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Objective 

 Develop a SuperSpeed USB 10 Gbps (USB 3.1) Gen2 
cable assembly compliance specification that directly 
correlates to the end-to-end link 
performance/margin. 

Perfect Simulator to  

tell  if the system works 

Cable assembly S-param 

Spec EQ and other 
Tx/Rx parameters, host 
and device channels are 
embedded in simulator 

Does it work? 

Pass, if yes 
Fail, if no 

In an ideal world … 
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Review of channel metrics 

The following parameters are used to specify 

passive channel electrical performance:  

 Insertion fit at Nyquist frequency (ILfitatNq)  

 Integrated multi-reflection (IMR) 

 Integrated crosstalk (IXT) 

The justification of using those three parameters 

is based on physical interpretation and end-to-end 

correlation.  

 See backup 
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Establishing end-to-end correlation 

Channel Responses 
S-parameters or  

tr0 files 

Use Statistic Tool 
Compute end-to-end  

margin 

Calculate Channel metrics 

xi=[ILfitatNq ; 

  IMR; 

IXT] 

Silicon Jitter and EQ 

u 

BER Eye 
eH and eW 

yi=[eH; eW] 

y=f(x; u) 

y=End-to-end margin 
f =Prediction function  

X=Channel metrics 

u=Silicon parameters 

Establish relationship 

based on input {xi;u} and “observation” {yi}, i=1:n 

+ 

? 
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Neural network fitting and space filling 

 Powerful tool capable of fitting any smooth function. 

 Important to have sufficient and well-distributed samples. 

Better Not good 
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Settings for end-to-end simulations 

 EQ 

• Spec reference CTLE’s 

• 1-tap DFE with a 50 mV max tap value 

• De-emphasis with and without pre-cursor tap (separate runs) 

• [-0.1 -0.125] or [0 -0.125]. 

 Buffer 

• 800 mV voltage swing (minimum voltage swing) 

• Risetime: 0.2UI (0-100%) 

• Cpad: 1.1pF (Tx) and 1.0pF (Rx) 

  Jitter and noise 

• Per USB 3.1 spec 

  Channels 

• ~2500 channels with well-distributed and a wide range of 
ILfitatNq, IMR and IXT 
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Fitting results 

 Fitting is reasonably good. 

• Typical 95% confidence level: ~±10 mV for eye height and ~±5 ps 
for eye width 

• Further improvement is difficult, but we are still trying 
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Channel spec 

 The fitting function or prediction formula may be served as 
the (passive) channel spec: 

y=f(x)>threshold 

 The threshold usually is zero. But we may need some guard- 
band (for fitting error and other factors), for example, a 5 ps 
threshold for eye width. 

 We choose either eye height or eye width as the pass/fail 
criterion 

• eH and eW are correlated 

• The choice may depend on fitting quality 

eH 
eW 

ILfitatNq, IMR, IXT 
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A few pass/fail examples 

IMR

IX
T
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Reference hosts and devices 

 Cable assembly S-param shall be combined with ref host and 
device to form a full channel. 

• Reference host and device may be viewed as the test fixture for 
cable assembly. 

 Ref hosts/devices shall somewhat represent the “worst-case” 
hosts/devices. 

 A cable assembly shall pass with both “long” host/device and 
“short” host/device 

Ref Host 

Long 

Ref Device 

Long 

Ref Host 

Short 

Ref Device 

Short 

1 m & 0.1 m mated 

cable assembly 

1 m & 0.1 m mated 

cable assembly 

Long ref channel to expose 
loss 

Short ref channel to expose 
multi-reflection (and 
crosstalk) 
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Long reference channel results 

• BCss stands for USB 3.1 
Gen1 (5 Gbps) Std-A to 
Std-B mated cable 
assembly. 

• Cable length swept from 
10 cm to 100 cm. 

• Cable impedance is 100 
ohms. 

• The pass/fail criterion set 
by prediction is eW < 2 ps. 

• Gen1 connectors need 
improvement and the 
cable assembly compliance 
test must weed them out. 
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Long reference channel results, cont. 

• BCsm stands for USB 3.1 
Gen1 (5 Gbps) Std-A to 
Micro-B mated cable 
assembly. 

• Cable length swept from 
10 cm to 100 cm. 

• Cable impedance is 100 
ohms. 

• The pass/fail criterion set 
by prediction is eW < 2 ps. 

• Gen1 connectors need 
improvement. 
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Long reference channel results, cont. 

• BCsm stands for USB 3.1 
Gen1 (5 Gbps) Std-A to 
Micro-B mated cable 
assembly. 

• Cable length swept from 
10 cm to 100 cm. 

• Cable impedance is 80 
ohms. 

• Lower cable impedance 
has less reflection, so 
more opened eye. 

• The pass/fail criterion set 
by prediction is eW < 2 ps. 

 

80 ohm cable is better than 100 ohm cable 
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Long reference channel results, cont. 

• Chs stands for USB 3.1 
Gen2 (10 Gbps) Std-A to 
Std-B mated cable 
assembly. 

• Cable length swept from 
10 cm to 100 cm. 

• Cable impedance is 100 
ohms. 

• The pass/fail criterion set 
by prediction is eW < 2 ps. 

• Gen2 connectors have 
some improvement but 
the margin is still at the 
borderline.  
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Long reference channel results, cont. 

• Csm stands for USB 3.1 
Gen2 (10 Gbps) Std-A to 
Micro-B mated cable 
assembly. 

• Cable length swept from 
10 cm to 100 cm. 

• Cable impedance is 100 
ohms. 

• The pass/fail criterion set 
by prediction is eW < 2 ps. 

• Gen2 connectors have 
some improvement and 
the timing margin is 
decent. 
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Long reference channel results, cont. 

• Csm stands for USB 3.1 
Gen2 (10 Gbps) Std-A to 
Micro-B mated cable 
assembly. 

• Cable length swept from 
10 cm to 100 cm. 

• Cable impedance is 80 
ohms. 

• The pass/fail criterion set 
by prediction is eW < 2 ps. 

• Gen2 connectors have 
some improvement and 
the timing margin is 
decent. 
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Short reference channel results 

• Csm stands for USB 3.1 
Gen2 (10 Gbps) Std-A to 
Micro-B mated cable 
assembly. 

• Cable length swept from 
10 cm to 100 cm. 

• Cable impedance is 80 
ohms. 

• The pass/fail criterion set 
by prediction is eW < 2 ps. 

• Gen2 connectors have 
some improvement and 
the timing margin is 
decent. 
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GHz 

d
B
 

Connector Frequency Response 

USB 3.1 Gen1 (5 Gbps); Gen2 (10 Gbps) 

SuperSpeed USB DDIL Comparison 
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Connector Frequency Response, cont. 

GHz 

d
B
 

USB 3.1 Gen1 (5 Gbps); Gen2 (10 Gbps) 

SuperSpeed USB DDRL Comparison 
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Connector Frequency Response, cont. 

GHz 

d
B
 

USB 3.1 Gen1 (5 Gbps); Gen2 (10 Gbps) 

DDNEXT between SuperSpeed USB Tx and Rx 
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Observation and discussion 

 Not much margin overall. 

• Options to improve margin: 

• Reference host/device with better performance 

• Better EQ capabilities 

• Tighter Si parameters 

 The margin prediction function does its job. 

• Majority of failure cases are caught and some borderline passing 
cases are predicted “failing” – looking for further fitting accuracy 
improvement.   

 The Gen 1 connectors need improvement, as expected. 

• Gen 2 Std-A to Gen 2 Micro-B cable has the best margin.  

 The 80-ohm cable gives better margin than 100-ohm cable 

• Assume they have the same loss.  
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Cable assembly spec 

 Informative – design targets or guidelines; traditional 
approach. 

• Mated impedance / return loss 

• Insertion loss 

• Crosstalk 

 Normative – pass/fail, compliance criteria 

• Using the prediction function derived from neural network fitting, 
say, eW = f(ILfitatNq, IMR, IXT) > eWmin. 

• Spec should include definitions of 

• ILfitatNq, IMR an IXT  

• Reference hosts and devices 

• Standard test fixtures (requirements) 

• Other parameters 

• Mode conversion (SCD21) 

• Other EMC requirements 
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Summary 
 

 Traditionally, (passive) channel electrical spec defines 
separate hard limits for insertion loss, return loss and 
crosstalk over certain frequency range. 

 The shortcomings of such a methodology are: 

 Specifying limits over a frequency range is challenging and 
violating the limits at any frequency will fail the spec. But 
in reality, such channels may work just fine. 

 It does not allow tradeoffs among insertion loss, return 
loss and crosstalk. 

 Channels with less crosstalk or reflection may allow more 
insertion loss. 

 Channel with less loss can tolerate more crosstalk or 
reflection. 
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Summary 
 A new approach is proposed for cable assembly 

compliance, using three simple parameters ILfitatNq, 
IMR and IXT. 

 The compliance criterion is directly related to the end-to-
end link performance (BER eye margin). 

 Reasonably good fit was achieved. 

 The new spec allows tradeoffs among loss, reflection and 
crosstalk. 

 Continued improvement needed 

 Fitting accuracy 

 Reference hosts/devices 

 Connector designs 

 Si parameters 
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Backups 
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Introducing Channel 
Electrical Metrics 

Start with Defining Channel Electrical Metrics 
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Signal Integrity Impairments 

 There are three impairments that impact 
channel signal integrity: 

 Attenuation 

 Reflection 

 Crosstalk 

 Passive channel electrical spec is all about 
managing those three signal integrity 
impairments. 

What are the appropriate metrics to describe 
those three impairments? 
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Channel Insertion Loss 

 The effect of attenuation and (multi) reflection 
is included in channel insertion loss. 
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Pulse response with reflection

Pulse response w/o reflection

•The smooth curve represents “attenuation” without multi-reflection. 
•The ripples represent multi-reflection.  

Frequency domain Time domain 
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Channel Crosstalk 

 Channel crosstalk can be described in 
frequency (S-parameter) or time domain 
(pulse response) also. 

 Power sum is commonly used to combine multiple 
crosstalks into one.  

S-parameters 

Pulse responses 
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Appropriate Channel Metrics  

The appropriate (passive) channel metrics 
should have the following characteristics: 

 Correlate to the channel end-to-end electrical 
performance. 

 Represent the three channel signal integrity 
impairments. 

 Are simple scalar parameters, not the whole 
frequency or time responses or profiles. 

 Can be easily and consistently derived from the 
channel frequency or time domain responses.   
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Learn from Backplane Community  

The backplane community has have been using 

the following parameters to specify passive 

channel electrical performance:  

 Insertion fit at Nyquist frequency  

 Integrated multi-reflection 

 Integrated crosstalk 

The justification of using those three parameters 

will be based on physical interpretation and end-

to-end correlation.  
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Details of Channel Electrical 
Metrics 
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Obtaining Channel IL from tr0 

• Channel IL, or more appropriately, transfer function may 
come from time or frequency domain. 

• Deriving channel IL from time domain response is common 
at Intel, using a Hspice. The result is a tr0 file or a channel 
step response. 

• The Tx buffer strength and risetime, and Tx and Rx terminations 
are included in the step response. 

• Let sr(t) be the channel step response. The channel impulse 
response is then simply: ir(t)=diff(sr(t)). 

• The channel IL is then: IL(f)=fft(ir(t))/Vsw, where Vsw is 
the magnitude of the stimulus, inputting to the channel.  

• Dividing with Vsw is necessary to be consistent with the IL or 
transfer function definition – the magnitude of the stimulus 
impulse to the transfer function should be unit or 1  
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Obtaining Channel IL from S-parameter 

• Channel S-parameters usually does not include Tx and Rx 
terminations. 

• So the first step is to add Tx and Rx termination to the 
channel S-parameters. 

• This can be done by cascading abcd-matrices (there are other 
ways to do so also) 

• The resulting abcd parameters can be converted to z-parameter 
Z(f). The transfer function IL (f) is then 

 

)()()( fVfILfV inrx 

txR

fZ
fIL

)(
)( where Z(f) is the Z-parameter 
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Decomposing IL 

• Insertion loss fit is a smooth function fit of the insertion loss IL(f), 
representing the loss without multi-reflection. 

• Insertion loss deviation represents the loss caused by multi-reflection.  

IL(f)=IL_fit(f)+ILD(f) 

Pulse response S-parameter 

ILD(f)=IL(f)-IL_fit(f) 



38 

Insertion Loss Fit 

• Use IL_fit(f)=exp(a+b*sqrt(f)+c*f+d*f^1.5) to fit the 
insertion loss 

• a – DC loss 

• b*sqrt(f) – skin effect 

• rest – dielectric loss 
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Multi-reflection 

• Multi-reflection noise in frequency domain 

• MR(f)=Vin(f)*ILD(f), where Vin(f) is the input pulse spectrum 

• Multi-reflection noise in time domain 

• mr(t)=vin(t)(irIL(t)-irfit(t))= prIL(t)-prfit(t), where ir= 
impulse response, pr=pulse response  
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Integrated Multi-reflection 

• Power due to multi-reflection is: 
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• Define the integrated multi-reflection as 

E

E
VIMR mr

sw

dffMRdttmrEmr 









22

)()( (Parceval’s theorem) 

in V or mV, normalized with a factor of E 
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Trick about IL Decomposition   

 Quality of insertion loss fit is VERY important – poor IL 
fit will result in a large (unreal) IMR 

 Fitting is usually done from f=0 to the 2nd or 3rd 
harmonic 

 Appropriate weighting function must be used in IL fit – 
more emphasis should be given from DC to Nyquist 
frequency 

 Use IL_fit(f)=exp(a+b*sqrt(f)+c*f+d*f^1.5) as the standard 
fitting equation- the last term is to improve fitting 
accuracy 

 Use w=exp(-k*f/f) as the standard weighting function for the 

least square fit, where k is an adaptive factor 



42 

Trick about IL Decomposition, cont.   

• k may vary from 0 to 20 – increasing k shifts more emphasis 
to lower frequencies. In the extreme case of k=0, w=1 for all 
frequencies, which means no weight or equal weight for all 
frequencies! 

• Adaptively choose k such that IMR is a minimal. This allows 
us to get consistent/unique IL fit for each IL 
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Integrated Crosstalk 

• Integrated crosstalk noise is defined as the power sum of all 
crosstalk sources: 
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Channel Electrical Metrics Summary 

 Three simple (scalar) parameters are used as the 
channel electrical metrics to account for three 
different impairments  

• IL fit at Nyquist frequency: ILfitatNq 

• Integrated multi-reflection: IMR 

• Integrated crosstalk: IXT 

 Parceval’s theorem establishes the frequency and 
time domain equivalency! 

 An adaptive method is used for IL fit, which 
uniquely defines the IMR 

• The IL fit is done such that the IMR is minimized! 
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Channel Electrical Metrics 
and PDA 
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Start with pulse response 

 

cursor precursor postcursor 

ISI+ ISI- 

y(t+0*T) 
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y(t+T) 
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T=UI 

y(t+2T) 
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PDA Eye Equations 
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PDA Eye 

s0(t) 

s1(t) 

e(t) 














n

i k

i

i

k
k

tkTtykTtytytstste
1

0  

01 )()()()()()(



49 

Re-arranging the PDA Equation 
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IL fit at Nyquist Frequency (ILfitatNq) 

• ILfitatNq is measured at the IL 
fit, which is a smooth, 
monotonic curve (almost like 
straight line in dB at relatively 
high frequency) 

• It is a reasonable 
representation of the 
“reflection-free” pulse 
response 

• So ILfitatNq roughly catches 
the first term (attenuation) 
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Integrated Multi-reflection (IMR) 

• IMR by definition is the integration of mr(t)^2. Alternatively, 
the integration of |mr(t)| is probably equally valid 

• Integration of power mr(t)^2 is probably better because of the 
Parceval’s theorem of time and frequency domain equivalency 

• IMR is a figure of merit for multi-reflection impact 

• Summation and integration are directly correlated 
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Integrated Crosstalk (IXT) 

• IXT by definition is integration and power sum of all crosstalk 
sources 

• In PDA, the crosstalk term is the summation of all crosstalk 
sources at a certain fixed phase ti 

• In statistic analysis, crosstalks are often uncorrelated with 
random phase and power sum is probably more appropriate  
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Channel Metrics and PDA 

• The development of the channel electrical metrics 
directly parallels the contribution to PDA eye by 
attenuation, multi-reflection and crosstalk. 

• It is known that PDA eye is closely correlated with 
the channel end-to-end performance 

• So it is reasonable to expect the proposed channel 
metrics to correlate with channel end-to-end 
performance also 

• The ultimate justification is to directly demonstrate 
the correlation between ILfitatNq, IMR and IXT 
and the end-to-end BER eye margin      
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Establishing End-to-End 
Correlation 
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Flow to Establish Correlation 

Channel Responses 
S-parameters or  

tr0 files 

Use Statistic Tool 
Compute end-to-end  

margin 

Calculate Channel metrics 

xi=[ILfitatNq ; 

  IMR; 

IXT] 

Silicon Jitter and EQ 

u 

BER Eye 
eH and eW 

yi=[eH; eW] 

y=f(x; u) 

y=End-to-end margin 
f =Prediction function  

X=Channel metrics 

u=Silicon parameters 

Establish relationship 

based on input {xi;u} and “observation” {yi}, i=1:n 

+ 

? 
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Neural Network Fit 

 Neural network fitting is a powerful tool, capable of fitting 
almost any smooth function  

 Neural network fitting can be used to establish the 
relationship between {x; u} and {y}. (Note that u may be 
mostly fixed, hidden from customers)  

 The key to get good fit with neural network is appropriate 
space filling 
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Space Filling 

• The independent variables shall fill up the whole intended 
“design” space as uniformly as possible 

• Not doing so will cause inaccurate fitting such as overfit 

Desirable Not good 
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SATA Direct-Connect Rx Fit 

EH 

R=0.981 

RMSE=6 mv 

 

EW 

R=0.979 

RMSE=2 ps 

 



59 

SATA Rx Fit Profiler 
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SATA Direct-Connect Tx Fit 

Very good fit for EH and reasonable fit for EW 
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USB 3 Rx Fit Quality 

EH 

R=0.995 

RMSE=6 mv 

 

EW 

R=0.994 

RMSE=6 ps 
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USB 3 Rx Fit Profiler 
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USB 3 Tx EH Fit 

EH:R=0.998, RMSE=2 mV 
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USB 3 Tx EW Fit  

EW: R=0.996, RMSE=3 ps 
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PCIe3 Example – LGA Rx: fitting quality 
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PCIe3 Example – LGA Rx: Profiler 

Fitting with ILfit@Nquist, IMR, IXtlk 
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PCIe3 Example – LGA Tx: fitting quality 
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PCIe3 Example – LGA Tx: profiler 
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DisplayPort HBR1 Fit 
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Summary 



71 

Summary 

 Three simple (scalar) parameters are used as the 
channel electrical metrics to account for three 
different impairments  

• IL fit at Nyquist frequency: ILfitatNq 

• Integrated multi-reflection: IMR 

• Integrated crosstalk: IXT 

 Parceval’s theorem establishes the frequency and 
time domain equivalency! 

• It doesn’t matter in time domain or freq domain! 

 An adaptive method is used for IL fit, which 
uniquely defines the IMR 

• The IL fit is done such that the IMR is minimized! 
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Summary, cont. 

• Neural network fitting together with space filling is 
used to fit the channel electrical metrics against 
the end-to-end eye margin to establish the 
(passive) channel electrical spec 

• The proposed (passive) channel electrical metrics, 
ILfitatNq, IMR and IXT, are closely correlated with 
the channel end2end BER eye margins 
• We have tested this for virtually all differential interfaces and 
haven’t found any exception so far 

• The fitting quality is in general good, usually 
better than the typical fitting in DOE. 

 




