

Universal Serial Bus
CDC Subclass Specification for

Wireless Mobile Communications
Devices

Revision 1.1

July 31, 2012

 Revision

ii December 6, 2012

Revision History

Rev Date Filename Comments

1.1 7/31/2012 WMC101Errata.doc Updated with information about MBIM 1.0

1.1 11/3/10 WMC110Errata.doc Updated with information about NCM 1.0

1.1 2/9/07 WMC110.doc Final edits as per February 2007 CDC meeting
Specify a reserved value in Table 5-3.
Remove “For Review and Discussion Only” footer

1.0 11/23/2001 CDC_WMC10.doc Remove “For Review and Discussion Only” footer; replace “TBD”
placeholders with numeric values.

Please send comments via electronic mail to cdc@usb.org

USB Wireless Mobile Communication Devices

 Copyright 2006, USB Implementers Forum, Inc.
All rights reserved.

Revision

December 6, 2012 iii

Copyright © 2007, USB Implementers Forum, Inc.

All rights reserved.

A LICENSE IS HEREBY GRANTED TO REPRODUCE THIS SPECIFICATION FOR INTERNAL USE
ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, IS GRANTED
OR INTENDED HEREBY.

USB-IF AND THE AUTHORS OF THIS SPECIFICATION EXPRESSLY DISCLAIM ALL LIABILITY FOR
INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, RELATING TO IMPLEMENTATION OF
INFORMATION IN THIS SPECIFICATION. USB-IF AND THE AUTHORS OF THIS SPECIFICATION
ALSO DO NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT
INFRINGE THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS.

THIS SPECIFICATION IS PROVIDED "AS IS” AND WITH NO WARRANTIES, EXPRESS OR IMPLIED,
STATUTORY OR OTHERWISE. ALL WARRANTIES ARE EXPRESSLY DISCLAIMED. NO
WARRANTY OF MERCHANTABILITY, NO WARRANTY OF NON-INFRINGEMENT, NO
WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, AND NO WARRANTY ARISING OUT
OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

IN NO EVENT WILL USB-IF OR USB-IF MEMBERS BE LIABLE TO ANOTHER FOR THE COST OF
PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA OR
ANY INCIDENTAL, CONSEQUENTIAL, INDIRECT, OR SPECIAL DAMAGES, WHETHER UNDER
CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THE USE OF
THIS SPECIFICATION, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE
POSSIBILITY OF SUCH DAMAGES.

All product names are trademarks, registered trademarks, or service marks of their respective owners.

 Revision

iv December 6, 2012

Contributors to Version 1.0

Mobile Computing Promotion Consortium (MCPC)

 Tatsuya Nakatani Fujitsu Limited

 Kenji Oguma NEC Corporation

 Shinji Kamiya DENSO Corporation

 Keiichi Murakami Fujitsu Limited

 Paul E. Berg MCCI

 Terry Moore MCCI

 Minoru Ohwada MITSUBISHI ELECTRIC CORPORATION

 Noriko Fukumasu NEC Corporation

 Noriko Norimatsu NEC Corporation

 Hisayuki Yamanaka NOKIA Japan Co. Ltd

 Chang-Jiang Zhang NOKIA Japan Co. Ltd

 Seiji Abe NTT DoCoMo, Inc.

 Hideo Uchizono NTT DoCoMo, Inc.

 Toshiharu Uchida Pioneer Corporation

 Hajime Shimizu SHARP BUSINESS COMPUTER SOFTWARE INC.

 Kazuhito Yasue SHARP BUSINESS COMPUTER SOFTWARE INC.

 Yoshizane Tanaka SUNCORPORATION

 Takafumi Ito Toshiba Corporation

 Hiroshi Kinugasa Toshiba Corporation

USB Device Working Group Communications Device Committee

 Jim Wilcox Apple Computer Inc.

 Russ Winsper Apple Computer Inc.

 Elena Neira Ericsson

 Morten Christiansen Ericsson Semafor

 Joel Silverman KLSI

 Eric Overtoom Motorola

 Ryota Okazaki NEC Corporation

 Katsuhiko Kobayashi NEC Engineering, Ltd.

 Richard Petrie Nokia Mobile Phones

 James Scales Nokia Mobile Phones

 Julie Bendig Qualcomm

 Hongshi Guo Qualcomm

Contributors to Version 1.1

USB Device Working Group Communications Device Committee

 Russ Winsper Apple Computer Inc.

 Bruce Balden Belcarra

Revision

December 6, 2012 v

 Jun Guo Broadcom

 Morten Christiansen Ericsson AB

 Patrik Olesen Ericsson AB

 Alan Berkama HP

 Joel Silverman K-Micro

 Brian Meads MCCI

 Greg Scaffidi MCCI

 Joe Decuir MCCI

 Peter FitzRandolph MCCI

 Terry Moore MCCI

 Ken Taylor Motorola

 Gabriel Montenegro Microsoft

 Srinivasan Malayala Microsoft

 Richard Petrie (editor) Nokia

 Janne Rand Nokia

 Tero Soukko Nokia

 Vladimir Semenyuk Smith Micro Software

 Alexey Orishko ST-Ericsson

 Dale Self Symbian

 John Turner Symbian

 Saleem Mohammad Synopsys

 Revision

vi December 6, 2012

Table of Contents

1 Introduction .. 1

1.1 Purpose ... 1

1.2 Scope ... 1

1.3 Related Documents ... 1

1.4 Terms and Abbreviations ... 3

2 Management Overview .. 5

3 Assumptions and Constraints ... 7

3.1 Compliance .. 7

4 Functional Overview.. 10

4.1 Device Organization .. 10

4.2 Device Operation ... 11

4.2.1 Contention ... 11

4.3 Function Models .. 12

4.4 Interface Definitions ... 13

4.5 Endpoint Requirements ... 13

4.6 Device Models ... 13

5 Class Specific Codes .. 14

5.1 Communications Class Subclass Codes ... 14

5.2 Communications Class Protocol Codes .. 14

5.3 Communications Class Functional Descriptor Sub-Type Codes 14

5.4 Communications Class Management Element Request Codes 15

5.5 Communications Class Notification Element Request Codes 15

6 Functional Characteristics ... 16

6.1 WHCM Logical Handset .. 16

6.1.1 Functional Topology .. 16

6.1.2 WHCM Descriptors .. 16

6.1.2.1 WHCM Interface Descriptor ... 16
6.1.2.2 Communications Class Header Functional Descriptor .. 16
6.1.2.3 WHCM Functional Descriptor .. 16
6.1.2.4 Communications Class Union Functional Descriptor (following WHCM interface) 17
6.1.3 Management Elements .. 19

6.1.4 Notifications ... 19

6.2 Data/Fax Modem Functions .. 20

6.2.1 Functional Topology .. 20

6.2.2 Descriptors ... 20

6.2.2.1 ACM Interface Descriptor ... 20
6.2.2.2 Communications Class Header Functional Descriptor .. 20
6.2.2.3 Abstract Control Management Functional Descriptor .. 21
6.2.2.4 Call Management Functional Descriptor .. 21
6.2.2.5 Communications Class Union Functional Descriptor ... 22
6.2.2.6 Notification Endpoint Descriptor ... 23
6.2.2.7 Data Class Interface Descriptor ... 23
6.2.2.8 Data Class Header Functional Descriptor ... 23
6.2.2.9 Endpoint Descriptors .. 24
6.2.3 ACM Management Elements for Data/Fax .. 24

Revision

December 6, 2012 vii

6.2.4 ACM Notifications for Data/Fax ... 24

6.2.5 Contention ... 25

6.3 Voice Functions ... 26

6.3.1 Functional Topology .. 26

6.3.2 Descriptors ... 26

6.3.2.1 TCM Interface Descriptor ... 26
6.3.2.2 Communications Class Header Functional Descriptor .. 27
6.3.2.3 Telephone Control Model Functional Descriptor ... 27
6.3.2.4 Communications Class Union Functional Descriptor ... 27
6.3.2.5 Notification Endpoint Descriptor ... 28
6.3.3 Management Elements .. 28

6.3.3.1 SendEncapsulatedCommand .. 28
6.3.3.2 GetEncapsulatedResponse ... 28
6.3.4 Notifications ... 29

6.3.5 Contention ... 29

6.4 LAN Frame Functions .. 30

6.4.1 Functional Topology .. 30

6.4.2 Descriptors ... 30

6.4.2.1 Ethernet Networking Control Model Interface Descriptor 30
6.4.2.2 Communications Class Header Functional Descriptor .. 30
6.4.2.3 Ethernet Networking Functional Descriptor ... 30
6.4.2.4 Communications Class Union Functional Descriptor ... 31
6.4.2.5 Notification Endpoint Descriptor ... 32
6.4.2.6 Data Class Interface Descriptor, Alternate Setting Zero .. 32
6.4.2.7 Data Class Header Functional Descriptor ... 32
6.4.2.8 Data Class Interface Descriptor, Alternate Setting not Zero 32
6.4.2.9 Data Class Header Functional Descriptor ... 33
6.4.2.10 Endpoint Descriptors, Alternate Setting not Zero .. 33
6.4.2.11 Additional Alternate Data Class Settings ... 33
6.4.3 Management Elements .. 33

6.4.4 Notifications ... 33

6.4.5 Contention ... 33

6.5 OBEX Functions .. 35

6.5.1 Functional Topology .. 35

6.5.2 OBEX Descriptors .. 35

6.5.2.1 OBEX Interface Descriptor ... 35
6.5.2.2 Communications Class Header Functional Descriptor .. 36
6.5.2.3 OBEX Functional Descriptor .. 36
6.5.2.4 Union Functional Descriptor ... 36
6.5.2.5 OBEX Service Identification Functional Descriptor (Optional) 37
6.5.2.6 OBEX Communications Interface Endpoint Descriptors 39
6.5.2.7 Data Class Interface Descriptor, Alternate Setting Zero .. 39
6.5.2.8 Data Class Header Functional Descriptor ... 40
6.5.2.9 Data Class Interface Descriptor, Alternate Setting not Zero 40
6.5.2.10 Data Class Header Functional Descriptor ... 41
6.5.2.11 Endpoint Descriptors, Alternate Setting not Zero .. 41
6.5.3 Management Elements .. 41

6.5.3.1 Establishing OBEX transport connection ... 41
6.5.3.2 Suspend, Resume and Remote Wakeup .. 41
6.5.3.3 Session Request Protocol .. 41
6.5.4 Notifications ... 41

 Revision

viii December 6, 2012

6.5.5 Contention ... 41

6.6 Device Management Functions ... 42

6.6.1 Functional Topology .. 42

6.6.2 Device Management Descriptors .. 42

6.6.2.1 Device Management Interface Descriptor ... 42
6.6.2.2 Communications Class Header Functional Descriptor .. 42
6.6.2.3 Device Management Functional Descriptor ... 43
6.6.2.4 Device Management Notification Endpoint .. 43
6.6.3 Management Elements .. 43

6.6.4 Notifications ... 44

6.6.5 Contention ... 44

6.7 MDLM Transport Functions ... 45

6.7.1 Functional Topology .. 45

6.7.2 Descriptors ... 45

6.7.2.1 MDLM Interface Descriptor .. 45
6.7.2.2 Communications Class Header Functional Descriptor .. 45
6.7.2.3 Mobile Direct Line Model Functional Descriptor .. 46
6.7.2.4 MDLM Detail Functional Descriptor ... 46
6.7.2.5 Communications Class Union Functional Descriptor ... 47
6.7.2.6 Notification Endpoint Descriptor ... 48
6.7.3 Management Elements .. 48

6.7.4 Notifications ... 48

6.7.5 Contention ... 49

6.8 LAN Frame Functions .. 50

6.8.1 Functional Topology .. 50

6.8.2 Descriptors ... 50

6.8.2.1 Networking Control Model Interface Descriptor ... 50
6.8.2.2 Communications Class Header Functional Descriptor .. 50
6.8.2.3 Ethernet Networking Functional Descriptor ... 50
6.8.2.4 NCM Functional Descriptor .. 51
6.8.2.5 Command Set Functional Descriptor ... 52
6.8.2.6 Command Set Detail Functional Descriptor ... 52
6.8.2.7 Communications Class Union Functional Descriptor ... 52
6.8.2.8 Notification Endpoint Descriptor ... 52
6.8.2.9 Data Class Interface Descriptor, Alternate Setting Zero .. 52
6.8.2.10 Data Class Header Functional Descriptor ... 53
6.8.2.11 Data Class Interface Descriptor, Alternate Setting 1 ... 53
6.8.2.12 Data Class Header Functional Descriptor ... 53
6.8.2.13 Endpoint Descriptors, Alternate Setting one .. 54
6.8.2.14 Additional Alternate Data Class Settings ... 54
6.8.3 Management Elements .. 54

6.8.4 Notifications ... 54

6.8.5 Contention ... 54

7 Device Requests .. 55

7.1 Encapsulating AT Command Data .. 55

8 Device Descriptors .. 57

8.1 Standard USB Interface Descriptors ... 57

8.1.1 Device Descriptor .. 57

8.1.2 Configuration Bundle ... 57

Revision

December 6, 2012 ix

8.1.2.1 Additional Function-Specific Descriptors ... 57
8.1.2.2 Command Set Functional Descriptor ... 57
8.1.2.3 Command Set Detail Functional Descriptor ... 58

List of Tables

Table 2-1: Sample Function Representation .. 5

Table 5-1: Communications Class Subclass Code ... 14

Table 5-2: Communications Class Protocol Codes ... 14

Table 5-3: Communications Class Functional Descriptor Sub-Type Codes 14

Table 5-4: Communications Class Management Element Request Codes 15

Table 5-5: Communications Class Notification Element Request Codes 15

Table 6-1: Communications Class Header Functional Descriptor ... 16

Table 6-2: Wireless Handset Control Model Functional Descriptor... 16

Table 6-3: Union Functional Descriptor .. 17

Table 6-4: Communications Class Abstract Control Model Interface Descriptor 20

Table 6-5: Communications Class Header Functional Descriptor ... 21

Table 6-6: Abstract Control Management Functional Descriptor .. 21

Table 6-7: Call Management Functional Descriptor for Data/FAX Facilities 22

Table 6-8: Union Functional Descriptor for Data/Fax Facilities ... 22

Table 6-9: Data Class Interface Descriptor for Data/FAX Facilities ... 23

Table 6-10: Data Class Header Functional Descriptor .. 23

Table 6-11: ACM Management Elements for Data/Fax Functions ... 24

Table 6-12: ACM Notification Elements for Data/Fax Functions ... 24

Table 6-13: Communications Class Telephone Control Model Interface Descriptor 26

Table 6-14: Communications Class Header Functional Descriptor ... 27

Table 6-15: Telephone Control Model Functional Descriptor ... 27

Table 6-16: Union Functional Descriptor for Voice Call Facilities ... 28

Table 6-17: Communications Class Ethernet Networking Control Model Interface Descriptor . 30

Table 6-18: Ethernet Networking Functional Descriptor ... 30

Table 6-19: Union Functional Descriptor for LAN frame facilities ... 31

Table 6-20: Data Class Interface Descriptor for LAN frame facilities, Setting 0 32

Table 6-21: Data Class Interface Descriptor for LAN frame facilities, non-zero Setting 32

Table 6-22: Communications Class OBEX Model Interface Descriptor .. 35

Table 6-23: Communications Class Header Functional Descriptor ... 36

Table 6-24: OBEX Control Model Functional Descriptor .. 36

Table 6-25: Union Functional Descriptor for OBEX Facilities .. 36

 Revision

x December 6, 2012

Table 6-26: Functional Descriptor for OBEX service identification ... 37

Table 6-27: Bitmask values for bmObexRole ... 37

Table 6-28: UUID values defined by WMC OBEX ... 38

Table 6-29: Data Class Interface Descriptor for OBEX facilities, Setting 0 39

Table 6-30: Data Class Interface Descriptor for OBEX facilities, non-zero Setting 40

Table 6-31: Communications Class Device Management Interface Descriptor 42

Table 6-32: Communications Class Header Functional Descriptor ... 43

Table 6-33: Device Management Functional Descriptor ... 43

Table 6-34: Communications Class Mobile Direct Line Model Interface Descriptor.................... 45

Table 6-35: Communications Class Header Functional Descriptor ... 46

Table 6-36: Mobile Direct Line Model Functional Descriptor ... 46

Table 6-37: MDLM Detail Functional Descriptor .. 47

Table 6-38: Union Functional Descriptor for MDLM Facilities.. 47

Table 6-39: MDLM-Specific-Write ... 48

Table 6-40: MDLM-Specific-Read ... 48

Table 6-41: MDLM-Specific-Read ... 48

Table 6-42: Communications Class Networking Control Model Interface Descriptor 50

Table 6-43: Ethernet Networking Functional Descriptor ... 50

Table 6-44: NCM Functional Descriptor .. 51

Table 6-45: Union Functional Descriptor for LAN frame facilities ... 52

Table 6-46: Data Class Interface Descriptor for LAN frame facilities, Setting 0 53

Table 6-46: Data Class Interface Descriptor for LAN frame facilities, Setting 1 53

Table 8-1: Command Set Functional Descriptor .. 57

Table 8-2: Command Set Detail Functional Descriptor ... 58

List of Figures

Figure 3-1: Reference Model .. 7

Figure 4-1. Device Structure .. 10

Figure 6-1: WHCM Union Functional Descriptor and Device Structure .. 19

Figure A-1 Windows Driver Architecture .. 60

Figure B-2 OBEX transport control and indication primitives ... 62

Revision

December 6, 2012 1

1 Introduction

1.1 Purpose

The USB interface uses a common and simple cable connector, which supports the connection of various
types of equipment. When used with wireless communications devices, USB is a vital interface that
handles various media over one type of cable using a unified protocol.

Mobile (cellular phone) wireless service technology is normally characterized by generation:

First generation (or 1G) services are analog, and provides no special data services.

Second generation (or 2G) services use TDMA or CDMA, and are loosely characterized as “digital”
services. Only limited data service is available on these services. The leading 2G service in
Europe is GSM; TDMA and CDMA are common in other geographical locations

Updated second generation (or 2.5G) services build on the digital services by adding protocols that
are more suitable for data. They provide bandwidth of up to about 144 Kbps. The best known
2.5G service is GPRS, based on GSM. 2.5G services typically provide no additional multimedia
services, and are based on the existing spectrum and towers.

Third generation (or 3G) services are a major upgrade to the services offered by 2G equipment.

With the advent of third generation services, various kinds of computing equipment can be connected to
wireless communications devices via USB. (This computing equipment is generically referred to as
“Mobile Terminal Equipment”). The capabilities of third-generation mobile equipment are much greater
than those of second-generation equipment. Multiple calls can be handled on a single communications
terminal. “Multimedia communication” (including Internet sessions, voice calls, and special purpose
data services such as fax and modem emulation) will take place at the high speeds provided by the third
generation wireless networks. To support these services, this document indicates one way of providing
USB connectivity for terminal equipment containing multiple functions, for example audio, data
communications, and status monitoring functions.

1.2 Scope

This document specifies new device subclasses intended for use with Wireless Mobile Communications
devices, based on [USBCDC1.2], [USBPSTN1.2], [USBECM1.2], [USBNCM1.0] and [USBMBIM1.0]

Because this specification is based on several CDC based specifications, the question arises of how to
resolve conflicts. The intention of this specification is that all material presented here be upwards-
compatible extensions of these other specifications. In cases, where information is repeated from other
documents, the originating document shall be treated as the controlling document. New numeric codes
for subclass codes, protocol codes, management elements, and notification elements are defined in
[USBCDC1.2] and are repeated in this document for clarity.

1.3 Related Documents

Reference Description

[3GPP27.007] AT command set for User Equipment (UE), 3rd Generation Partnership Project; Technical Specification
Group Terminals, Document 27.007,Version 3.9.0 (June 2001). Available on-line at
http://www.3gpp.org/ftp/Specs/2001-06/R1999/27_series/27007-390.zip.

 Revision

2 December 6, 2012

[Bluetooth Reserved

Numbers]
The reserved numbers section of official Bluetooth website www.bluetooth.org.

[C-S0017-0] 3GPP2 TSG.C Specification C-S0017-0. Specifies AT command sets to be used for cmda2000 mobile
terminals. Available on-line from http://www.3gpp2.org/public_html/specs/tsgc.cfm .

[GSM07.07] ETSI GTS GSM 07.07 V5.0.0 (1996-07) Digital cellular telecommunications system (Phase 2+); AT
command set for GSM Mobile Equipment (ME) (GSM 07.07), ETSI. Available on-line at http://www.etsi.org/.

[INTTD] USB Telephony Devices: Interfaces for Value-Add Feature Set, Version 1.00, June 19,2000, Intel
Corporation.

[LEACH1998] UUIDs and GUIDs, Paul J. Leach et al, IETF draft draft-leach-uuids-guids-01.txt., February 4, 1998.

[MICBUS] Guidelines for Bus and Device Specifications , Version 1.0a, March 29, 2000, Microsoft Corporation. This
specification is available online from Microsoft, http://www.microsoft.com/whdc/archive/specguide.mspx

[MICMFD] Designing Multifunction Devices for Windows Operating Systems, Version 1.0, April 25, 2000, Microsoft
Corporation. This specification is available online from Microsoft,
http://www.microsoft.com/whdc/device/mf/mfdesin.mspx.

[OBEX1.2] IrDA Object Exchange Protocol IrOBEX, V1.3. This specification is available online from the website
http://www.irda.org.

[OPENC309] DCE: Remote Procedure Call, Open Group CAE Specification C309 ISBN 1-85912-041-5 28cm. 674p. pbk.
1,655g. 8/94

[PCCA101] PCCA STD-101, Data Transmission Systems and Equipment - Serial Asynchronous Automatic Dialing and
Control for Character Mode DCE on Wireless Data Services, Portable Computer and Communications
Association. Available on-line at http://www.pcca.org/standards.1 Annexes to this document are:

[PCCA101-A] common commands, in main document (== TIA/EIA-678 Annex A)

[PCCA101-D] Pad Control, http://www.pcca.org/standards/Annex_d.doc, (== TIA/EIA-678 Annex D)

[PCCA101-F] Commands for wireless networks, http://www.pcca.org/standards/Annex_f.doc (== TIA/EIA-678 Annex B)

[PCCA101-I] Commands for Analog Cell Phones, http://www.pcca.org/standards/Annex_i.doc (== TIA/EIA-678 Annex C)

[PCCA101-L] Commands for CDPD modems, http://www.pcca.org/standards/Annexl20.PDF (not in TIA/EIA-678)

[PCCA101-O] Commands for Wakeup control, http://www.pcca.org/standards/Annex_o_ballot_version.doc (not in TIA/EIA-
678)

[USB2.0] Universal Serial Bus Specification, revision 2.0 (also referred to as the USB Specification). This specification
is available on the World Wide Web site http://www.usb.org.

[USBAUD1.0] Universal Serial Bus Device Class Definition for Audio Devices, Release 1.0. This specification is available
on the World Wide Web site http://www.usb.org.

[USBCDC1.2] Universal Serial Bus Class Definitions for Communications Devices, Version 1.2. This specification is
available on the World Wide Web site http://www.usb.org.

[USBDFU1.0] Universal Serial Bus Device Class Specification for Device Firmware Upgrade, Release 1.0. This
specification is available on the World Wide Web site http://www.usb.org.

[USBHID1.1] Universal Serial Bus Device Class Definition for Human Interface Devices, Version 1.1. This specification is
available on the World Wide Web site http://www.usb.org.

[USBECM1.2] Universal Serial Bus USB CDC Subclass Specification for Ethernet Control Model Devices, Release 1.2.
This specification is available on the World Wide Web site http://www.usb.org.

[USBMASS1.1] Universal Serial Bus Mass Storage Class Specification Overview, Release 1.1. This specification is available
on the World Wide Web site http://www.usb.org.

[USBNCM1.0] Universal Serial Bus Communications Class Subclass Specifications for Network Control Model Devices,
Release 1.0. This specification is available on the World Wide Web site http://www.usb.org.

[USBMBIM1.0] Universal Serial Bus Communications Class Subclass Specifications for Mobile Broadband Interface Model,
Release 1.0. This specification is available on the World Wide Web site http://www.usb.org.

[USBPSTN1.2] Universal Serial Bus USB CDC Subclass Specification for PSTN Devices, Release 1.2. This specification is
available on the World Wide Web site http://www.usb.org.

1 PCCA STD-101 was adopted as TIA/EIA-678. The content is identical but has been rearranged.

http://www.bluetooth.org/
http://www.3gpp2.org/
http://www.etsi.org/
http://www.microsoft.com/whdc/device/mf/mfdesin.mspx
http://www.irda.org/
http://www.pcca.org/standards
http://www.pcca.org/standards/Annex_d.doc
http://www.pcca.org/standards/Annex_f.doc
http://www.pcca.org/standards/Annex_i.doc
http://www.pcca.org/standards/Annexl20.PDF
http://www.pcca.org/standards/Annex_o_ballot_version.doc
http://www.usb.org/
http://www.usb.org/
http://www.usb.org/
http://www.usb.org/
http://www.usb.org/
http://www.usb.org/
http://www.usb.org/
http://www.usb.org/
http://www.usb.org/
http://www.usb.org/

Revision

December 6, 2012 3

1.4 Terms and Abbreviations

Term Description

2G Second generation wireless telecommunication systems

2.5G Second generation wireless telecommunication systems, with enhanced data services.

3G Third generation wireless telecommunication systems

3GPP Third Generation Partnership Project: trade organization planning the migration from
GSM to 3G service. (See http://www.3gpp.org/)

3GPP2 Third Generation Partnership Project Two: trade organization planning the migration from
CDMA to 3G service. (See http://www.3gpp2.org/).

ACM Abstract Control Model, a way of representing data/fax modem capabilities in USB
devices, defined by [USBCDC1.2].

ARIB Association of Radio Industries and Businesses

BARB Bluetooth Architecture Review Board

CDMA Code Division Multiple Access (see http://www.cdg.org/).

cdmaOne cdmaOne describes a complete wireless system that incorporates the CDMA/IS-95 air
interface.

cdma2000 cdma2000 is Telecommunications Industry Association (TIA) standard for third-generation
technology that is an evolutionary outgrowth of cdmaOne. See 3GPP2.

control
plane

Communications Class interface used to perform device management and optionally call
management. See [USBCDC1.2].

DFU Device Firmware Upgrade, a standard means of updating firmware over USB. See
[USBDFU1.0].

EDGE Enhanced Data rates for GSM and TDMA/136 Evolution – an enhanced version of GPRS
compatible with GSM and TDMA/136

GOEP Generic Object Exchange Profile

GPRS General Packet Radio Services, a 2.5G data service for GSM networks

GSM Global System for Mobile telecommunications, a complete 2G wireless system. See
http://www.gsmworld.com/

IMT-2000 International Mobile Telecommunication-2000 – the generic standard name for 3G
technology. See http://www.itu.org/imt, and especially
http://www.itu.int/imt/what_is/roadto/index.html, which gives a very good overview
of how cellular technologies align.

http://www.3gpp.org/
http://www.3gpp2.org/
http://www.cdg.org/
http://www.gsmworld.com/
http://www.itu.org/imt
http://www.itu.int/imt/what_is/roadto/index.html

 Revision

4 December 6, 2012

Term Description

IrDA Infrared Data Association. (http://www.irda.org/)

MCPC Mobile Computing Promotion Consortium, http://www.mcpc-jp.org/.

MDLM Mobile Direct Line Model, a way of migrating some of the protocol functions of wireless
terminal adapters to the USB host system. A mechanism for implementing MDLM
transport is defined by this document.

ME Mobile Equipment

MT Mobile Terminal

OBEX Object Exchange

PABX Private Automatic Branch eXchange

PDC Personal Digital Cellular

PHS Personal Handy-phone System

TA Terminal Adapter

TDMA Time Division Multiple Access, a 2G modulation system

TDMA/136 A complete wireless service based on the TDMA/IS-136 air interface. See
http://www.uwcc.org/.

TE Terminal Equipment, it indicates the communications equipment in the USB host

UUID Universal Unique Identifier

WHCM Wireless Handset Control Model

WMC Wireless Mobile Communications, the abbreviation for this device subclass

http://www.irda.org/
http://www.mcpc-jp.org/
http://www.uwcc.org/

Revision

December 6, 2012 5

2 Management Overview

With 2.5G and 3G cell phone services, manufacturers and network operators need to define a common
way for handling multiple data and voice services in a single handset.

This specification represents multi-function communications handset devices as composite devices. Each
potential facility is modeled, if possible, using a pre-existing device class. This allows reuse of existing
class drivers. Additional Communications Device subclasses are defined for new application areas
specific to wireless handsets.

Although some of the capabilities can only be used after a circuit is established, each capability is always
explicitly represented in the descriptors. This allows for a simpler usage model for current operating
systems.

Because the 3G standards and existing cell phones use AT commands for computer-directed call control,
this specification extends the Telephone Control Model by adding a new protocol code that indicates that
AT commands are used for call control.

Table 2-1 illustrates the representations. Note that in Table 2-1, the notation “pp” is used to indicate that
the protocol code is one of the protocol codes which identifies variants of the AT command set.

Table 2-1: Sample Function Representation

Function Representation Endpoints

voice (AT-command call control) Telephone Control Model (TCM) with
AT commands (02-03-pp) + Audio

Interrupt IN + audio stream ISO OUT
+ audio stream ISO IN

voice (AT-command call control, plus
ability to use handset’s keypad in
host, and to use handset’s speaker
and microphone as host peripherals)

Telephone Control Model (TCM) with
AT commands (02-03-pp) + Audio +
HID

TCM Interrupt IN + audio stream ISO
OUT (to network) + audio stream ISO
IN (from network) + audio stream ISO
OUT (to headset earpiece) + audio
stream ISO IN (from headset
microphone + HID Interrupt IN

fax/modem ACM (02-02-pp) + Data Interrupt IN + Data Class Bulk OUT &
Bulk IN

OBEX OBEX (02-0Bh0B-00), + Data Class Data Class Bulk OUT & Bulk IN

Ethernet Frame (fixed service) CDC Ethernet Networking Control
Model (ECM) (02-06-00) + Data

Interrupt IN + Data Class Bulk OUT &
Bulk IN

Device Management Device Management (02-09h09-pp) Interrupt IN

Network Control Model NCM (02-0D-pp) Interrupt IN + Data Class Bulk OUT &
Bulk In

Mobile Broadband Interface Model MBIM (02-0E-pp) Interrupt IN + Data Class Bulk OUT &
Bulk IN

The remainder of this specification is organized into the following outline.

Assumptions and Constraints

Functional Overview

New class code values

 Revision

6 December 6, 2012

Functional Characteristics for each subclass, including:

1. Functional Topology

2. Descriptors

3. Management Elements

4. Notifications

Device Requests

Device Descriptors

Revision

December 6, 2012 7

3 Assumptions and Constraints

This standard assumes the reference model shown in Figure 3-1.

TE (application)

TE (application)

TE (application)

Reference A

Reference B

(TA: Terminal Adapter) (TE: Terminal Equipment)

MT

TA

TA

TA

USB

USB

USB

ME:
Mobile Equipment

(MT: Mobile Terminal)

MDLM

Figure 3-1: Reference Model

In this figure, the handset (or Mobile Equipment, “ME”) consists of an MT and one or more TAs. The
Mobile Terminal (MT) has only a facility to access the air interface. It can be thought of as the radio
transmitter and receiver. Each Terminal Adapter (TA) is provided with one call facility or management
capability. If a TA is provided with a call facility, that means it provides the data formatting, media
conversions, and protocol capabilities to make that kind of call, to the USB host at Reference B. The
presence of a TA reflects an abstract capability of the ME; at any given time, it might not be possible to
use the TA to make that kind of call, due to external circumstances.

Within the limits of USB, any number of TAs may be provided. Applications use the kind of TA that
provides the device model that meets their requirements. For a Voice Application, the application opens
a Telephone Control Model TA and uses USB Audio. For a modem application, the application accesses
an Abstract Control Model TA. When multiple applications need to be operated at the same time (i.e.,
Multi-call), the ME must have sufficiently many TAs to support all the applications or calls concurrently.
Of course, the ME and the network interface must also be able to support such concurrency; otherwise,
only a subset of the calls can proceed.

The ME can also provide connections to the USB host at Reference A. In this case, some or all of the TA
functions can be off-loaded from the ME to the USB host. However, due to the variety of standards and
requirements, this specification cannot cover the details of this interface. Instead, this specification
provides a standardized way for operators or regional groups to agree on a private interface, while still
making it possible for cognizant third-party software to recognize and operate conforming devices.

3.1 Compliance

In addition to meeting all the requirements of the USB core specification [USB2.0], devices conforming to
this specification must meet the following requirements. Some of these requirements are testable; others
must be enforced by design.

The testable requirements focus on the content of the descriptors.

 Revision

8 December 6, 2012

1. The Device descriptor shall have bDeviceClass set to Communications Class, and
bDeviceSubclass and bDeviceProtocol set to zero.

2. Each Communications Class interface must be followed by the appropriate functional descriptors
for that interface. These shall include the HEADER functional descriptor.

3. If a Communications Class interface has associated Data Class interface, a Union Functional
descriptor must appear, specifying the Communications Class interface as the primary interface,
and the Data Class interface(s) as subordinate interfaces.

4. No Data Class interface should appear that is not mentioned in a Union Functional descriptor.

5. Each Data Class interface shall be mentioned in exactly two Union Functional descriptors. It shall
be mentioned in the Union Functional descriptor that follows the primary Communications
interface for the function to which it belongs. It shall also be mentioned in the Union Functional
descriptor for the WHCM interface that describes the handset to which the Data Class interface
belongs.

6. If a Communications Class interface appears with multiple alternate settings, all alternate settings
for that interface must have the same bInterfaceClass, bInterfaceSubclass and bInterfaceProtocol
codes.

7. The class descriptors associated with a given Communications Class interface must appear
sequentially in the configuration bundle after the interface descriptor to which they apply, and
before the next interface descriptor in the bundle (even if that interface descriptor is for an
alternate setting for the same interface.

8. If a Communications Class interface appears with multiple alternate settings, functional
descriptors must be repeated after each such interface and the Union Functional descriptors must
be the same for each alternate setting.

9. All Abstract Control Model and Device Management Communications Class interfaces must
have an INTERRUPT IN endpoint for transporting notifications to the host.

10. For other interfaces, the interrupt endpoint requirements given in section 4.3 must be met.

11. Bit zero of the first octet of any Ethernet address associated with the device must always be zero.
(See section 6.4.2.3.)

Non-testable requirements

1. The device shall handle contention according to the rules presented section 4.2.1.

2. Suppose that SendEncapsulatedCommand may optionally be omitted for a given kind of
function (according to the controlling specification). Further suppose that the function, in fact,
implements it. In such cases, an Interrupt IN endpoint must be supplied with the controlling
Communications interface, for transporting ResponseAvailable notifications.

3. The first three octets of any Ethernet address associated with the device shall be the OUI of the
organization assigning the Ethernet address, and the last three octets shall be assigned in such a
way as to guarantee uniqueness and consistency.

Revision

December 6, 2012 9

The intent of this specification is that certain handset functions be represented in certain ways. However,
this specification is not restrictive. The class-compliant functions of a device are compliant with the
governing class specification (and in accordance with the general requirements given above).

 Revision

10 December 6, 2012

4 Functional Overview

4.1 Device Organization

A Communications Device Class Wireless Handset consists of one or more functions (where “function” is
used in the sense of multi-function device). The device designer organizes functions within a device into
groups. Figure 4-1 shows an example of how functions might be grouped. The example device is
modeled as consisting of a logical handset, a mass storage device, and a device firmware update function.
In turn, the handset is composed of Modem, LAN, OBEX, HID (for the keypad), Audio, and Device Status
functions.

Device

Wireless Handset

Modem

LAN

Mass Storage

DFU

HID

Audio

OBEX Device

Mgmt

MDLM

Figure 4-1. Device Structure

The device designer expresses these relationships in the descriptors for the device. Each of the individual
functions is modeled using one or more interfaces of the appropriate device classes. In the device shown
in Figure 4-1, for example, the functions are represented in the descriptors as follows:

Modem: a Communications Class interface (with subclass “Abstract Control Model”) and a Data
Class interface, connected by a Union Functional descriptor that follows the Communications
Class interface. Described in [USBPSTN1.2], with additional details as given in section 6.2 of this
document.

LAN: a Communications Class interface (with subclass “Ethernet Networking Control Model” or
“Networking Control Model”) and a Data Class interface, connected by a Union Functional

Revision

December 6, 2012 11

descriptor that follows the Communications Class interface. Described in [USBECM1.2],
[USBNCM1.0] and [USBMBIM1.0], with additional details as given in section 6.4 and 6.8 of this
document.

OBEX: a Communications Class interface (with subclass “OBEX Model”) and a Data Class interface,
connected by a Union Functional descriptor that follows the Communications Class interface.
Defined in section 6.5 of this document.

HID: a Human-Interface Device class interface, as defined in [USBHID1.1].

Audio: Consists of a Communications Class interface (with subclass “Telephone Control Model”,
and a protocol code defining the AT command set to be used). The operation of this interface is
as defined in section 6.3 of this document. In addition, there must be an Audio Control interface
followed by one or more Audio Streaming interfaces, connected as described in [USBAUD1.0].

Device Management: a Communications Class interface (with subclass “Device Management
Model”), as defined in section 6.6 of this document.

MDLM: a Communications Class interface (with subclass “Mobile Direct Line Model”), as defined in
section 6.6.3 of this document. May be followed by one or more Data Class interfaces, as
required. The Data Class interfaces are marked as part of this function because they are listed in
a Union Functional descriptor that follows the Communications Class interface.

Mass Storage: a mass storage class interface, as defined by [USBMASS1.1] and associated
documents.

DFU: a Device Firmware Upgrade interface (in application mode), as defined by [USBDFU1.0].

The device designer further identifies those portions of the device that make up a logical handset. To do
this, the designer adds another Communications Class interface (with subclass “Wireless Handset
Control Model”). This interface is followed by a Union Functional descriptor; the Union Functional
descriptor identifies each of the interfaces that make up the logical handset.

This organization is discussed in more detail in section 6.1.

4.2 Device Operation

This specification imposes few additional operational requirements on the overall operation of a device
containing functions defined herein. However, since all facilities are described statically, but might not
be able to be used concurrently (due to network or device implementation restrictions), this specification
requires that a specific set of practices be followed for managing this situation.

4.2.1 Contention

A given logical handset may have many logical functions, corresponding to different call facilities. The
subscribed services, the local service provider, or the hardware or firmware of the handset may prevent
some functions from being used concurrently.

The services available from the network via the handset might also change dynamically, even while a
service is in use. For example, the user might reconfigure the handset via the keypad; the user might
roam into a cell that cannot provide all services; or the network operator may decide to deny or retract
service from the customer because of billing issues.

 Revision

12 December 6, 2012

This specification refers to the process of dynamically determining whether a given call facility is
available as “contention”. It is so called, because different applications on the host may try to use
different functions (modeling call capabilities) concurrently, and the handset is responsible for
determining how to resolve any conflicting requests. Normally, the situation is resolved as if the network
were unavailable. Any contention-related issues for specific functions are listed with the discussion of
that function.

Dynamic retraction of service is also modeled as if the network were unavailable, so it is fundamentally
similar to contention.

4.3 Function Models

[USB2.0] defines “function” as a “USB device that provides a capability to the host, such as an ISDN
connection, a digital microphone, or speakers”. Further, in section 5.2.3, it says “Multiple functions may
be packaged into what appears to be a single physical device…. A device that has multiple interfaces
controlled independently of each other is referred to as a composite device.” We therefore adopt the term
“function” to describe a set of one or more interfaces which taken together provide a capability to the
host.

This document defines the following new kinds of functions:

Wireless Handset Control Model (WHCM)

Mobile Direct Line Model (MDLM)

Object Exchange (OBEX)

Device Management

This document extends or reuses CDC based control models defined by [USBPSTN1.2], [USBECM1.2],
[USBNCM1.0] and [USBMBIM1.0] for specific kinds of WMC functions:

All models are extended to allow additional protocols for the control plane.

Telephone Control Model (TCM) is extended to allow use of AT commands for call control. The
optional notification endpoint is mandatory in this specification.

Abstract Control Model (ACM) is used for data/fax purposes. The optional notification endpoint is
mandatory in this specification.

Ethernet Networking Control Model or Networking Control Model is used for LAN frame exchange.
MBIM is used for IP frame exchange. The optional notification endpoint is mandatory in this
specification.

This document reuses control models defined by other class specifications for specific kinds of WMC
functions.

The keypad (and, if necessary, the display) are modeled using HID interfaces. The implementation
may follow the guidelines given in [INTTD].

Revision

December 6, 2012 13

The audio flow to the handset and to the network are modeled using USB Audio class interfaces. The
implementation may follow the guidelines given in [INTTD], with suitable modifications for the
handset capabilities.

4.4 Interface Definitions

No interface classes are defined by this specification, beyond those defined in [USBCDC1.2] and the other
class specifications. However, additional bInterfaceSubClass and bInterfaceProtocol codes are defined for
use in constructing Communications Class interfaces. The bInterfaceSubClass codes are extended to
represent the new function types. The bInterfaceProtocol codes are extended to allow additional AT
commands, and to provide flexibility as these standards evolve.

4.5 Endpoint Requirements

The only additional endpoint requirement imposed by this specification is the general requirement for
notification endpoints. This is an extension beyond the requirements of [USBCDC1.2].

4.6 Device Models

This specification targets multi-function devices, and is intended to allow free combination of logical
handsets with other functions. Therefore, the device model is that of a composite device, as defined in
[USB2.0].

 Revision

14 December 6, 2012

5 Class Specific Codes

5.1 Communications Class Subclass Codes

Table 5-1: Communications Class Subclass Code

Code Subclass

08h Wireless Handset Control Model

09h Device Management Model

0Ah Mobile Direct Line Model

0Bh OBEX Model

5.2 Communications Class Protocol Codes

Table 5-2: Communications Class Protocol Codes

Code Subclass

02h AT Commands defined by [PCCA101]

03h AT Commands defined by [PCCA101] + [PCCA101-O]

04h AT Commands defined by [GSM07.07]

05h AT Commands defined by [3GPP27.007]

06h AT Commands defined by [C-S0017-0]

FEh External Protocol: Commands defined by Command Set
functional descriptor

5.3 Communications Class Functional Descriptor Sub-Type Codes

Table 5-3: Communications Class Functional Descriptor Sub-Type Codes

Code Description

11h Wireless Handset Control Model Functional Descriptor

12h Mobile Direct Line Model Functional Descriptor

13h MDLM Detail Functional Descriptor

14h Device Management Model Functional Descriptor

15h OBEX Functional Descriptor

16h Command Set Functional Descriptor

17h Command Set Detail Functional Descriptor

18h Telephone Control Model Functional Descriptor

19h OBEX Service Identifier Functional Descriptor

Revision

December 6, 2012 15

5.4 Communications Class Management Element Request Codes

Table 5-4: Communications Class Management Element Request Codes

Request Code Subclass

60h – 7Fh MDLM Semantic-Model specific Requests (32 in all)

5.5 Communications Class Notification Element Request Codes

Table 5-5: Communications Class Notification Element Request Codes

Notification
Code

Subclass

40h – 5Fh MDLM Semantic-Model-specific Notifications (32 in all).

 Revision

16 December 6, 2012

6 Functional Characteristics

This section describes how each standard abstract function is represented.

6.1 WHCM Logical Handset

A logical handset is modeled as a WHCM interface, plus a collection of interfaces that model various
capabilities of the handset.

6.1.1 Functional Topology

The Logical Handset function has no endpoints of its own, nor does it have any Data Class interfaces
directly associated with it. The interface that models the logical handset is a placeholder, which is
followed by a Union Functional descriptor, that points to all the other interfaces that are part of functions
which are part of the logical handset.

6.1.2 WHCM Descriptors

6.1.2.1 WHCM Interface Descriptor

One interface descriptor with bInterfaceClass == COMM and bInterfaceSubClass == WHCM and
bInterfaceProtocol == 0 shall be embedded in the configuration bundle for each wireless device. Because
cell phones typically have only one handset function, only one such descriptor will normally appear.

Following the WHCM descriptor, a number of functional descriptors appear.

6.1.2.2 Communications Class Header Functional Descriptor

This is as described in [USBCDC1.2].

This descriptor is mandatory, and must be first.

Table 6-1: Communications Class Header Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 5 Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Header Functional Descriptor subtype, as defined
in Table 25 of [USBCDC1.2]

3 bcdCDC 2 Number
0x0120

Release number of [USBCDC1.2] in BCD, with
implied decimal point between bits 7 and 8.
0x0120 == 1.20 == 1.2.

6.1.2.3 WHCM Functional Descriptor

This conveys subclass version information.

Table 6-2: Wireless Handset Control Model Functional Descriptor

Offset Field Size Value Description

Revision

December 6, 2012 17

Offset Field Size Value Description

0 bFunctionLength 1 5 Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant ID for Wireless Handset Control Model functional
descriptor.

3 bcdVersion 2 BCD number

0x0110

Version number for this subclass specification.
Initially 0x0100. The implied decimal point is
between bits 7 and 8. (Example: Version 1.1 of
the spec is represented as 0x110.) Please note
that the value used here is not necessarily the
same as the version of [USBCDC1.2], which is
1.20 (0x120).

6.1.2.4 Communications Class Union Functional Descriptor (following WHCM interface)

This descriptor is formatted as a standard CDC Union Functional descriptor, and points to a collection of
interfaces. However, the meaning is different.

 The Union Functional descriptor of other Communications Class functions points to other
interfaces that are to be managed by the same driver that is bound to the Communications Class
interface.

 However, the Union Functional descriptor of the WHCM interface points to other interfaces that
are to be managed by drivers that are logically subordinate to the WHCM interface. The WHCM
interface defines a handset; every interface that is part of the logical handset must appear in the
Union Functional descriptor. This includes (in the case of Communications Class functions) the
Communications interfaces and the Data Class interfaces.

For informative purposes, we repeat the definition of the Union Functional descriptor here.

Table 6-3: Union Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 4+n Size of Descriptor in bytes; n is the count of
subordinate interfaces defined below.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Union Functional Descriptor Subtype as defined in
[USBCDC1.2]

3 bControlInterface2 1 Number The interface number of this WHCM interface

4 bSubordinateInterface03 1 Number The interface number of the first subordinate
interface.

… … … … …

4+n-1 bSubordinateInterface
n-1

1 Number The interface number of the last subordinate
interface.

 Revision

18 December 6, 2012

We suggest the following approach to assigning functions to a given logical handset. Consider the
(highly hypothetical) case of two complete phones bonded into a single physical device. In this case,
there must be two WHCM interfaces, one for each phone. Each WHCM interface is followed by a Union
Functional descriptor that points to the USB Interface Descriptors that denote features that are specific to
its logical phone.

If there is only one WHCM interface, then its Union Functional descriptor SHALL point to all the other
interfaces associated with the WHCM interface. For example, consider the following case:

Interface 0: the master WHCM interface, representing the handset as a whole facility

Interface 1: the Abstract Control Model interface that represents a modem facility of the logical
handset

Interface 2: the Data Class interface for interface 1.

Interface 3: the TCM interface that represents a voice-call facility

Interface 4: a DFU interface

Interface 5: a HID interface

Interface 6: an AUDIO CONTROL interface

Interface 7: an AUDIO STREAMING interface

Interface 8: an AUDIO STREAMING interface

Interface 0 would be followed by (among other things) a Union Functional descriptor pointing to
subordinate interfaces 1, 2, 3, 5, 6, 7 and 8. Interface 1 would be followed by (among other things) a
Union Functional descriptor pointing to subordinate interface 2. Interface 3 would be followed by
(among other things) a Union Functional descriptor pointing to subordinate interfaces 6, 7, and 8.
Interface 6 would be followed by (among other things) an AUDIO class descriptor identifying interfaces 7
and 8 as subordinate interfaces.

If there are multiple logical handsets in the device, each would be modeled by a top-level WHCM
interface (as interface 0). Each WHCM interface’s Union Functional descriptor would point only to those
interfaces that are logically part of the phone modeled by the WHCM interface. The functions that are
global to the physical device would not appear in any WHCM descriptor, but would appear logically
parallel to all of the WHCM interfaces.

Figure 6-1, below, is a graphical illustration of these relationships.

Revision

December 6, 2012 19

Figure 6-1: WHCM Union Functional Descriptor and Device Structure

Interface 5/7

Device

Configuration 1

Interface 0

WHCM

Audio Streaming Interface (Alt.0 - zero bandwidth)

Audio Streaming Interface (Alt.1 Isochronous IN (Ifc7, EP#7)/OUT (Ifc8, EP#8))

Interface 7/8

DFU

Audio Control Interface (Alt.0 Control)

Communication Class (TCM) (Alt.0 Control/Interrupt #5)

TCM(voice) Interface 3

Interface 6

Device Class 02h / SubClass 00

ACM

C

S

C

S

S

Data Class Interface (Alt.0 Bulk IN No.3 / Bulk OUT #4)

Interface 2

Communication Class (ACM) (Alt.0 Control/Interrupt IN #2)

Interface 1

S

S

S

Interface 4

DFU (Alt.0 Control)

HID Interface (Alt.0 Control/Interrupt IN #6)

Interface 5

C

S

S

UNION

HID
S

6.1.3 Management Elements

No management elements are defined for use with the WHCM Interface.

6.1.4 Notifications

No notifications are defined for use with the WHCM interface, so no notification endpoint is defined.

 Revision

20 December 6, 2012

6.2 Data/Fax Modem Functions

6.2.1 Functional Topology

A data/fax call facility consists of:

1. A Communications Class/Abstract Control Model (ACM) interface with a notification endpoint.

2. A Data Class interface with two endpoints, one BULK IN, the other BULK OUT.

Each Data/Fax function is represented by a standard Communications Class/Abstract Control Model
interface with an interrupt endpoint. This interface in turn has a Union Functional descriptor pointing to
a Data Class interface with two bulk endpoints.

This use is as defined in [USBPSTN1.2].

In order to minimize contention for the default pipe of the handset, all ACM interfaces shall provide a
notification endpoint associated with the ACM interface. (This is an additional requirement, compared to
[USBPSTN1.2].)

6.2.2 Descriptors

6.2.2.1 ACM Interface Descriptor

One interface descriptor with bInterfaceClass == COMM, bInterfaceSubClass == ACM, and
bInterfaceProtocol == (some) AT Command shall be embedded in the configuration bundle for each
data/fax.

Table 6-4: Communications Class Abstract Control Model Interface Descriptor

Offset Field Size Value Description

5 bInterfaceClass 1 Constant (02) Communications Class

6 bInterfaceSubClass 1 Constant (02) Abstract Control Model, as defined in
[USBCDC1.2].

7 bInterfaceProtocol 1 Constant Standard or enhanced AT Command set protocol,
as defined in [USBCDC1.2]. Enhanced AT
command set is repeated in Table 5-2 for
reference.

Notice that the interface protocol includes a non-zero protocol code such as “AT command”, rather than
00, which indicates “no protocol”.

Following the ACM interface descriptor, a number of functional descriptors appear.

6.2.2.2 Communications Class Header Functional Descriptor

This is as described in [USBCDC1.2].

This descriptor is mandatory, and must be first.

Revision

December 6, 2012 21

Table 6-5: Communications Class Header Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 5 Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Header Functional Descriptor subtype, as defined
in [USBCDC1.2]

3 bcdCDC 2 Number
0x0120

Release number of [USBCDC1.2] in BCD, with
implied decimal point between bits 7 and 8.
0x0120 == 1.20 == 1.2.

6.2.2.3 Abstract Control Management Functional Descriptor

This descriptor is mandatory.

Table 6-6: Abstract Control Management Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 4 Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Abstract Control Management Functional
Descriptor subtype, as defined in [USBCDC1.2]

3 bmCapabilities 1 0x06

(byte)

Specifies the capabilities that this data/fax
function supports. A bit value of zero means that
the capability is not supported.

D7..D4: RESERVED (Reset to zero)

D3: Function generates the notification
NetworkConnect ION

D2: Function supports the management
element SendBreak

D1: Function supports the management
elements GetLineCoding,
SetControlLineState, GetLineCoding.
Function will generate the notification
SerialState.

D0: Function supports management
elements GetCommFeature,
SetCommFeature and
ClearCommFeature

Although the capabilities outlined above are based on [USBPSTN1.2], this specification imposes a further
restriction. D3 through D0 of bmCapabilities shall always be coded as 0x06 (that is, D3 = 0, D2 = 1, D1 =
1, and D0 = 0). Furthermore, no host driver is required to support functions with bmCapabilities set to a
value other than 0x06.

6.2.2.4 Call Management Functional Descriptor

This descriptor is mandatory.

 Revision

22 December 6, 2012

Table 6-7: Call Management Functional Descriptor for Data/FAX Facilities

Offset Field Size Value Description

0 bFunctionLength 1 5 Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Call Management Functional Descriptor subtype,
as defined in [USBCDC1.2]

3 bmCapabilities 1 Bitmap Specifies the capabilities that this data/fax
function supports.

D7..D2: RESERVED (Reset to zero)

D1: 0 - Function sends/receives call
management information only over
this Communications Class interface

 1 – Function can send/receive call
management information over the
Data Class interface.

D0: 0 – Function does not perform call
management

 1 – Function does perform call
management

4 bDataInterface 1 Number bInterfaceNumber of the Data Class interface

Data/Fax functions shall always set bits D1 and D0 of bmCapabilities to 1, and shall always support
sending call management via their Data Class interface.

Data/Fax functions shall always set byte 4 of this descriptor to the same value that is used in
bInterfaceNumber of the Data Class interface descriptor (given below).

These constraints effectively mean that all Data/Fax facilities must support call management over the
data class interface, and all Data/Fax facilities must perform call management.

6.2.2.5 Communications Class Union Functional Descriptor

This descriptor is formatted as a standard CDC Union Functional descriptor. For informative purposes,
we repeat the definition of the Union Functional descriptor here.

This descriptor is mandatory.

Table 6-8: Union Functional Descriptor for Data/Fax Facilities

Offset Field Size Value Description

0 bFunctionLength 1 5 Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Union Functional Descriptor Subtype as defined in
[USBCDC1.2]

3 bControlInterface4 1 Number The interface number of this ACM interface

Revision

December 6, 2012 23

Offset Field Size Value Description

4 bSubordinateInterface05 1 Number The interface number of the Data Class interface.

6.2.2.6 Notification Endpoint Descriptor

This descriptor describes the INTERRUPT IN endpoint that transports notifications for this function.

This descriptor is mandatory.

6.2.2.7 Data Class Interface Descriptor

One interface descriptor with bInterfaceClass == DATA, bInterfaceSubClass == 0, and bInterfaceProtocol
== 0 shall be embedded in the configuration bundle for each data/fax facility.

Table 6-9: Data Class Interface Descriptor for Data/FAX Facilities

Offset Field Size Value Description

5 bInterfaceClass 1 Constant
(0x0A)

Data Class

6 bInterfaceSubClass 1 Constant (00) No subclass

7 bInterfaceProtocol 1 Constant (00) No protocol.

Notice that the interface protocol is 00, which indicates “no protocol”. For embedded call control (AT
commands) the particular command set is identified by the protocol code given by the facility’s
Communications Class interface descriptor.

Following the Data Class interface descriptor, a number of functional descriptors may appear.

6.2.2.8 Data Class Header Functional Descriptor

This is as described in [USBCDC1.2], and has the format shown in Table 6-10.

This descriptor is optional, but must be first if it appears.

Table 6-10: Data Class Header Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 5 Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Header Functional Descriptor subtype, as defined
in [USBCDC1.2]

 Revision

24 December 6, 2012

Offset Field Size Value Description

3 bcdCDC 2 Number
0x0120

Release number of [USBCDC1.2] in BCD, with
implied decimal point between bits 7 and 8.
0x0120 == 1.20 == 1.2.

6.2.2.9 Endpoint Descriptors

Two endpoints must be provided.

1. A bulk IN endpoint

2. A bulk OUT endpoint.

These endpoint descriptors may appear in any order.

6.2.3 ACM Management Elements for Data/Fax

The management elements are described in [USBPSTN1.2], with adjustments given in Table 6-11.

Table 6-11: ACM Management Elements for Data/Fax Functions

Request Requirements of [USBPSTN1.2] Requirements of this standard

SendEncapsulatedCommand Mandatory mandatory (please see section 7.1 for
additional discussion)

GetEncapsulatedResponse Mandatory mandatory

SetCommFeature Optional optional

GetCommFeature Optional optional

ClearCommFeature Optional optional

SetLineCoding Optional mandatory

GetLineCoding Optional mandatory

SetControlLineState Optional mandatory

SendBreak Optional mandatory

6.2.4 ACM Notifications for Data/Fax

Notifications are as defined in [USBPSTN1.2].

Table 6-12: ACM Notification Elements for Data/Fax Functions

Notification Requirements of [USBPSTN1.2] Requirements of this standard

NetworkConnection Optional not used

ResponseAvailable Mandatory mandatory

SerialState Optional mandatory

Revision

December 6, 2012 25

6.2.5 Contention

Call management is done using AT commands. When the function attempts to go logically off-hook, then
the AT command interpreter requests the central resource manager on the handset (logically part of the
TA/MT cluster) for the resources needed to place the call. If available, the AT command interpreter
proceeds as normal; otherwise it aborts the call with “NO DIAL TONE” or another appropriate response,
as determined by the handset vendor. This is analogous to what happens on a PABX when a user
requests an outside line but no outside lines are available.

 Revision

26 December 6, 2012

6.3 Voice Functions

6.3.1 Functional Topology

A Voice facility consists of:

1. A Communications Class/Telephone Control Model (TCM) interface with a notification
endpoint.

2. An Audio Class Audio Control interface

3. At least two Audio Class Audio Streaming interfaces, to model the interface to the network. Each
interface has one isochronous endpoint for transporting audio data.

The top level interface for modeling a voice call facility is a Communications Class/Telephone Control
Model (TCM) interface. This interface in turn has a Union Functional descriptor which points to the
Audio Control interface and Audio Streaming interfaces. However, as an extension to [USBPSTN1.2], call
control is done using AT commands, transported to the interface using SendEncapsulatedCommand /
GetEncapsulatedResponse.

In order to minimize contention for the default pipe of the handset, all TCM interfaces shall provide a
notification endpoint associated with the TCM interface. (This is an additional requirement, compared to
[USBPSTN1.2].)

6.3.2 Descriptors

6.3.2.1 TCM Interface Descriptor

One interface descriptor with bInterfaceClass == COMM, bInterfaceSubClass == TCM, and
bInterfaceProtocol == (some) AT Command shall be embedded in the configuration bundle for each voice
facility.

Table 6-13: Communications Class Telephone Control Model Interface Descriptor

Offset Field Size Value Description

5 bInterfaceClass 1 Constant (02) Communications Class

6 bInterfaceSubClass 1 Constant (03) Telephone Control Model, as defined in
[USBCDC1.2].

7 bInterfaceProtocol 1 Constant Standard or enhanced AT Command set protocol,
as defined in [USBCDC1.2]. Enhanced AT
command set protocols repeated in Table 5-2 for
reference.

Notice that the interface protocol includes a non-zero protocol code such as “AT command”, rather than
00, which indicates “no protocol”.

Following the TCM descriptor, a number of functional descriptors appear.

Revision

December 6, 2012 27

6.3.2.2 Communications Class Header Functional Descriptor

This is as described in [USBCDC1.2], and shown in Table 6-5.

This descriptor is mandatory, and must be the first functional descriptor.

Table 6-14: Communications Class Header Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 5 Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Header Functional Descriptor subtype, as defined
in Table 25 of [USBCDC1.2]

3 bcdCDC 2 Number
0x0120

Release number of [USBCDC1.2] in BCD, with
implied decimal point between bits 7 and 8.
0x0120 == 1.20 == 1.2.

6.3.2.3 Telephone Control Model Functional Descriptor

This descriptor is mandatory. This descriptor is defined by this document, and is an extension to
[USBPSTN1.2]

Table 6-15: Telephone Control Model Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 7 Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Telephone Control Model Functional Descriptor
subtype, as given in Table 5-3.

3 bcdVersion 2 BCD number

0x0110

Version number for this subclass specification.
Initially 0x0100. The implied decimal point is
between bits 7 and 8. (Example: Version 1.2 of
the spec would be represented as 0x120, not
0x102.) Please note that the value used here is
not necessarily the same as the version of
[USBCDC1.2], which is 1.20 (0x120).

5 wMaxCommand 2 word Describes the maximum number of characters
that can be transported in a single
SendEncapsulatedCommand. This shall be at
least 256 decimal (0x100).

The host may send up to wMaxCommand characters in a single encapsulated command If the host
attempts to send more than this, the device shall send an error response (a STALL PID) during the data or
status phase of the transfer.

6.3.2.4 Communications Class Union Functional Descriptor

This descriptor is formatted as a standard CDC Union Functional descriptor. Instead of pointing to each
of the Data Class interfaces within this function, it points to the Audio class interfaces which provide the

 Revision

28 December 6, 2012

voice transport. For informative purposes, we repeat the definition of the Union Functional descriptor
here.

This descriptor is mandatory.

Table 6-16: Union Functional Descriptor for Voice Call Facilities

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Union Functional Descriptor Subtype as defined in
[USBCDC1.2]

3 bControlInterface6 1 Number The interface number of this TCM interface

4 bSubordinateInterface07 1 Number The interface number of the audio class audio
control interface.

5 bSubordinateInterface1 1 Number The interface number of the first audio class audio
streaming interface

… … … … …

n+3 bSubordinateInterface
n-1

1 Number The interface number of the last audio-class audio
streaming interface.

6.3.2.5 Notification Endpoint Descriptor

This descriptor describes the INTERRUPT IN endpoint that transports notifications for this function.

This descriptor is mandatory.

6.3.3 Management Elements

The following management elements, defined in [USBPSTN1.2], are required.

6.3.3.1 SendEncapsulatedCommand

The host uses this to send encapsulated commands to the device. As described above, the function
specifies the maximum amount of data that can be sent with SendEncapsulatedCommand using the
wMaxCommand field of the Telephone Control Model Functional Descriptor.

6.3.3.2 GetEncapsulatedResponse

The host uses this to fetch responses from a previous encapsulated command. If no response is currently
available, the function shall immediately return a zero-length packet during the data-IN phase. If more
data is available than the host has asked for, the function shall arrange so that a subsequent
GetEncapsulatedResponse will get the next portion of the response. SetInterface targeting the Telephone
Control Model interface, SetConfiguration and USB Reset shall all cause any pending encapsulated
response data to be discarded by the function.

Revision

December 6, 2012 29

RING indications, dialing progress, and other network notifications are also presented to the host via
GetEncapsulatedResponse. Whenever a new such notification is delivered, the function shall also send a
ResponseAvailable notification over the notification endpoint associated with the Telephone Control
Model interface.

After issuing a complete encapsulated command, the host software must get all the associated responses
before issuing the next encapsulated command. The effect of not waiting is not specified.

6.3.4 Notifications

The only notification is ResponseAvailable, as defined in [USBPSTN1.2].

6.3.5 Contention

Call management is done using AT commands. When the host sends an AT command that causes the
function to try to use a network resource (for example, a call facility or the radio in the MT), the AT
command interpreter must contend for the resources needed to place the call. It does this by asking the
central resource manager on the handset (logically part of the TA/MT cluster). If the resources are
available, the AT command interpreter proceeds to place the call; Otherwise it aborts the call with “NO
DIAL TONE” or another appropriate response, as determined by the handset vendor. This is analogous
to what happens on a PABX when a user requests an outside line but no outside lines are available.

 Revision

30 December 6, 2012

6.4 LAN Frame Functions

6.4.1 Functional Topology

A LAN frame traffic facility is consists of:

1. A Communications Class/Ethernet Networking Control Model interface with a notification
endpoint.

2. A Data Class interface with two endpoints, one BULK IN, the other BULK OUT.

This is just as defined for a single-function Ethernet adapter in [USBECM1.2]. However, the notification
endpoint is required.

6.4.2 Descriptors

6.4.2.1 Ethernet Networking Control Model Interface Descriptor

One interface descriptor with bInterfaceClass == COMM, bInterfaceSubClass == Ethernet Networking
Control Model, and bInterfaceProtocol == 00 shall be embedded in the configuration bundle for each
data/fax.

Table 6-17: Communications Class Ethernet Networking Control Model Interface Descriptor

Offset Field Size Value Description

5 bInterfaceClass 1 Constant (02) Communications Class

6 bInterfaceSubClass 1 Constant (06) Ethernet Networking Control Model, as defined in
[USBCDC1.2].

7 bInterfaceProtocol 1 Constant (00) No specific protocol.

Notice that the interface protocol is 00, which indicates “no protocol”.

Following the Ethernet Networking Control Model interface descriptor, a number of functional
descriptors appear.

6.4.2.2 Communications Class Header Functional Descriptor

This is as described in [USBCDC1.2].

This descriptor is mandatory, and must be first.

6.4.2.3 Ethernet Networking Functional Descriptor

This descriptor is mandatory for LAN frame facilities. For informative purposes, the definition is
repeated from [USBECM1.2].

Table 6-18: Ethernet Networking Functional Descriptor

Offset Field Size Value Description

Revision

December 6, 2012 31

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Ethernet Networking Functional Descriptor
subtype, as defined in Table 25 of [USBCDC1.2]

3 iMacAddress 1 Index Index of string descriptor giving the Ethernet MAC
address for this facility. Must not be zero. The
MAC address must be formatted in UNICODE as
specified in [USBECM1.2].

4 bmEthernetStatistics 4 Bitmask Mask of supported statistics. Stored in little-
endian order.

8 wMaxSegmentSize 2 Number The maximum segment size that the LAN frame
facility can support, normally 1514 bytes. Stored
in little-endian order

10 wNumberMCFilters 2 Bitmask Indicates the number of multicast filters
supported, as defined by table 41 of
[USBECM1.2].

12 bNumberPowerFilters 1 Number Indicates the number of power filters implemented
by the function.

This specification requires that the Ethernet address specified by the string at iMacAddress be the same
no matter which (valid) language code is used with GetDescriptor to retrieve it. After conversion, the
first three octets of the address must be the OUI assigned by the IEEE to the authority assigning the
address. The remaining three octets must be unique to this physical device.

6.4.2.4 Communications Class Union Functional Descriptor

This descriptor is formatted as a standard CDC Union Functional descriptor. For informative purposes,
we repeat the definition of the Union Functional descriptor here.

This descriptor is mandatory.

Table 6-19: Union Functional Descriptor for LAN frame facilities

Offset Field Size Value Description

0 bFunctionLength 1 5 Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Union Functional Descriptor Subtype as defined in
[USBCDC1.2]

3 bControlInterface8 1 Number The interface number of this Ethernet Networking
Control Model interface, as given by
bInterfaceNumber.

4 bSubordinateInterface09 1 Number The interface number of the Data Class interface.

 Revision

32 December 6, 2012

6.4.2.5 Notification Endpoint Descriptor

This descriptor describes the INTERRUPT IN endpoint that transports notifications for this function.

This descriptor is mandatory.

6.4.2.6 Data Class Interface Descriptor, Alternate Setting Zero

One interface descriptor with bAlternateSetting == 0, bInterfaceClass == DATA, bInterfaceSubClass == 0,
and bInterfaceProtocol == 0 shall be embedded in the configuration bundle for each LAN frame facility.

Table 6-20: Data Class Interface Descriptor for LAN frame facilities, Setting 0

Offset Field Size Value Description

3 bAlternateSetting 1 Number (0) Indicates that this descriptor is for alternate
setting zero

4 bNumEndpoints 1 Number (0) Indicates that no endpoints are associated with
this alternate setting.

5 bInterfaceClass 1 Constant
(0x0A)

Data Class

6 bInterfaceSubClass 1 Constant (00) No subclass

7 bInterfaceProtocol 1 Constant (00) No protocol.

The interface protocol is 00, which indicates “no protocol”. No endpoints are permitted in alternate
setting zero (in accordance with [USBECM1.2]).

Following the Data Class interface descriptor for alternate setting 0, a number of functional descriptors
may appear.

6.4.2.7 Data Class Header Functional Descriptor

This is as described above, in Table 6-10.

This descriptor is optional, but must be first if it appears.

6.4.2.8 Data Class Interface Descriptor, Alternate Setting not Zero

At least one additional interface descriptor with bAlternateSetting != 0, bInterfaceClass == DATA,
bInterfaceSubClass == 0, and bInterfaceProtocol == 0 shall be embedded in the configuration bundle for
each LAN frame facility.

Table 6-21: Data Class Interface Descriptor for LAN frame facilities, non-zero Setting

Offset Field Size Value Description

3 bAlternateSetting 1 Number (non-
zero)

Indicates that this descriptor is for alternate
setting other than zero

4 bNumEndpoints 1 Number (2) Indicates that two endpoints are associated with
this alternate setting.

Revision

December 6, 2012 33

Offset Field Size Value Description

5 bInterfaceClass 1 Constant
(0x0A)

Data Class

6 bInterfaceSubClass 1 Constant (00) No subclass

7 bInterfaceProtocol 1 Constant (00) No protocol.

The interface protocol is 00, which indicates “no protocol”. Two endpoints are required in the non-zero
alternate setting (in accordance with [USBECM1.2]).

Following the Data Class interface descriptor for the non-zero alternate setting, a number of functional
descriptors may appear.

6.4.2.9 Data Class Header Functional Descriptor

This is as described in above, in Table 6-10.

This descriptor is optional, but must be first if it appears.

6.4.2.10 Endpoint Descriptors, Alternate Setting not Zero

Two endpoints must be provided.

3. A bulk IN endpoint

4. A bulk OUT endpoint.

These endpoint descriptors may appear in any order.

6.4.2.11 Additional Alternate Data Class Settings

A designer may provide additional Data Class settings as desired, in order to support alternate
encapsulation methods or endpoint types.

6.4.3 Management Elements

The management elements for LAN frame facilities are as defined by [USBECM1.2].

6.4.4 Notifications

The notifications for LAN frame facilities are as defined by [USBECM1.2].

6.4.5 Contention

Contention involving the LAN function is handled by simulating connect and disconnect to the virtual
ether. When the host system enables the LAN function, the host driver signals this to the device by
selecting a non-zero alternate interface setting on the Data Class interface. The Ethernet Networking
Control Model handler on the device then tries to establish a connection, arbitrating with the TA/MT and
negotiating with the network. If the connection is successful, the function sends a NetworkConnect (up)
notification to the host over the notification pipe; otherwise the function sends a NetworkConnect (down)

 Revision

34 December 6, 2012

notification. [Since the handset might or might not be in range of a base station, NetworkConnect
(up/down) will happen periodically anyway in response to network changes.]

Provisioning aspects are beyond the scope of this specification.

Revision

December 6, 2012 35

6.5 OBEX Functions

The OBEX data exchange facility is conceptually modeled using a Communications Class/Abstract
Control Model interface. However, OBEX differs from ACM in two ways:

1. There is no communication with a remote device. Therefore, there is no need for the various
communication-related commands from ACM (setting baud rate, etc.)

2. There is no separate command language, and therefore no need for SendEncapsulatedCommand
or GetEncapsulatedResponse.

The OBEX protocol is fundamentally message oriented; but the OBEX protocol is designed to be layered
above TCP-like protocols, which are character oriented. Therefore, OBEX is implemented using a pair of
bulk pipes, just as for data plane of ACM modems.

We define a new subclass code for OBEX, and a new set of functional descriptors.

In order to simplify re-use of existing drivers for implementing OBEX, the transport semantics are as
close as possible to a subset of ACM.

6.5.1 Functional Topology

The OBEX function is modeled as a Communications Class interface plus a Data Class interface. The
Data Class interface shall have two alternate settings. Alternate setting 0 shall have no endpoints;
alternate setting 1 shall provide two bulk endpoints, one BULK-IN and the other BULK-OUT. As with
the networking control models, placing the interface in alternate setting 0 shall return the data plane to a
default state, resetting the OBEX function. See [USBECM1.2] for more information.

6.5.2 OBEX Descriptors

6.5.2.1 OBEX Interface Descriptor

One Communications Class/OBEX interface is embedded in the configuration bundle for each object-
exchange locus. This is a Communications Class interface, with subclass OBEX, as defined in Table 5-1.

Table 6-22: Communications Class OBEX Model Interface Descriptor

Offset Field Size Value Description

5 bInterfaceClass 1 Constant (02) Communications Class

6 bInterfaceSubClass 1 Constant OBEX Model, as defined in Table 5-1

7 bInterfaceProtocol 1 Constant (00) Indicates that no specific command protocol is
used. (The OBEX protocol is implied by the use
of OBEX model.)

A protocol code of zero is used because OBEX Model interfaces do not support encapsulated commands
or any variations on the OBEX protocol.

 Revision

36 December 6, 2012

6.5.2.2 Communications Class Header Functional Descriptor

Following the OBEX interface descriptor is a Communications Class Header Functional Descriptor, as
described in [USBCDC1.2].

This descriptor is mandatory, and must be first.

Table 6-23: Communications Class Header Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 5 Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Header Functional Descriptor subtype, as defined
in [USBCDC1.2]

3 bcdCDC 2 Number
0x0120

Release number of [USBCDC1.2] in BCD, with
implied decimal point between bits 7 and 8.
0x0120 == 1.20 == 1.2.

6.5.2.3 OBEX Functional Descriptor

This conveys subclass version information. Because the mode switching logic is opaque to the layer that
manages this interface, mode-switching capabilities are not presented here.

Table 6-24: OBEX Control Model Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 5 Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant ID for OBEX Control Model functional descriptor.

3 bcdVersion 2 BCD number Version number for this subclass specification.
Initially 0x0100. The implied decimal point is
between bits 7 and 8. Version 1.2 of the spec is
represented as 0x120.

6.5.2.4 Union Functional Descriptor

Table 6-25: Union Functional Descriptor for OBEX Facilities

Offset Field Size Value Description

0 bFunctionLength 1 5 Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Union Functional Descriptor Subtype as defined in
[USBCDC1.2]

3 bControlInterface10 1 Number The interface number of this OBEX interface

Revision

December 6, 2012 37

Offset Field Size Value Description

4 bSubordinateInterface011 1 Number The interface number of the Data Class interface
that transports OBEX data.

A Communications Class OBEX interface must have exactly one Data Class interface. For this reason, the
Union Functional descriptor has a fixed length of 5 bytes.

6.5.2.5 OBEX Service Identification Functional Descriptor (Optional)

This optional functional descriptor indicates the mode supported by this OBEX function. This corresponds to an

OBEX role (client or server), a particular OBEX service, and an OBEX service version.

The descriptor consists of a fixed length set of fields, incorporating the OBEX role, service identifier and version

(see Table 6-26).

Table 6-26: Functional Descriptor for OBEX service identification

Offset Field Size Value Description

0 bFunctionLength 1 22 Size of this descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubType 1 Constant ID for OBEX Service

Identification Functional

Descriptor

3 bmOBEXRole 1 Bit mask Represents the OBEX role to

be played by the function

(See Table 6-27below)

4 bOBEXServiceUUID[16] 16 Byte

Constant

A 16 byte UUID value used

to indicate the particular

OBEX service associated

with this function.

20 wOBEXServiceVersion 2 Value A 16 bit value indicating the

version of the OBEX service

associated with this function.

Table 6-27: Bitmask values for bmObexRole

Bit of bmObexRole Meaning

 Revision

38 December 6, 2012

D7–D1 Reserved (set to zero)

D0 If set to 0, this function acts as an OBEX Server when alternate interface

setting 1 is activated.

If set to 1, this function acts as an OBEX Client when alternate interface setting

1 is activated.

The interpretation of bOBEXServiceUUID depends upon the value of D0 in the corresponding
bmOBEXRole field:

 If D0 in bmOBEXRole is set to 1, (meaning OBEX client), bOBEXServiceUUID is used to identify the
OBEX service on the Host that this function may request to connect to.

 If D0 in bmOBEXRole is set to 0, (meaning OBEX server), bOBEXServiceUUID is used to identify an
OBEX service provided in server mode by this function.

Section 6.5.2.5.1 describes the derivation of these UUID values in more detail.

Table 6-28: UUID values defined by WMC OBEX

UUID name Value

WMC_DEFAULT_OBEX_SERVER_UUID 02aeb320f64911da974d0800200c9a6612

The 16-bit field wOBEXServiceVersion is used to indicate the precise version number of the service
identified by bOBEXServiceUUID (Refer to section 6.5.2.5.1).. For OBEX functions presenting an OBEX
service identification functional descriptor with a bOBEXServiceUUID value equal to
WMC_DEFAULT_OBEX_SERVER_UUID (refer to Table 6-28), the value of wOBEXServiceVersion is
considered to be irrelevant, and must be set to zero (Refer to section 6.5.2.5.2).

6.5.2.5.1 Reuse of Bluetooth GOEP based profiles

OBEX was originally defined as a part of the Infra Red Data Association protocol suite, and later adopted
by the Bluetooth Special Interest Group (SIG). A number of UUID values have been defined by
Bluetooth SIG as service class constants, these being associated with particular Bluetooth Profiles13. The
mapping of service class constants to their corresponding profiles are defined in the “Service Classes”
section of [Bluetooth Reserved Numbers].

A subset of these service class constants are associated with Bluetooth Profiles based on OBEX - termed as
“Generic Object Exchange Profile” (GOEP) based profiles. Reuse of Bluetooth profiles over OBEX

12 This value is not generated by the Bluetooth SIG and therefore needs to be defined in this document.
13 : Membership of the Bluetooth SIG at (at least) “Adopter” level is necessary to access current Bluetooth
specifications. At time of writing, there are no fees associated with obtaining Adopter membership of the
Bluetooth SIG) Any changes to UUIDs and all Assigned Numbers must go through BARB so a request to

BARB-chair@bluetooth.org would need to be submitted.

mailto:BARB-chair@bluetooth.org

Revision

December 6, 2012 39

functions is restricted to these GOEP based profiles. The introduction of OBEX Service UUIDs to USB
offers opportunities for reuse and increased interoperability.

An OBEX USB Service UUID takes the form of a 128-bit value (see [LEACH1998]), uniquely identifying a
particular OBEX service. Bluetooth service class constants are usually defined in a 16 bit UUID format.
These 16 bit UUIDs are directly transformable into the usual 128 bit UUID format, following rules set
down in the Bluetooth core specification. When these service class constants are utilized in
bOBEXServiceUUID, they shall be expanded to their full 128 bit UUID format

OBEX functions presenting an OBEX service identification functional descriptor with a
bOBEXServiceUUID value matching that of a Bluetooth GOEP based profile shall utilise
wOBEXServerVersion to indicate the specific version of the Bluetooth profile being referenced, in the
format specified for a profile version number in a Bluetooth Profile Descriptor List. The service shall
adhere to the OBEX level characteristics of the corresponding version of the corresponding OBEX based
Bluetooth profile.

6.5.2.5.2 OBEX Default Server connections

Where bOBEXServiceUUID is set to WMC_DEFAULT_OBEX_SERVER_UUID (refer to Table 6-28), it is
taken that the function provides (if an OBEX server) or requires (if an OBEX client) a connection to an
OBEX Default Server.

The OBEX Default Server provides a generic OBEX Inbox service to which objects can be Put, but it can
also act as a gateway to other services. For these other services, it is assumed that appropriate OBEX
Client to OBEX Server routing is achieved through other means, particularly OBEX command level
routing by the use of Target Headers in OBEX Connect packets (see [OBEX1.3]). Where an OBEX Connect
is issued without a Target Header being specified, it is taken that the client wishes to connect to the OBEX
Default Server.

In practice, the use of functions with this bOBEXServiceUUID value opens up opportunities for a variety
of schemes for routing and multiplexing OBEX services. One example would be to have a pool of multi-
purpose OBEX pipe bundles available for OBEX transfers, with routing to specific OBEX services
occurring within the OBEX Server itself (whether the USB function or host has taken on the OBEX Server
role). Such usage schemes depend on the capabilities of the OBEX implementation bound over the OBEX
function.

6.5.2.6 OBEX Communications Interface Endpoint Descriptors

No notifications are supported by the OBEX subclass, and therefore no Interrupt endpoint is provided
with this interface.

6.5.2.7 Data Class Interface Descriptor, Alternate Setting Zero

One interface descriptor with bAlternateSetting == 0, bInterfaceClass == DATA, bInterfaceSubClass == 0,
and bInterfaceProtocol == 0 shall be embedded in the configuration bundle for each OBEX facility.

Table 6-29: Data Class Interface Descriptor for OBEX facilities, Setting 0

Offset Field Size Value Description

3 bAlternateSetting 1 Number (0) Indicates that this descriptor is for alternate
setting zero

 Revision

40 December 6, 2012

Offset Field Size Value Description

4 bNumEndpoints 1 Number (0) Indicates that no endpoints are associated with
this alternate setting.

5 bInterfaceClass 1 Constant
(0x0A)

Data Class

6 bInterfaceSubClass 1 Constant (00) No subclass

7 bInterfaceProtocol 1 Constant (00) No protocol.

The interface protocol is 00, which indicates “no protocol”. No endpoints are permitted in alternate
setting zero.

Whenever this setting is selected, the OBEX engine shall abandon all work in progress in an appropriate
way, and shall return to an idle state.

Following the Data Class interface descriptor for alternate setting 0, a number of functional descriptors
may appear.

6.5.2.8 Data Class Header Functional Descriptor

This is as described above, in Table 6-10.

This descriptor is optional, but must be first if it appears.

6.5.2.9 Data Class Interface Descriptor, Alternate Setting not Zero

At least one additional interface descriptor with bAlternateSetting != 0, bInterfaceClass == DATA,
bInterfaceSubClass == 0, and bInterfaceProtocol == 0 shall be embedded in the configuration bundle for
each OBEX facility.

Table 6-30: Data Class Interface Descriptor for OBEX facilities, non-zero Setting

Offset Field Size Value Description

3 bAlternateSetting 1 Number (non-
zero)

Indicates that this descriptor is for alternate
setting other than zero

4 bNumEndpoints 1 Number (2) Indicates that two endpoints are associated with
this alternate setting.

5 bInterfaceClass 1 Constant
(0x0A)

Data Class

6 bInterfaceSubClass 1 Constant (00) No subclass

7 bInterfaceProtocol 1 Constant (00) No protocol.

The interface protocol is 00, which indicates “no protocol”. Two endpoints are required in the non-zero
alternate setting.

When this setting is selected, the OBEX service in the device shall be operational.

Revision

December 6, 2012 41

Following the Data Class interface descriptor for the non-zero alternate setting, a number of functional
descriptors may appear.

6.5.2.10 Data Class Header Functional Descriptor

This is as described in above, in Table 6-10.

This descriptor is optional, but must be first if it appears.

6.5.2.11 Endpoint Descriptors, Alternate Setting not Zero

Two endpoints must be provided.

5. A bulk IN endpoint

6. A bulk OUT endpoint.

These endpoint descriptors may appear in any order.

6.5.3 Management Elements

6.5.3.1 Establishing OBEX transport connection

Since it is always the OBEX Client entity that initiates an OBEX connection, the sequence of events
required depending on whether the OBEX client resides in a USB device or in a USB Host (refer to
Appendix B: for more details on OBEX connections). However, in both cases it is assumed that the host
must activate the OBEX interface using SetInterface to activate the relevant OBEX interface. This
corresponds to a running host application which is either an OBEX client or OBEX server as appropriate.
This is a basic requirement for valid interactions with any given host.

6.5.3.2 Suspend, Resume and Remote Wakeup

When a device supporting an OBEX function is placed into Suspend mode, the OBEX session shall not be
terminated.

 If the Suspend mode is exited through USB Resume, the OBEX session state shall be maintained.

 If the Suspend mode is exited through a USB Reset, power interruption (e.g. VBus removed), cable
detach or through any other means, then all OBEX session state shall be abandoned.”

6.5.3.3 Session Request Protocol

For SRP capable USB OTG peripherals the end of a session also terminates the OBEX session.

6.5.4 Notifications

No notifications are used by the OBEX class.

6.5.5 Contention

The OBEX interface does not involve the use of the air interface (MT), so contention is not an issue.

 Revision

42 December 6, 2012

6.6 Device Management Functions

6.6.1 Functional Topology

The Device Management data exchange facility allows management information to be exchanged
between the logical handset and the USB host, without interfering with any other activities that are in
process. The facility is conceptually similar to a Communications Class/Abstract Control Model
interface. However, Device Management differs from ACM in two ways:

1. There is no data class interface; all information is exchanged using commands over the control
endpoint.

2. The AT command set is the only way of communicating with this interface; there is no “data
plane” associated with this kind of interface.

6.6.2 Device Management Descriptors

6.6.2.1 Device Management Interface Descriptor

One Communications Class/Device Management interface is embedded in the configuration bundle for
each device management locus. Only one should appear per logical handset.

Since Device Management data exchange is normally low volume and infrequently exchanged, this class
has no need for separate data endpoints.

Table 6-31: Communications Class Device Management Interface Descriptor

Offset Field Size Value Description

5 bInterfaceClass 1 Constant (02) Communications Class

6 bInterfaceSubClass 1 Constant Device Management Model, as defined in Table
5-1.

7 bInterfaceProtocol 1 Constant Standard or enhanced AT Command set protocol,
as defined in [USBCDC1.2].;Enhanced AT
command set protocols repeated in Table 5-2 for
reference.

Notice that the interface protocol includes a non-zero protocol code such as “AT command”, rather than
00, which indicates “no protocol”.

Following the Device Management interface descriptor, a number of functional descriptors appear.

6.6.2.2 Communications Class Header Functional Descriptor

Following the Device Management interface descriptor is a Communications Class Header Functional
Descriptor, as described in [USBCDC1.2].

This descriptor is mandatory, and must be first.

Revision

December 6, 2012 43

Table 6-32: Communications Class Header Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 5 Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Header Functional Descriptor subtype, as defined
in [USBCDC1.2]

3 bcdCDC 2 Number
0x0120

Release number of [USBCDC1.2] in BCD, with
implied decimal point between bits 7 and 8.
0x0120 == 1.20 == 1.2.

6.6.2.3 Device Management Functional Descriptor

This conveys subclass version information and device design decision information to the host.

Table 6-33: Device Management Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 7 Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant ID for Device Management Control Model
functional descriptor.

3 bcdVersion 2 BCD number Version number for this subclass specification.
Initially 0x0100. The implied decimal point is
between bits 7 and 8. Version 1.2 of the spec is
represented as 0x120.

5 wMaxCommand 2 Number The buffer size allocated in the device for data
sent from the host using
SendEncapsulatedCommand. If the host
attempts to send more than this in a single
command, the device shall fail the request. This
shall be at least 256 decimal (0x100).

6.6.2.4 Device Management Notification Endpoint

In order not to interfere with other functions, it’s important that activities on the default pipe execute
quickly. Therefore, the COMM/Device Management interface must also provide a separate notification
endpoint to carry notifications back to the host, to indicate that an encapsulated response is available.

The notification endpoint shall be an INTERRUPT IN endpoint.

Note that a notification endpoint is required.

6.6.3 Management Elements

The management elements used with the Device Management facility are:

SendEncapsulatedCommand (mandatory)

GetEncapsulatedResponse (mandatory)

 Revision

44 December 6, 2012

6.6.4 Notifications

The only notifications supported by the Device Management class are:

ResponseAvailable (mandatory)

6.6.5 Contention

The Device Management facility does not involve the use of the air interface (MT), so contention is not an
issue.

Revision

December 6, 2012 45

6.7 MDLM Transport Functions

MDLM transport allows a driver with sufficient knowledge to take over direct control of the MT radio
component.

Due to regulatory issues, although the MDLM transport effectively has direct control of the radio
transmitter and receiver, the entire capability of the radio is not available to the host computer.
Command sets and data formats are limited, based on the type of network (GPRS, cdmaOne, cdma2000,
W-CDMA, and so forth) for which the handset was designed. These command sets and data formats,
while possibly standard within a network, may vary from location to location.

In any given MDLM application, however, the command sets and data formats are necessarily well
defined. We collectively refer to a given standard set of data formats, management elements, and
notification elements as a MDLM semantic model.

Therefore, the MDLM interface descriptor must identify the MDLM semantic model to be used with the
interfaces that form the given MDLM function, so that the appropriate host driver can be loaded, and can
do the right thing. Rather than establish a central authority for issuing MDLM identifiers, UUIDs (also
known as GUIDs) are used to identify the MDLM transport in use. These UUIDs are as defined in
[OPENC309] and [LEACH1998].

6.7.1 Functional Topology

MDLM is modeled using a master Communications Class/Mobile Direct Line Model interface. The
interface descriptor is followed by a CDC Header Functional Descriptor, a MDLM Functional Descriptor,
and a Union Functional descriptor that indicates one or more Data Class interfaces that provide data
transport facilities.

6.7.2 Descriptors

6.7.2.1 MDLM Interface Descriptor

One interface descriptor with bInterfaceClass == Communications, bInterfaceSubClass == MDLM, and
bInterfaceProtocol set to an appropriate value shall be embedded in the configuration bundle for each
instance of an MDLM facility.

Table 6-34: Communications Class Mobile Direct Line Model Interface Descriptor

Offset Field Size Value Description

5 bInterfaceClass 1 Constant (02) Communications Class

6 bInterfaceSubClass 1 Constant Mobile Direct Line Model, as defined in Table 5-1.

7 bInterfaceProtocol 1 Constant Control plane protocol.

Following the MDLM Interface Descriptor, a number of functional descriptors appear.

6.7.2.2 Communications Class Header Functional Descriptor

This is as described in [USBCDC1.2].

 Revision

46 December 6, 2012

This descriptor is mandatory, and must be first.

Table 6-35: Communications Class Header Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 5 Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Header Functional Descriptor subtype, as defined
in [USBCDC1.2]

3 bcdCDC 2 Number
0x0110

Release number of [USBCDC1.2] in BCD, with
implied decimal point between bits 7 and 8.
0x0120 == 1.20 == 1.2.

6.7.2.3 Mobile Direct Line Model Functional Descriptor

This descriptor is mandatory. It conveys the GUID that uniquely identifies the kind of MDLM interface
that is being provided.

Table 6-36: Mobile Direct Line Model Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 21 (0x15) Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Mobile Direct Line Model Functional Descriptor
subtype, as given in Table 5-3 above

3 bcdVersion 2 BCD number Version number for this subclass specification.
Initially 0x0100. The implied decimal point is
between bits 7 and 8. Version 1.2 of the spec is
represented as 0x120. This is based on the
version of this document, not on the version of the
transport specification defined by bGUID.

5 bGUID[16] 16 Byte Constant Uniquely identifies the detailed transport protocol
(and therefore the host drivers) provided by this
MDLM interface. The GUID is given in wire-order,
as defined in [LEACH1998].

6.7.2.4 MDLM Detail Functional Descriptor

This descriptor is optional, and may be repeated as necessary. It conveys any additional information
required by the MDLM transport specification identified by the MDLM Functional Descriptor. If present,
it must occur after the MDLM Functional Descriptor, in the same group of functional descriptors.

Revision

December 6, 2012 47

Table 6-37: MDLM Detail Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 4+n Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant MDLM Detail Functional Descriptor subtype, as
given in Table 5-3 above

3 bGuidDescriptorType 1 Constant Discriminator, interpreted according to the
semantic model specified by the GUID in the
MDLM Functional Descriptor

4 bDetailData[n] n Byte Constant Information associated with this GUID and
discriminator, according to the semantic model
specified by the GUID in the MDLM Functional
Descriptor

This specification allows the MDLM Semantic Model to define up to 256 different kinds of MDLM Detail
Functional Descriptors, to convey additional information as needed. bGuidDescriptorType identifies the
kind of descriptor that is present.

This specification further allows the device designer complete freedom to provide as many MDLM Detail
Functional Descriptors as are needed for a given device and MDLM Semantic Model.

6.7.2.5 Communications Class Union Functional Descriptor

This descriptor is formatted as a standard CDC Union Functional descriptor. It points to the Data Class
interfaces that form part of this MDLM function. For informative purposes, we repeat the definition of
the Union Functional descriptor here.

This descriptor is mandatory.

Table 6-38: Union Functional Descriptor for MDLM Facilities

Offset Field Size Value Description

0 bFunctionLength 1 5 Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Union Functional Descriptor Subtype as defined in
[USBCDC1.2]

3 bControlInterface14 1 Number The interface number of this MDLM interface

4 bSubordinateInterface0
15

1 Number The interface number of the first subordinate
interface.

… … … … …

n+3 bSubordinateInterface
n-1

1 Number The interface number of the last subordinate
interface.

 Revision

48 December 6, 2012

6.7.2.6 Notification Endpoint Descriptor

This descriptor describes the INTERRUPT IN endpoint that transports notifications for this function.

This descriptor is optional.

6.7.3 Management Elements

The management elements used by the MDLM function are, necessarily, determined by the kind of
MDLM interface identified by the MDLM functional descriptor. Therefore, a group of management
elements are reserved for use as determined by the semantic model in use.

Table 6-39: MDLM-Specific-Write

bmRequestType bRequestCode wValue wIndex wLength Data

00100001B MDLM Semantic-
model-specific code
(from Table 5-4) ;
meaning defined by
semantic model of
MDLM interface
identified by wIndex

as defined by
semantic model
of MDLM
interface
identified by
wIndex

MDLM
Interface

Length of Data Data for
designated
operation (sent
from host to
device); meaning
defined by
semantic model of
MDLM interface
identified by
wIndex

Table 6-40: MDLM-Specific-Read

bmRequestType bRequestCode wValue wIndex wLength Data

10100001B MDLM Semantic-
model-specific code
(from Table 5-4) ;
meaning defined by
semantic model of
MDLM interface
identified by wIndex

as defined by
semantic model
of MDLM
interface
identified by
wIndex

MDLM
Interface

Length of Data Data for
designated
operation (sent
from device to
host); meaning
defined by
semantic model of
MDLM interface
identified by
wIndex

6.7.4 Notifications

All data passed over the notification endpoint must be encapsulated as notifications according to
[USBCDC1.2]. The notification elements used by the MDLM function are, necessarily, determined by the
kind of MDLM interface identified by the MDLM functional descriptor. Therefore, a group of notification
elements codes are reserved for use as determined by the semantic model in use.

Table 6-41: MDLM-Specific-Read

bmRequestType bNotificationCode wValue wIndex wLength Data

Revision

December 6, 2012 49

bmRequestType bNotificationCode wValue wIndex wLength Data

10100001B MDLM Semantic-
model-specific code
(from Table 5-5);
meaning defined by
semantic model of
MDLM interface
identified by wIndex

as defined by
semantic model
of MDLM
interface
identified by
wIndex

MDLM
Interface

Length of Data Data for
designated
operation (sent
from device to
host following the
header); meaning
defined by
semantic model of
MDLM interface
identified by
wIndex

6.7.5 Contention

Contention handling is defined by the MDLM semantic model.

See MDLM semantic model for discussions of what other facilities in the handset can do when the MDLM
facility is in use.

 Revision

50 December 6, 2012

6.8 LAN Frame Functions

6.8.1 Functional Topology

A LAN frame traffic facility is consists of:

1. A Communications Class/Networking Control Model interface with a notification endpoint

2. A Data Class interface with two endpoints, one BULK IN, the other BULK OUT.

This is just as defined for a single-function Ethernet adapter in [USBNCM1.0]. However, the notification
endpoint is required.

6.8.2 Descriptors

6.8.2.1 Networking Control Model Interface Descriptor

One interface descriptor with bInterfaceClass == COMM, bInterfaceSubClass == Networking Control
Model, and bInterfaceProtocol == 00h or FEh shall be embedded in the configuration bundle for each
data/fax

Table 6-42: Communications Class Networking Control Model Interface Descriptor

Offset Field Size Value Description

5 bInterfaceClass 1 Constant (02) Communications Class

6 bInterfaceSubClass 1 Constant (0D) Networking Control Model, as defined in
[USBNCM1.0].

7 bInterfaceProtocol 1 00h or FEh No specific protocol or external protocol

6.8.2.2 Communications Class Header Functional Descriptor

This is as described in [USBCDC1.2].

This descriptor is mandatory, and must be first.

6.8.2.3 Ethernet Networking Functional Descriptor

This descriptor is mandatory for LAN frame facilities. For informative purposes, the definition is
repeated from [USBECM1.2].

Table 6-43: Ethernet Networking Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Ethernet Networking Functional Descriptor
subtype, as defined in Table 25 of [USBCDC1.2]

3 iMacAddress 1 Index Index of string descriptor giving the Ethernet MAC
address for this facility. Must not be zero. The
MAC address must be formatted in UNICODE as
specified in [USBECM1.2].

Revision

December 6, 2012 51

Offset Field Size Value Description

4 bmEthernetStatistics 4 Bitmask Mask of supported statistics. Stored in little-
endian order.

8 wMaxSegmentSize 2 Number The maximum segment size that the LAN frame
facility can support, normally 1514 bytes. Stored
in little-endian order

10 wNumberMCFilters 2 Bitmask Indicates the number of multicast filters
supported, as defined by table 41 of
[USBECM1.2].

12 bNumberPowerFilters 1 Number Indicates the number of power filters implemented
by the function.

This specification requires that the Ethernet address specified by the string at iMacAddress be the same
no matter which (valid) language code is used with GetDescriptor to retrieve it. After conversion, the
first three octets of the address must be the OUI assigned by the IEEE to the authority assigning the
address. The remaining three octets must be unique to this physical device.

6.8.2.4 NCM Functional Descriptor

This descriptor provides information about the implementation of the NCM function. It is mandatory,
and must appear after the Header Functional Descriptor.

Table 6-44: NCM Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 6 Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE (0x22)

2 bDescriptorSubtype 1 Constant (1Ah) NCM Functional Descriptor subtype, as defined in Table
5-4

3 bcdNcmVersion 2 Number 0x0100 Release number of this specification in BCD, with im-plied
decimal point between bits 7 and 8. 0x0100 == 1.00 ==
1.0. This is a little-endian constant, so the bytes will be
0x00, 0x01.

5 bmNetworkCapabilities 1 Bitmap Specifies the capabilities of this function. A bit value of
zero indicates that the capability is not supported.

D7..D5: Reserved (zero)

D4: Function can process SetCrcMode and GetCrcMode
requests

D3: Function can process SetMaxDatagram-Size and
GetMaxDatagramSize requests.

D2: Function can process SendEncapsulated-Command
and GetEncapsulatedResponse requests.

D1: Function can process GetNetAddress and
SetNetAddress requests.

D0: Function can process SetEthenetPacket-Filter
requests, as defined in [USBECM12]. If not set,
broadcast, directed and multicast packets are always
passed to the host.

 Revision

52 December 6, 2012

6.8.2.5 Command Set Functional Descriptor

If the NCM Communications Interface has bInterfaceProtocol set to “External Protocol”, then the
command set transported by SendEncapsulatedCommand and GetEncapsulatedResponse is governed by
a specification external to this document. The specification is identified by a GUID given in a Command
Set Functional descriptor, which must appear associated with the NCM Communications Interface
descriptor. This descriptor is defined in [USBWMC11], section 8.1.2.2. The GUID is defined by the
appropriate external specification. The GUID identifies the format and contents of the command set. The
command set may be, but is not required to be, AT commands and responses. This descriptor is required
if bInterfaceProtocol is set to “External Protocol”. If the NCM Communications Interface has
bInterfaceProtocol set to any other value, then the Command Set Functional Descriptor shall not appear,
and the host shall ignore any such descriptors.

6.8.2.6 Command Set Detail Functional Descriptor

If a Command Set Functional Descriptor appears, it may be followed by one or more Command Set
Functional Descriptors, as described in [USBWMC11], section 8.1.2.3. If the Command Set Function
Descriptor Revision 1.0 CDC NCM Subclass April 30, 2009 27

6.8.2.7 Communications Class Union Functional Descriptor

This descriptor is formatted as a standard CDC Union Functional descriptor. For informative purposes,
we repeat the definition of the Union Functional descriptor here.

This descriptor is mandatory.

Table 6-45: Union Functional Descriptor for LAN frame facilities

Offset Field Size Value Description

0 bFunctionLength 1 5 Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Union Functional Descriptor Subtype as defined in
[USBCDC1.2]

3 bControlInterface 1 Number The interface number of this Networking Control Model
interface, as given by bInterfaceNumber.

4 bSubordinateInterface 1 Number The interface number of the Data Class interface.

6.8.2.8 Notification Endpoint Descriptor

This descriptor describes the INTERRUPT IN endpoint that transports notifications for this function.

This descriptor is mandatory.

6.8.2.9 Data Class Interface Descriptor, Alternate Setting Zero

One interface descriptor with bAlternateSetting == 0, bInterfaceClass == DATA, bInterfaceSubClass == 0,
and bInterfaceProtocol == 1 shall be embedded in the configuration bundle for each LAN frame facility.

Revision

December 6, 2012 53

Table 6-46: Data Class Interface Descriptor for LAN frame facilities, Setting 0

Offset Field Size Value Description

3 bAlternateSetting 1 Number (0) Indicates that this descriptor is for alternate setting zero

4 bNumEndpoints 1 Number (0) Indicates that no endpoints are associated with this
alternate setting.

5 bInterfaceClass 1 Constant (0x0A) Data Class

6 bInterfaceSubClass 1 Constant (00) No subclass

7 bInterfaceProtocol 1 Constant (01) Must be 0x01, per [USBNCM1.0] section 5.3.

No endpoints are permitted in alternate setting zero (in accordance with [USBNCM1.0]).

Following the Data Class interface descriptor for alternate setting 0, a number of functional descriptors
may appear.

6.8.2.10 Data Class Header Functional Descriptor

This is as described above, in Table 6-10.

 This descriptor is optional, but must be first if it appears.

6.8.2.11 Data Class Interface Descriptor, Alternate Setting 1

At least one additional interface descriptor with bAlternateSetting == 01h, bInterfaceClass == DATA,
bInterfaceSubClass == 0, and bInterfaceProtocol == 01h shall be embedded in the configuration bundle
for each LAN frame facility.

Table 6-47: Data Class Interface Descriptor for LAN frame facilities, Setting 1

Offset Field Size Value Description

3 bAlternateSetting 1 Number (1) Indicates that this descriptor is for alternate setting one

4 bNumEndpoints 1 Number (2) Indicates that two endpoints are associated with this
alternate setting.

5 bInterfaceClass 1 Constant (0x0A) Data Class

6 bInterfaceSubClass 1 Constant (00) No subclass

7 bInterfaceProtocol 1 Constant (01) Network Transfer Block

The interface protocol is 01, which indicates “Network Transfer Block”. Two endpoints are required in
the alternate setting one (in accordance with [USBNCM1.0]).
Following the Data Class interface descriptor for the non-zero alternate setting, a number of functional
descriptors may appear.

6.8.2.12 Data Class Header Functional Descriptor

This is as described in above, in Table 6-10.

 Revision

54 December 6, 2012

This descriptor is optional, but must be first if it appears.

6.8.2.13 Endpoint Descriptors, Alternate Setting one

Two endpoints must be provided.

A bulk IN endpoint

A bulk OUT endpoint.

These endpoint descriptors may appear in any order.

6.8.2.14 Additional Alternate Data Class Settings

A designer may provide additional Data Class settings as desired, in order to support alternate
encapsulation methods or endpoint types.

6.8.3 Management Elements

The management elements for LAN frame facilities are as defined by [USBNCM1.0].

6.8.4 Notifications

The notifications for LAN frame facilities are as defined by [USBNCM1.0].

6.8.5 Contention

Contentions involving the LAN function is handled by simulating connect and disconnect to the virtual
ether. When the host system enables the LAN function, the host driver signals this to the device by
selecting a non-zero alternate interface setting on the Data Class interface. The Ethernet Networking
Control Model handler on the device then tries to establish a connection, arbitrating with the TA/MT and
negotiating with the network. If the connection is successful, the function sends a NetworkConnect (up)
notification to the host over the notification pipe; otherwise the function sends a NetworkConnect (down)
notification. [Since the handset might or might not be in range of a base station, NetworkConnect
(up/down) will happen periodically anyway in response to network changes.]

Provisioning aspects are beyond the scope of this specification.

Revision

December 6, 2012 55

7 Device Requests

No additional class-level requests are defined by this specification. Subclass-specific requests are given as
defined in section 6, “Functional Characteristics”. However, the use of encapsulated commands for
command transport is clarified by this document.

7.1 Encapsulating AT Command Data

[USBPSTN1.2] defines SendEncapsulatedCommand and GetEncapsulatedResponse as mechanisms for
transporting control-plane data. Experience has shown that the defined mechanisms are explained with
insufficient clarity to ensure interoperability between drivers and firmware designed by different
development groups.

For the purposes of this subclass specification, functions within devices shall be implemented to transport
AT command data using the assumptions and algorithms outlined in this section.

This specification makes the basic assumption that the WMC device’s firmware already has an AT
command interpreter, for processing data from other (non-USB) sources. Such interpreters have two
kinds of state:

1. state related to the byte-by-byte processing

2. state related to command processing

Type-2 state interacts with type-1 state. (For example, the value of S3 changes the logical <CR> character.
This affects when a command is deemed to be completed, as well as affecting how responses are
formatted.)

Normally, it is convenient to share the AT interpreter code across all data streams. For this reason, this
specification assumes that the AT command interpreter’s lower edge is a bidirectional character-oriented
interface.

Therefore, when using SendEncapsulatedCommand to transport data, this specification requires that the
firmware ignore messaging boundaries implied by the SendEncapsulatedCommand sequence. The
firmware shall process bytes delivered by SendEncapsulatedCommand in the same way as if the bytes
had been delivered via a serial port, or as embedded commands over the Data interface. Therefore, the
host sends exactly the same sequence of bytes when using SendEncapsulatedCommand that it would
send using any other transport media.

The function shall not return STALL in response to errors in the AT commands transported by
SendEncapsulatedCommand. The function shall return STALL if the firmware cannot immediately
accept the bytes transported by SendEncapsulatedCommand, due to buffer errors. Since “aborts” are
signaled by sending characters while dialing is in process, the firmware must provide sufficient buffering
to accept (and must not STALL) abort sequences sent while dialing.

The function shall provide a certain minimum amount of input buffering.

For Abstract Control Model functions, the firmware shall provide a minimum of 256 bytes of
buffering.

For other functions (Device Management, Telephone Control Model), the functional descriptors must
reflect the actual amount of buffering provided.

 Revision

56 December 6, 2012

AT detection, echoing and response code formatting are done exactly as they are done when using other
character-oriented data transport methods. As with all reliable USB transports, reply data is queued
internally by the device firmware until the host requests the data (via an IN-token or a
GetEncapsulatedResponse management element).

The firmware shall interpret GetEncapsulatedResponse as a request to read response bytes. The
firmware shall send the next wLength bytes from the response. The firmware shall allow the host to
retrieve data using any number of GetEncapsulatedResponse requests. The firmware shall return a zero-
length reply if there are no data bytes available.

The firmware shall send ResponseAvailable notifications periodically, using any appropriate algorithm,
to inform the host that there is data available in the reply buffer. The firmware is allowed to send
ResponseAvailable notifications even if there is no data available, but this will obviously reduce overall
performance.

For functions that support both SendEncapsulatedCommand and other control methods, this
specification requires that the firmware maintain logically separate command and response streams for
each potential control method. Commands are not intermixed at the character level. Commands are
separately accumulated for each stream.

Because a function may have multiple command and response streams, the host may concurrently send
commands over any of the streams. For example, a call may be placed over a TA using AT commands
embedded in the data stream, while at the same time management operations are performed over the
same TA using AT commands sent via SendEncapsulatedCommand. In order for this to work, firmware
shall maintain certain AT command interpreter state variables on a control stream-by-stream basis. The
states variables that are maintained for each control stream shall include the values most recently set for
E#, Q#, V#, S3, S4, S5, and any other vendor-specific state.

The function shall not return STALL in response to GetEncapsulatedResponse.

If a function has multiple control streams, firmware needs to know which stream shall receive unsolicited
responses (for example, RING notifications).

In case of Abstract Control Model modems (section 6.2), the unsolicited responses shall go to the Data
interface, if the Data interface is configured to transport embedded call-control information.
Otherwise, the notifications shall go to the GetEncapsulatedResponse queue.

In other cases defined by this specification, there is only one control stream associated with the
function, so this issue doesn’t apply.

Revision

December 6, 2012 57

8 Device Descriptors

8.1 Standard USB Interface Descriptors

8.1.1 Device Descriptor

The device descriptor is a standard device descriptor, as specified in Chapter 9 of the USB 2.0
specification. The device class shall be 0x02 (Communications Class). The device subclass and protocol
codes shall be 0x00. The default pipe maximum packet size shall be 64 bytes.

8.1.2 Configuration Bundle

The configuration bundle starts with a configuration descriptor, which is as specified in Chapter 9 of the
USB 2.0 specification.

8.1.2.1 Additional Function-Specific Descriptors

The remaining descriptors in the configuration bundle present the interfaces for each of the subordinate
functions. The subclass-specific descriptors are given in the appropriate parts of 6, “Functional
Characteristics”.

8.1.2.2 Command Set Functional Descriptor

Although there is a tendency towards standardization, a large variety of AT command sets are presently
defined. Since the 3G standards are still evolving, a designer may need to mark a function’s specific
command set in a generic way, even though a bInterfaceProtocol code has not been allocated for that
command set.

If a Communications Class interface identifies its protocol as “External Protocol”, as given in Table 5-2,
then host software uses the Command Set functional descriptor to define the command set to be used by
this interface. In all cases, the commands are transported using “Send Encapsulated Command” and
“Get Encapsulated Response”, just as AT commands would be.

This descriptor is mandatory after a Communications Interface, if that Communication Interface’s
bInterfaceProtocol code is “External Protocol”, as defined in Table 5-2. Otherwise, this descriptor is
forbidden.

Table 8-1: Command Set Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 22 (0x16) Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Command Set Functional Descriptor subtype, as
given in Table 5-3 above

 Revision

58 December 6, 2012

Offset Field Size Value Description

3 bcdVersion 2 BCD number Version number for this subclass specification.
Initially 0x0100. The implied decimal point is
between bits 7 and 8. Version 1.2 of the spec is
represented as 0x120. This is based on the
version of this document, not on the version of the
command set identified by bGUID.

5 iCommandSet 1 Index Index of string that describes this command set

6 bGUID[16] 16 Byte Constant Uniquely identifies the command set to be used
when communicating with this interface. The
GUID is given in wire-order, as defined in
[LEACH1998].

8.1.2.3 Command Set Detail Functional Descriptor

This descriptor is optional, and may be repeated as necessary. It conveys any additional information
required by the command set identified by the Command Set Functional Descriptor. If present, it must
occur after a Communications Class Interface Descriptor, with bInterfaceProtocol ==
EXTERNAL_PROTOCOL (as defined in Table 5-2: Communications Class Protocol Codes), and after the
Command Set Functional Descriptor, in the same group of functional descriptors.

Table 8-2: Command Set Detail Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 4+n Size of Descriptor in bytes

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Command Set Detail Functional Descriptor
subtype, as given in Table 5-3 above

3 bGuidDescriptorType 1 Constant Discriminator, interpreted according to the
command set model specified by the GUID in the
Command Set Functional Descriptor

4 bDetailData[n] n Byte Constant Information associated with this GUID and
discriminator, according to the command set
model specified by the GUID in the Command Set
Functional Descriptor

This specification allows the Command Set Semantic Model to define up to 256 different kinds of
Command Set Functional Descriptors, to convey additional information as needed.
bGuidDescriptorType identifies the kind of descriptor that is present.

This specification further allows the device designer complete freedom to provide as many Command Set
Functional Descriptors as are needed for a given device and Command Set Semantic model.

Revision

December 6, 2012 59

Appendix A: Windows Driver Architecture

Vendors are free to use whatever driver structure best suit their technical and commercial goals.
However, for readers unfamiliar with the details of using multi-function devices under the Windows
operating system, this section shows a driver architecture that can be used to integrate the functionality of
a WMC handset into Windows. This section is informative, not normative.

For the purposes of discussion, we assume a relatively complicated handset, containing the following
functions:

Two Modem functions (one intended for data calls, one intended for fax calls)

LAN frame

OBEX

Device Management

Mass storage

HID Class, Audio Class and Telephone Control Model (for placing voice calls)

Device Firmware Update

A bus driver performs the operations involved in dividing the device into multiple functions. This bus
driver is a replacement for the composite device driver provided by Microsoft, and must be supplied by
the vendor or obtained from a third party.

For modem, FAX, mass storage, and Ethernet frame, existing class drivers can be used as they are. (In the
case of Ethernet frame, class drivers identical to those used for DOCSIS Cable Modems are appropriate
and may be obtained from third parties.)

For device management, minor changes will be needed to extend the existing operating-system ACM
drivers, because all communication is using the default pipe.

For OBEX, although this interface is similar to that of a modem, different drivers are needed because
most of the semantics of OBEX differ from a standard modem.

For Voice, the same driver architecture can be used as was suggested in Intel’s White Paper, “USB
Telephony Devices: Interfaces for Value Add Feature Sets”, section 3, PSTN Support. The TAPI service
provider and the telephone management driver must be provided by the vendor or obtained from a third
party; but the audio presentation and the telephone handset functions are implemented using Microsoft
standard drivers.

Please refer to Figure A-1 on page 60 for an overview of the driver architecture.

 Revision

60 December 6, 2012

U
S

B
 H

o
st

 C
o
n
tr

o
lle

r

U
H

C
D

.S
Y
s

|
O

P
E

N
H

C
D

.S
Y

S

U
S

B
D

.S
Y

S

U
S

B
H

U
B

.S
Y

S

C
D

C
W

C
D

M
A

.S
Y

S

W
M

C
D

V
M

G
T

.S
Y

S
W

M
C

T
C

M
.S

Y
S

C
D

C
L
A

N
.S

Y
S

W
M

C
O

B
E

X
.S

Y

S
U

S
B

A
U

D
IO

.S
Y

S
U

S
B

M
O

D
E

M
.S

Y
S

D
F

U
.S

Y
S

U
S

B
H

ID
.S

Y
S

U
S

B
S

T
O

R
.S

Y
S

U
S

B
M

O
D

E
M

.S
Y

S

U
N

IM
O

D
E

M
.T

S
P

su
p
p
o
rt

 f
o
r

F
A

X

U
N

IM
O

D
E

M

.T
S

P

su
p
p
o
rt

 f
o
r

D
a
ta

W
D

M
 A

u
d
io

fil
e
 s

ys
te

m
H

ID
 a

cc
e
ss

N
D

IS
 5

U
S

B

P
H

O
N

E

.T
S

P

T
A

P
I

D
e
vi

ce

F
ir
m

w
a
re

U
p
d
a
te

A
p
p
lic

a
tio

n

O
B

E
X

C
O

M
:

p
o
rt

su
p
p
o
rt

W
ir
e
le

ss
 D

e
vi

ce

M
a
n
a
g
e
m

e
n
t

d
e

fa
u

lt
p

ip
e

IN
 p

ip
e

(1
2

)
O

U
T

 p
ip

e

(6
)

C
o
m

m
C

o
m

m
S

tr
e

a
m

s
C

a
ll

F
a

ci
lit

y

Figure A-1 Windows Driver Architecture

Revision

December 6, 2012 61

Appendix B: OBEX Connections

The information in this section is purely informative. It introduces the concept of OBEX transport connections, but
contains no normative information on how an OBEX function must be implemented. Where concepts introduced in
this section are used in normative sections of this specification, they are used to illustrate the interaction between the
USB and nominal OBEX entities.

Over any transport medium, before an OBEX protocol exchange can begin, a transport connection must
be established over which the OBEX packets can be sent. The OBEX Client, because it sends the first
OBEX packet in an exchange, is responsible for initiating the establishment of the transport connection
(except where it is already established, for instance where the transport connection has not yet been torn
down following a previous OBEX session). Once the transport connection has been established, the OBEX
Client initiates the connection at the OBEX level by sending an OBEX Connect packet. The OBEX
specification describes the protocol used from this point onwards.

Equally, when an OBEX protocol exchange has been completed, the transport connection must be torn
down (following the optional but recommended exchange of an OBEX Disconnect / Disconnect
Response). This tearing down is normally done in a controlled sequence of exchanges by software state
machines. In practice however, transport connections may be broken at any time. For example, USB
cables may be removed, IrDA line of sight may be broken, or Bluetooth devices may go out of range.
OBEX implementations must therefore be resilient to abrupt non-controlled transport disconnections.

From the OBEX point of view, any OBEX transport has two basic top level states; “transport up” and
“transport down”. When its transport is up, OBEX can exchange data with a peer OBEX entity over a bi-
directional data channel associated with that transport. When the transport is down, OBEX cannot
exchange data. Clearly, OBEX entities need to affect and monitor the state of their underlying transports.
This may be done by means of a small number of request and indication primitives. These primitives are
illustrated in Figure B-2 below.

 Revision

62 December 6, 2012

Obex

Obex Transport

B
i-
D

ir
e

c
ti
o

n
a
l
d

a
ta

 f
lo

w

(O
b

e
x
 p

a
c
k
e
ts

)

T
ra

n
s
p

o
rt

 U
p
 R

e
q
u

e
s
t

T
ra

n
s
p

o
rt

 C
o
n
n
e

c
it
o
n
 F

a
ilu

re

In
d
ic

a
ti
o

n

T
ra

n
s
p

o
rt

 C
o
n
n
e

c
it
o
n

U
p

 I
n
d
ic

a
ti
o

n

T
ra

n
s
p

o
rt

 C
o
n
n
e

c
it
o
n

D
o

w
n
 I
n
d
ic

a
ti
o

n

T
ra

n
s
p

o
rt

 D
o
w

n
 R

e
q
u
e

s
t

Figure B-2 OBEX transport control and indication primitives

The purposes of these primitives are as follows;

Transport Up Request

This request is issued by an OBEX client (never by an OBEX server) to prompt the OBEX transport to bring itself

up. In response to such a request, the OBEX client expects to asynchronously receive either a Transport

Connection Failure Indication or a Transport Connection Up Indication upon the respective failure or success

of bringing up the transport connection.

Transport Down Request

This request is issued by an OBEX entity (either OBEX client or OBEX server) to prompt the OBEX transport to

bring itself down. Since this request is not permitted to fail, the OBEX entity expects in response asynchronously to

receive a Transport Connection Down Indication once the underlying transport link has been torn down.

Transport Connection Failure Indication

This indication is issued by an OBEX transport, and indicates that its attempt to bring up a transport connection in

response to an OBEX client’s Transport Up Request has been unsuccessful.

Transport Up Indication

This indication is issued by an OBEX transport, and indicates that the transport channel has been brought up (is

available for data transfer). Where the associated OBEX entity is an OBEX client, this will be the result of a local

Transport Up Request . Where the associated OBEX entity is an OBEX server, this will be the result of a remote

OBEX client requesting a transport connection to a local OBEX server.

Transport Down Indication

This indication is issued by an OBEX transport, and indicates that the transport channel has been brought down (is

not available for data transfer). This may be a result of either the local or remote OBEX entity requesting to bring

down the transport connection, or simply a breakage of the underlying link (e.g. disconnection of a USB cable).

