USB4[™] Time Synchronization, Host Interface, Connection Manager and Thunderbolt[™] 3 Compatibility

Uri Hermoni – Architect, Intel Corporation **Gal Yedidia** – Architect, Intel Corporation

USB Developer Days 2019 – Taipei, Taiwan November 20, 2019

USB Type-C[®], USB-C[®] and USB4[™] are trademarks of the Universal Serial Bus Implementers Forum (USB-IF). Thunderbolt[™] is a trademark of Intel Corporation. All product names are trademarks, registered trademarks, or service marks of their respective owners.

USB Implementers Forum © 2019

Agenda

- Time Synchronization
- Host Interface
- Connection Manager
- Thunderbolt[™] 3 Compatibility

Agenda

- Time Synchronization
- Host Interface
- Connection Manager
- Thunderbolt[™] 3 Compatibility

Time Sync Agenda

- Why Time Synchronization is needed?
- Time Synchronization Mechanism
 - Time Sync Operation Modes
 - Time Calculation
 - Recursive Propagation
- Use of Time Synchronization in tunneled protocols

Why Time Synchronization is Needed?

DisplayPort Tunneling

- Link Clock restoration in the Monitor side based on the GPU side
- Need a Grandmaster Time to measure the two clocks and adjust
- USB3 Tunneling
 - Isochronous Timestamp Packets correction
 - Delta should include the tunnel delay
- PCIe Tunneling
 - Precision Time Measurement messages requires time sense
 - Handshake transforms to use the Grandmaster Time

Time Synchronization Mechanism

- Each Router has its own clock (>125MHz±100ppm)
- Host Router holds the Grandmaster Time
- Each Router holds a Local Time Counter and need to calculate
 - TimeOffsetFromGM
 - FreqOffsetFromGM

Time Sync Operation Modes

- There are two types
 - Bi-directional
 - Uni-directional
- There are two resolutions
 - HiFi
 - LowRes
- Time Sync Notification Ordered Set (TSNOS) te Router when to timestamp
- Information than sent on the Follow Up Packet

Resolution	Uni-directional	Bi-directional
LowRes	TSNOS every 1ms	N/A
HiFi	TSNOS every 16us	2-way handshake every 16us
11111	131003 EVELY 1003	2-way handshake every 100s

Bi-directional Time Sync

- Initiated by Slave
- Periodically send TSNOS every 16us
- Slave timestamp when TX and RX TSNOS
- Master timestamp when RX, immediately responds and timestamp when TX
- Follow Up packet holds information from Master to Slave

Bi-directional Time Sync

- Static latency between Slave and Master $D = \frac{(T_4 - T_1) - (T_3 - T_2)}{2}$
- Time offset between Master and Slave $TimeOffset = T_3 - T_4 + D$
- Frequency ratio between Master and Slave $FrequencyRatio = \frac{T_4[n] - T_4[m]}{T_3[n] - T_3[m]}$
- Frequency offset between Master and Slave $FrequencyOffset = (FrequencyRatio - 1) \times 2^{41}$

Uni-directional Time Sync

- Initiated by Master
- Periodically send TSNOS every 16us/1ms
- Master timestamp when TX TSNOS
- Slave timestamp when RX TSNOS
- Follow Up packet holds information from Master to Slave
- T₂ is empty

Uni-directional Time Sync

- Static latency between Slave and Master can't be Slave Port measured
- Time offset between Master and Slave $TimeOffset = T_3 - T_4 + D$
- Frequency ratio between Master and Slave $FrequencyRatio = \frac{T_4[n] - T_4[m]}{T_3[n] - T_3[m]}$
- Frequency offset between Master and Slave $FrequencyOffset = (FrequencyRatio - 1) \times 2^{41}$

Master Port

Recursive Propagation

- Each Slave Router calculate offsets from Master Router
- *OffsetFromGM* is sent as part of the handshake
 - TimeOffsetFromGM
 - FreqOffsetFromGM
- Each Router can calculate offset from Grandmaster
- In Inter-Domain systems there is a special handshake to allow Time Sync between two Hosts

Time Accuracy & Convergence

- Accuracy depends on *TSPacketInterval* (1ns/4ns)
- Convergence should be within *tConvergeTime*
- Results are filtered to improve accuracy

Time USB Implementers Forum © 2019

Time Sync Agenda

- Why Time Synchronization is needed?
- Time Synchronization Mechanism
 - Time Sync Operation Modes
 - Time Calculation
 - Recursive Propagation
- Use of Time Synchronization in tunneled protocols

DisplayPort tunneling: Link Clock Restoration

- DisplayPort is tunneled from GPU to Monitor over USB4
- The video stream is restored at the Monitor side as it is sampled from GPU
- In order to recreate the video after tunneling, time sense is required

- TMU establish time synchronization over USB4 Link
- Grandmaster Time propagate through the entire USB4 tree

• DisplayPort Link clock is measured at the GPU side based on TMU events

• USB4 packet with the measurement result is sent over USB4 network to the Router at the Monitor side

- DisplayPort Link clock is measured at the Monitor side based on TMU events
- The two measurements are compared
- Error correction is computed

- DisplayPort Link clock frequency in the Monitor side is shifted according to the error correction result
- Entire mechanism is executed periodically

PCIe Precision Time Measurement

- Supporting components determine the relationship between their local time and a PTM Master Time
- PTM Handshake is used to determines the Link latency
- PTM ResponseD holds the *PTM Master Time* (t2') and the *Propagation Delay* (t3-t2)

• PTM Master Time at
$$t1' = t2' - \frac{((t4-t1)-(t3-t2))}{2}$$

PCIe Tunneling: PTM Time Restoration

- Precision Time Measurement (PTM) message is tunneled over USB4
- PTM messages need USB4 time sense in order to recreate the PTM Master Time at the Endpoint side
- The Tunneled PTM holds two parameters to describe the relation between the PTM Master Time and the USB4 TMU Grandmaster Time
- The parameters <u>replace</u> the PTM Master Time and Propagation Delay fields in the PTM message
- PCIe Endpoint can restore the PTM Master Time from the TMU Grandmaster Time and generated parameters

TMU to PTM Parameters

- The parameters represent the linear relationship between the PTM Master Time and TMU Grandmaster Time
- The parameters Generator is the Host Router connected to the PCIe Root Complex
- TMU_to_PTM_A represent the slope of the linear line
- TMU_to_PTM_B represent the intercept of the linear line

```
• Ideally:
```

```
ptm0 = TMU_to_PTM_A * tmu0 + TMU_to_PTM_B
ptm1 = TMU_to_PTM_A * tmu1 + TMU_to_PTM_B
```


• It is recommended to calculate the parameters periodically

PTM Master Time Reconstruction

• PCIe Endpoint can use the TMU Grandmaster Time and generated parameters to reconstruct the PTM Master Time

PTM Master Time(t) = TMU_to_PTM_A * TMU Grandmaster Time(t) + TMU_to_PTM_B

USB Tunneling: ITP Timestamp Correction

- USB3 uses Isochronous Timestamp Packets to deliver timestamps from Host to all active Devices
- The *Isochronous Timestamp* field holds the *Bus Interval counter* and *Delta*

Isochronous Timestamp Packet

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Isochronous Timestamp Type					
Reserved	Correction			Bus Interval djustment Control	DWORD 1
Reserved					
Link Control Word	CRC-16			DWORD 3	

ITP Timestamp Correction

• Timestamp is taken before the ITP enters the tunneling and is added to the tunneled packet

31									
PDF = 3	*		HOP ID	Length = 1Ch	HEC				
5 DWs of Framed Isochronous Timestamp Packet									
TMU Capture Time [7:0]			TMU Capture Time [15:8]	TMU Capture Time [23:16]	TMU Capture Time [31:24]				
TMU Capture Time [39:32]			TMU Capture Time [47:40]	TMU Capture Time [55:48]	TMU Capture Time [63:56]				

ITP Timestamp Correction

- Another timestamp is taken when ITP exits the tunnel
- Both timestamps are in TMU Grandmaster Time
- An Upstream USB3 Adapter that receives an ITP tunneled packet updates the *Delta* field according to the calculated propagation delay (in tIsochTimeStampGranularity resolution)
- It also update the CRC-16 field

Time for Q&A

USB Implementers Forum © 2019

Agenda

- Time Synchronization
- Host Interface
- Connection Manager
- Thunderbolt[™] 3 Compatibility

Host Interface Agenda

- Roles
- Descriptor Rings
- Modes of Operation
- E2E Flow Control
- Host-to-Host Tunneling

Host Interface Adapter Roles

- Interface for Connection Manager to access Transport Layer of Host Router
- Provides parallel communication channels
 - Control Packet routing
 - Host-to-Host Tunneling

Host Interface – Descriptor Rings

Descriptor Ring

- A Connection Manager and a Host Interface Adapter interact via *Descriptor Rings*
- The Descriptor Rings reside in Host Memory
- A *Descriptor Ring* is a circular set of *Descriptors*
- Each *Descriptor* contains control fields and a reference to a *Data Buffer* in Host Memory

Host Interface – Descriptor Rings

Transmit Rings

- The Connection Manager
 - Performs Initialization Sets the Ring Parameters
 - Adds Data Buffer(s) and update the relevant Descriptor(s)
 - Notifies the **Host Interface Adapter** when Ring Size new Descriptors are added
- The Host Interface Adapter
 - Fetches new Descriptor(s)
 - Fetches the Data Buffer(s)
 - Encapsulates the data into Tunneled Packets

Descriptor Ring

Host Interface – Descriptor Rings

Receive Rings

- The Connection Manager
 - Performs Initialization Sets the Ring Parameters, empty Data Buffer(s), and Descriptor(s)
- The Host Interface Adapter
 - Fetches new Descriptor(s)
 - Upon Tunneled Packet reception, Decapsulates the data and stores it at the Data Buffer(s)
 - Updates the Connection Manager when new data is received

Descriptor Ring

Host Interface – Rings & Paths

- **Host Interface Adapter** implements at least 2 Transmit Rings and at least 2 Receive Rings
 - Ring 0 for Control Packets
 - Ring 1 for Host-to-Host Tunneling
- Host Interface Adapter implements the same amount of Receive and Transmit Rings, and the same number of Paths
- HopID corresponds to Descriptor Ring
 - In Source Adapter, packet with HopID=X carries data from Transmit Ring X
 - In Destination Adapter, packet with HopID=Y carries data to be posted in Receive Ring Y
 - In between Source and Destination Adapters, HopID can be any supported value

Host Interface – Rings Mode of Operation

- A Ring can be set to operate in one of two modes
 - Raw
 - Used mainly for **Control Packets** (Ring 0)
 - Can also be used by Host-to-Host Tunneling
 - Each Descriptor points to the Payload of a single Tunneled Packet

• Frame

- Used only by Host-to-Host Tunneling
- A data Frame, of up to 4K bytes, is described by one or more Descriptors
- The data Frame is segmented and encapsulated into one or more Tunneled Packets
- CRC32 is added at the end of the data Frame
Host Interface – Raw Mode

- Transmit Interface
 - Host Interface Adapter prepends Transport Layer Header to Data Buffer, to form Tunneled Packet
 - **PDF** field is taken from the **EOF PDF** field of the matching Descriptor
 - HopID matches Transport Descriptor Ring
- Receive Interface
 - HopID determines which Receive Descriptor Ring payload is written to
 - Host Interface Adapter removes Transport Layer Packet Header, posts payload to Data Buffer and update Descriptor fields

Host Interface – Frame Mode

- Transmit Interface
 - Segments Frame and add CRC into one or more Tunneled Packets
 - **PDF** field identifies if packet contains the start, middle, or end of a Frame
 - Start = **SOF PDF**
 - Middle = 0
 - End (or only) = **EOF PDF**
 - HopID matches Transport Ring
- Receive Interface
 - HopID determines which Receive Ring Frame is written to
 - Host Interface Adapter reassembles Frame, checks CRC, and posts to Receive Ring

Host Interface – Frame Mode

• Data Frame can span across multiple Data Buffers

Host Interface – End to End Flow Control

- The E2E Flow Control is a mechanism which prevents overflow of a Receive Descriptor Ring
- The mechanism is used only for Host-to-Host Tunneling
- The Connection Managers on both Domains enable this feature at the Descriptor Ring control
- The E2E protocol
 - *Receive Ring* sends *E2E Credit Grant* with information about the available Descriptors
 - *Transmit Ring* only sends packet when there is room for it. It also sends *E2E Credit Sync* packet with information about the number of sent packets

Host-to-Host Tunneling

- Allows two USB4 hosts to communicate with each other
- The Host-to-Host communication consists of
 - Single **Control Channel** using Control Packets
 - One or more Data Channels using Descriptor Rings operating in Raw or Frame mode

Host-to-Host Tunneling – Control Channel

- The Control Channel is used for
 - Discovery of capabilities
 - Inter-Domain Link Management
 - Notifications
 - Setup and Teardown the Data Channel
- The Control Channel uses Inter-Domain Request and Inter-Domain Response Control Packets
 - The protocol of the **Control Channel** is defined in a "USB4 Inter-Domain Service Protocol" software specification

Host-to-Host Tunneling – Data Channel

- The Data Channel is a high throughput channel that can be used for various types of applications
- The Tunneled Packets which travel the Data Channel originate and consumed by the Host Interface Adapters in the USB4 Hosts
 - Device Routers along the Path route H2H Tunneled Packets without consuming them

Time for Q&A

USB Implementers Forum © 2019

Agenda

- Time Synchronization
- Host Interface
- Connection Manager
- Thunderbolt[™] 3 Compatibility

Connection Manager Agenda

- Roles
- Detect to Tunneling
- Paths
- QoS

Connection Manager Roles

- Manages its Domain through
 - Discovery & Configuration
 - Setting USB4 Link Parameters
 - Configure Paths & QoS

Host Interface Initialization

- A Connection Manager Initialize Receive Ring O and Transmit Ring O to allow Control Channel communication
 - Ring Base address
 - Ring Size
 - Ring Interrupts
 - Ring Enable

Descriptor Ring

Router Detection

- Detecting a new connected Router
 - Hot Plug Event Packet
 - Polling USB4 Ports status
- Causes for Hot Plug event
 - A Router was hot plugged
 - Domain powers up
 - Exit from sleep
 - Exit from Downstream Port Reset

Read Router CS

- The Connection Manager unlocks the DFP of the upstream Router
- The Connection Manager Attempts to read the newly connected Router's *Router Configuration Space*
 - If the Router was connected using it's UFP it will respond with a **Read Response Packet**
 - Else it will respond with Notification Packet with an Event Code = [ERR_ENUM / ERR_NUA]

Router Enumeration

- Until **enumerated**, a Router responds only to
 - Read Request to its Router CS
 - Write Request to DW1-DW4 of its *Router CS*
- **Enumerating** a Router by the Connection Manager means writing *DW1-DW4* of the Routers *Router CS*
 - TopologyID + TopologyID Valid
 - Depth
 - CM USB4 Version
- After **enumeration**, the Router is part of the Connection Manager's Domain

Router Discovery

- A Connection Manager polls the **Router Ready** bit at the *Router CS*. The Bit signify the Router is ready for Discovery
- A Connection Manager Discovers additional information about the Router and the Product
 - Maps all available Adapters, types and counts
 - DROM Read Router Operation
 - Product Information
 - Additional Router and Adapters settings
 - Described in "USB4 DROM Specification"

Link Management

- A Connection Manager sets the Link Mode
 - Dual-Lane Link Vs Single-Lane Link
 - Gen3 Vs Gen2
- A Connection manager may enable **CLx**
- A Connection Manager sets the **TMU** operation
 - Enable Vs Disable
 - LowRes Vs Uni-HiFi Vs Bi-HiFi

Tunneling Enable

- A Connection Manager sets the Tunneling types it will enable in the *Router CS*
 - USB3 Tunneling
 - PCIe Tunneling
- A Connection Manager polls the Configuration Ready bit which signifies that Paths can be setup
- Path setup includes
 - Configure QoS
 - Configure Flow Control Buffer
 - Setup the Path and enable the Adapters

Path Terminology

- Source Adapter
 - The generator of the Tunneled Packets routed through the USB4 fabric
- Destination Adapter
 - The final recipient of Tunneled Packets routed through the USB4 fabric
- Path Segment
 - The portion of the Path within each Router
- Path
 - The one-way tunnel that carries data from a Source Adapter to a Destination Adapter

Path

Path Setup

• A Connection Manager setup the Path only when all Routers that the Path traverses are enumerated and have the **Configuration Ready** bit set to 1b

Path

Path Setup

- The steps a Connection Manager takes to setup a Path
 - Configures the Path Segments From Source to Destination Adapter
 - Writes to the *Path CS* of each Ingress Adapter along the Path configuring
 - HopID, Destination Adapter, QoS
 - Valid to 1b Allows Transport Packet for that Path
 - Sets the Enable bit to 1b in the Adapter CS of both Adapter Ports
 - Allows Transport Packets for that Adapter

Path Teardown

- A Connection Manager Teardown
 - All Paths which traversed to/from a **disconnected Router**
 - A CM can also optionally perform Path Teardown any time after a Path is configured
- The steps a Connection Manager takes to teardown a Path
 - Sets the Enable bit to 0b in the Adapter CS of both Adapters
 - Teardown the Path Segments from Destination to Source Adapter by writing to the *Path CS* of each Ingress Adapter
 - Sets *Valid* to 0b
 - Poll Pending Requests field until it is 0b

Flow Control

- A Connection Manager sets Flow Control Scheme per Path type
- A Connection Manager allocates Flow Control Buffers per Path, out of the overall *Total Buffers* of the Ingress Adapter
- A Connection Manager ensures a Path is configured to use the same Scheme on both sides of the USB4 Link

Total Buffers

Flow Control

Dedicated Flow Control Scheme

- Configuration per Path Path Credits Allocated
- Static configuration, done at Path Setup
- Used by Paths:
 - Control, DP Aux, PCIe, USB, Host Interface

• Flow Control Disabled Scheme

- Single configuration field for all Paths *Non-Flow Controlled Buffers*
- Configuration may change on the fly As Paths are Setup/Teardown
- Used by DP Main-Link Path only

Ingress Flow Control

Buffers

Flow Control

Shared Flow Control Scheme

- Single configuration field for all Paths *Link Credits Allocated*
- Static configuration, done at first shared Path Setup
- Used by Host Interface Path only

Ingress Flow Control Buffers

Bandwidth Arbitration

- When a Connection Manager Setup a Path it must assure it has enough BW to operate
- Arbitration is executed in a distributed manner by each Egress Port
 - First Layer Strict Priority
 - Second Layer Strict Priority
 - Third Layer Weighted Round Robin (WRR)

Bandwidth Clients

- *DisplayPort* Main-Link Path is *Isoch* while Aux Paths are *Non-Isoch*.
 - BW is guaranteed to #Lanes x BitRate x 0.8
- USB Isoch and Non-Isoch
 - BW is guaranteed through CM-xHCI handshake
- PCle Non-Isoch
 - BW is indirectly guaranteed
- *Host Interface* **Non-Isoch**
 - BW is not guaranteed

Bandwidth Concepts and Control

- Concepts
 - Guaranteed bandwidth cannot be taken away by a Connection Manager
 - When a DP Tunneling path is being established a Connection Manager tries to allocate the **maximum supported DP BW**
 - USB3 bandwidth is dynamic **Allocate free bandwidth to USB3** Tunneling
- Controls
 - DisplayPort Tunneling
 - Control Maximum Link Rate and Lane Count
 - USB3 Tunneling
 - CM-xHCI BW handshake
 - Path Settings (Priority and WRR)

Protocol	Priority	WRR
Control	0	NA
DP	1	NA
USB	2	2
PCIe	2	1
Host-to-Host	3	NA

Bandwidth Management Rule

• Before allocating new BW, a CM ensures that, in each USB 4 Port, the calculated Available BW is not negative (<u>per direction</u>):

Available BW = [0.9 * (USB4 Link BW)] -

[DisplayPort BW +

USB3 Tunnel Allocated BW * (USB3 WRR + PCIe WRR)/(USB3 WRR)]

Time for Q&A

USB Implementers Forum © 2019

Agenda

- Time Synchronization
- Host Interface
- Connection Manager
- Thunderbolt[™] 3 Compatibility

Agenda

- Terminology
- USB4[™] Vs Thunderbolt[™] 3
- Thunderbolt[™] 3 Requirements
- Mix Topology

Thunderbolt™ 3 Terminology

- Thundebolt 3 is the existing technology used by the current TBT3 ecosystem, containing
 - Hosts
 - Devices
 - Connection Manager
 - Cables
- Thunderbolt 3 compatibility USB4 Specifications defines requirements for a new USB4 component to be TBT3-Compatible
 - USB4 Host
 - USB4 Device
 - USB4 Connection Manager
 - USB4 Re-timer

USB4™ Vs Thunderbolt™ 3

 Chapter 13 in USB4 Specification and Chapter 6 in Re-timer Specification defines all the implementation requirements needed by a USB4 component to be TBT3-Compatible. The Major differences are listed below.

	TBT3-Compatible	USB4
Electrical Layer	Gen2 – 10.3125Gbps Gen3 – 20.625Gbps	Gen2 – 10Gbps Gen3 – 20Gbps
Logical Layer & Re-timer	Support Bi-Directional Re-timer Support Two-Single Lane Links Changes in Lane Initialization Change in TxFFE process	
Transport Layer	Lane 1 can act as Upstream Adapter	
Configuration Spaces	Additional CS requirement to allow TBT3 Connection Manager operation	
USB3 Functionality	Support through USB3 Host Controller at USB4 Device	USB3 Tunneling

USB4™ Vs Thunderbolt™ 3

- When a USB4-Based Dock establishes a Thunderbolt 3 Link on its UFP, the support of Native USB3 on its DFPs is accomplished by:
 - Incorporating a USB3 Host Controller into the USB4-Based Dock
 - Connecting the Host Controller to the Host using PCIe Tunneling

Thunderbolt™ 3 Support Requirement

- A **USB4 host** along with its **Connection Manager** may *optionally* support TBT3-Compatibility.
- A **USB4 hub must** support TBT3-Compatibility on all of its **DFP**.
- A USB4-Based Dock must support TBT3-Compatibility on its UFP in addition to all its DFP.
- A **USB4 peripheral device** may *optionally* support TBT3-Compatibility.

Thunderbolt™ 3 Alt Mode Conditions

- A Thunderbolt 3 Alternate Mode can be established if each of the components below are either a Thunderbolt 3 component or a USB4 component which is TBT3-Compatible
 - The Routers on both sides of the Link
 - The Host Router
 - The Connection Manager
 - The Active cable, if exists

Thunderbolt[™] 3 and USB4[™] Mix topology

 Once a Thunderbolt 3 Link was established, all the downstream links below that link, are prohibited to be USB4 Links

Time for Q&A

USB Implementers Forum © 2019