into a reduced power management state
 • Hubs play key role
 • Propagate link state upwards
 • Forward packets only to the link in the direct path
 • Forward Isochronous Timestamp packets only to active links and do not effect inactivity timers

• Default power management policy
 • Systems set by inactivity timers in downstream ports
LTM enables system to enter deeper power saving states with cooperation of devices.

- Devices report the latency they can tolerate from the system in response to a request.
 - Send host LTM notification packet with latency value.

- Allows system to enter deeper sleep states when devices in system can tolerate it.
Summary

• Physical layer is based on existing industry specs
• Maintained backwards compatibility
 • Cabling/connector
 • Standard A receptacles backward compatible with USB 2.0
 • New B and Micro AB receptacles backward compatible with USB 2.0
 • Devices – USB 2.0 support remains
 • Software – Existing device drivers just work
 • Hubs support both USB 2.0 & SuperSpeed devices
• Link and Protocol optimized for Power Management
 • U0-U3 link states
 • Devices drive own link state, hubs propagate up
 • Deferring and asynchronous notifications maximize opportunities for PM
 • Hub inactivity timers provide coarser, but effective default PM
Call to Action

- Download & Review USB 3.0 Material
 - USB 3.0 Version 1.0 Specification
 - Referenced documents
 - Pipe Spec (www.developers.intel.com)
- Implement Device Link Power Management
- Tell us about your product plans
Backup
USB 3.0 Connector & Cable

- Std A - Same interface as USB 2.0 Standard-A connector, but with added pins for USB 3.0 Super-Speed signals
- Complete compatibility with USB 2.0 Standard-A connector

- Std B - Defined for relatively large, stationary peripherals such as hard drives and printers
- Powered version variant is a defined
- Visually different from USB 2.0 Standard-B connector

- Micro B - Based on the proven USB 2.0 Micro-B connector design with an extended portion for the Super-Speed signals
- USB 3.0 Micro-A and –AB connectors are identical to USB 3.0 Micro-B connector except for keying/profile differences
Defined Cable Assemblies

• Compliance cable assemblies:
 • USB 3.0 Standard-A plug to USB 3.0 Standard-B plug
 • USB 3.0 Standard-A plug to USB 3.0 Micro-B plug
 • USB 3.0 Standard-A plug to USB 3.0 Standard-A plug
 • USB 3.0 Micro-A plug to USB 3.0 Micro-B plug
 • USB 3.0 Micro-A plug to USB 3.0 Standard-B plug
 • Captive cable with USB 3.0 Standard-A plug
 • Permanently attached cable with USB 3.0 Micro-A plug
 • Permanently attached cable with USB 3.0 Powered-B plug
TDR of Mated Connectors

- TDR with a 50 ps (20-80%) rise time
 - 90±/-15 ohms- required for all USB 3.0 mated connectors

Example: USB 3.0 Standard-B Mated Connector
Cable Assembly – SDD21

- Differential insertion loss is a key requirement
 - Supports 3 meter long cable assembly
 - With 26 AWG wire

-7.5 dB at 2.5 GHz

Measured 3 meter USB3 cable assembly prototype
• Differential NEXT is specified for USB3-to-USB3 pairs
• Differential NEXT and FEXT are specified for USB2-to-USB3 pairs
 • Due to the internal construction of the USB 3.0 Standard-A connector, we have to tolerate a quite large crosstalk between USB 3.0 and USB 2.0 pairs
 • This is a problem only when USB 2.0 and USB 3.0 signals are running simultaneously (only allowed for hubs)
Key Mechanical Requirements

- **Durability**
 - Micro family: 10,000 cycles
 - All other connectors
 - Standard durability class: 1500 cycles
 - High durability class: 5000 cycles

- **Unmating force**
 - 10N min initial, 8N min EOL

- **4-Axis continuity**
 - Required for Micro connector family

- **Mated cable Assembly voltage drop (Vbus and GND, respectively)**
 - 225mV max with a 900mA current

![Diagram showing voltage drops](image.png)

225 mV
• Great attention must be paid to electrical design details to minimize TDR Impedance mismatch, crosstalk between SuperSpeed USB pairs and crosstalk between SuperSpeed USB and D+/D- pairs
 • The cable termination management is particularly important
• Unintended shorting in Standard-A connectors between pins during insertion/extraction must be avoided
 • USB 3.0 plug with USB 2.0 receptacle
 • USB 2.0 plug with USB 3.0 receptacle
• Exposed contact (to human fingers) is not allowed
• Appropriate (friction) latch design is important to connection robustness