USB4™
Time Measurement Equipment – Setup Procedure

Date: September 2023
Revision: 1.03
Revision History:

<table>
<thead>
<tr>
<th>Revision</th>
<th>Issue Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>July 2021</td>
<td>Initial release.</td>
</tr>
<tr>
<td>1.01</td>
<td>August 2021</td>
<td>Editorial changes. Updated list of provided files to include tmu_fpga.exe. Made troubleshooting section for USB ethernet gadget into its own step.</td>
</tr>
<tr>
<td>1.02</td>
<td>March 2022</td>
<td>Editorial changes. Update instructions for making STLP cable to simpler method.</td>
</tr>
<tr>
<td>1.03</td>
<td>September 2023</td>
<td>Updated the KG USB4 Device board</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction .. 1
 Standalone Measurement .. 1
 Comparative Time Measurement ... 1

A. Required Hardware and Software ... 1
 A1. Quad Motherboard ... 2
 A2. Duo & Quad Casing (optional) ... 3
 A3. Virtex® 7 module XC7V2000T .. 3
 A4. Goodway Gatkex Board with TMU CLK Out as USB4 KG Device 4
 A5. STLP Cable ... 4
 A5.1. STLP Cable construction procedure for the Goodway Gatkex Board with TMU CLK Out ... 6

B. Connecting the system ... 10
 B1. Installing the module .. 10
 B2. Connecting STLP cable .. 10

C. proFPGA Initial Setup on USB4CV System .. 12
 C1. Install proFPGA software .. 13
 C2. Connect proFPGA to USB4CV System .. 13
 C3. Install Driver for USB Ethernet/RNDIS Gadget ... 14
 C3.1. Identify Device Driver for FPGA ... 14
 C3.2. Update Driver Software .. 15
 C4. Set Static IP Address for FPGA .. 17

D. Using proFPGA with USB4CV ... 21
 D1. Start up proFPGA (burning the bit file) ... 23
 D2. Shut Down proFPGA ... 24

Troubleshooting: .. 24
 D3. LEDs for PA and PB. .. 24
Introduction

Time Measurement Equipment is an essential part of Time Synchronization Compliance testing. It is based on the Serial Time Link Protocol (STLP) that transmits current Grand Master time every 16 μsec. STLP is parsed and analyzed by a *Time Measurement Equipment*, which is FPGA based hardware.

There are two usages for such equipment:

Standalone Measurement

![Figure 1: Standalone setup](image)

Comparative Time Measurement

![Figure 2: Pair Setup](image)

A. Required Hardware and Software

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Vendor</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>KG USB4 Device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KG USB4 Device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Measurement Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Description</td>
<td>Vendor</td>
<td>Link</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Quad Motherboard</td>
<td>proFPGA</td>
<td>https://www.profpga.com/products/motherboardoverview/profpga-quad</td>
</tr>
<tr>
<td>Case (optional)</td>
<td>proFPGA</td>
<td>https://www.profpga.com/products/miscellaneousoverview/duo-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Software</th>
<th>Vendor</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>proFPGA-2020C-install.exe</td>
<td>proFPGA</td>
<td>*Contact proFPGA for this software</td>
</tr>
<tr>
<td>Files to use with USB4CV</td>
<td>USB-IF</td>
<td>https://usb.org/compliancetools#anchor_usb4tools</td>
</tr>
</tbody>
</table>

Please contact proFPGA about getting the necessary items listed above.

https://www.profpga.com/
email: profpga@prodesign-europe.com

A1. Quad Motherboard
A2. Duo & Quad Casing (optional)

Figure 3: Quad Motherboard

Figure 4: Optional case for FPGA

A3. Virtex® 7 module XC7V2000T

Figure 5: Virtex® 7 module
A4. Goodway Gatkex Board with TMU CLK Out as USB4 KG Device:

Contact Info: raymond_chan@goodway.com.tw & vivian_liao@goodway.com.tw

![Goodway Gatkex Board with TMU CLK Out](image)

Figure 6: Goodway Gatkex Board with TMU CLK Out

A5. STLP Cable

STLP cable connects Goodway Gatkex Board TMU_CLK_OUT output and carries STLP protocol to FPGA.

The cable has 3 ends as shown on the following figure.

![STLP Cable](image)

Figure 7: Example
One end of the cable connects to Goodway Gatkex Board with TMU CLK Out with SMP connector:

![Connecting SMP to Goodway Gatkex Board with TMU CLK Out](image1)

Figure 8: Connecting SMP to Goodway Gatkex Board with TMU CLK Out

The other end of the cable has female header (size 0.1"):

![STLP cable showing both ends. 0.1" 6pin housing and push-on SMP connectors](image2)

Figure 9: STLP cable showing both ends. 0.1" 6pin housing and push-on SMP connectors
A5.1. STLP Cable construction procedure for the Goodway Gatkex Board with TMU CLK Out

These instructions can be used to make custom cables for testing products that do not use SMP connectors for TMU_CLK_OUT.

The following materials will be necessary:

- 2x RF cables each at least 48 inches long with push-on SMP connectors.

 Note: Do not use semi-rigid type. Choose braided shielding (eg: PE3C3584/PH180-48)
- 1x 0.1 inch (2.54mm) Crimp connector housing 1x6-pin
- Wire stripper
- Heat shrink tubes
- 3x Heat shrink tubes with solder ring
- Heat gun
- 3x 2inch pre-crimped wires
- Hot glue gun

1. Strip at least 1” of the outer insulation.

2. Carefully undo the braided shielding. It is recommended to use a small and fine tool to poke into the braids and pull towards the open end of the cable. Start from the end of the cable and slowly work down to slowly undo the braiding.
3. Strip about ¼ inch of the dielectric insulation to expose the center conductor.

4. Take a pre-crimped wire and feed into a heat shrink tube with solder ring. Take the exposed center conductor and insert into one of the crimps. Then pull the heat shrink tube over this connection and line the solder ring up with the metal-to-metal contact portion.

5. Use heat gun to shrink the tube and pay extra attention to melt the solder ring. Solder ring should visibly deform or fill in gaps of the crimp contact.
6. Repeat steps 1-5 for the second cable.
7. Combine both Ground braids by twisting them together. Repeat steps 4 and 5 on this combined braid.
8. Use heat shrink (no solder ring) to cover excess exposed braiding.
9. Insert pins into the housing and give it a light tug test to ensure that the pin is secured in place:
 • GND braids to pin 1 (GND)
 • Choice of cable to pin 4 (PB)
 • Remaining cable to pin 6 (PA)

10. Apply hot glue to bottom of housing. Make sure to fill in spaces between the three cables and also overlap onto the plastic housing to prevent the cables from bending when attaching this cable to FPGA.
B. Connecting the system

B1. Installing the module

Virtex® 7 module shall be installed on connector TA1 of Quad Motherboard

![Virtex® 7 Module position on Quad Motherboard](image)

Figure 10: Virtex® 7 Module position on Quad Motherboard

B2. Connecting STLP cable

STLP cable will need to be connected to the following pins located on the Virtex module:

![Virtex® 7 Module Pins](image)

Figure 11: Virtex® 7 Module Pins
Figure 12: Pin 1 on ProFPGA
C. proFPGA Initial Setup on USB4CV System

This setup procedure only needs to be done once on a system and tester will only need to rely on the provided batch files for startup and shut down of the FPGA.

You will need to contact proFPGA for software install executable. Their contact can be found in the Required Hardware and Software section of this document.

The following files are provided by the USB-IF at https://usb.org/compliancetools#anchor_usb4tools to use proFPGA with USB4CV:

- TMU_FPGA.bat
- tmu_fpga.exe
- proj.cfg
- fmxc7v2000tr2.bit
- fpga_startup.bat
- fpga_shutdown.bat
All files should be placed into the following path to use with USB4CV:

```
C:\Users\Public\Documents\TMU_FPGA\USB4_Compliance
```

C1. Install proFPGA software

Run proFPGA software installation executable and set install path to `C:\ProDesign\proFPGA-2020C\`

![INSTALL.txt](image1)
![md5sum.txt](image2)
![proFPGA-2020C-install.exe](image3)

C2. Connect proFPGA to USB4CV System

1. Turn on the power supply.
2. Change the switch on mother board from OFF to ON
3. Connect proFPGA to USB4CV System:
 i. If you purchased the optional case for the FPGA, use a USB2.0 STD B to A cable to connect **STD B port on front of proFPGA to USB-A port on USB4CV System.** (Do not use the ethernet port on the FPGA)

 ![USB4CV System](image4)

 ii. If you did not get the optional case for the FPGA, use a USB2.0 microB to A cable to **connect from microB port on proFPGA to Type A port on USB4CV System.**
C3. Install Driver for USB Ethernet/RNDIS Gadget

This driver is needed to interface with the FPGA through the USB-A port.

C3.1. Identify Device Driver for FPGA

Open Device Manager. The device is most likely listed as a Serial Device COM under ‘Ports (COM & LPT)’.

Verify this device is the FPGA by unplugging FPGA from the USB4CV System and seeing if the device goes away.
C3.2 Update Driver Software

Right-click the Serial USB Device and select “Update Driver Software”. Select “Browse my computer for software”.

Figure 14: Update driver in Device Manager
Specify path to the proFPGA Windows drivers which came with the proFPGA software release and press ‘Next’:

Allow installation of the driver. Press ‘Install’ to continue.
Figure 17: Allow installation

C4. Set Static IP Address for FPGA

To use a Static IP address, first set up your USB4CV System's IP address to Static IP Address.

1. Open Control Panel and select Network and Sharing Center.

 ![Network and Sharing Center](image)

 Figure 18: Network and Sharing Center

2. Click on Change Adapter Settings
3. Click on “USB Ethernet/RNDIS Gadget”

4. Click on “Properties”.

Figure 19: Change adapter setting

Figure 20: USB Ethernet/RNDIS Gadget

6. Click on “Use the following IP address”
 In the IP address section type 169.254.0.1 (this is USB4CV System IP address)
In the subnet mask type **255.255.255.0**

![Internet Protocol Version 4 (TCP/IPv4) Properties](image)

Figure 23: IP address and the subnet mask

7. Click “OK”

![Internet Protocol Version 4 (TCP/IPv4) Properties](image)

Figure 24: Click OK

Verify that FPGA connection to USB4CV System works

1. Open Command Prompt and enter **ping 169.254.0.2**
2. Make sure you received all packets

![Figure 25: Ping proFPGA IP address](image1)

D. Using proFPGA with USB4CV

With all files in the correct locations, all you need to do now is use the provided Windows Batch files to start up and shut down the FPGA. Every time the FPGA is powered on, you need to burn the bit file again using the provided startup batch file. Once you start up the FPGA, follow USB4 TMU CTS for connections to test setups.

A good indication for when the FPGA is ready to use is by looking for a line of LEDs next to the power switch on the Quad motherboard. When initially powering on the FPGA, only a few LEDs will be lit:

![Figure 26: All packets received](image2)
Once you’ve burned the bit file, you can see that many more LEDs are lit:
D1. Start up proFPGA (burning the bit file)

Every time the FPGA is powered up, it is necessary to burn the FPGA with the bit file. `fpga_start-up.bat` will do this by running the following commands:

a. `cd C:\Users\Public\Documents\TMU_FPGA\USB4_Compliance`

```
C:\Users\SWZ-14>cd C:\Users\Public\Documents\TMU_FPGA\USB4_Compliance
```

b. `profpga_run.exe proj.cfg -u`

```
C:\Users\SWZ-14>cd C:\Users\Public\Documents\TMU_FPGA\USB4_Compliance
C:\Users\Public\Documents\TMU_FPGA\USB4_Compliance>profpga_run.exe proj.cfg -u
```

c. Wait until loading .bit file is done
D2. Shut Down proFPGA

Please run the shutdown script and wait for proFPGA to fully shutdown before powering off the FPGA.

`fpga_shutdown.bat` will shut down the FPGA by running the following command:

```
profpga_selftest C:\Users\Public\Documents\TMU_FPGA\USB4_Compliance\proj.cfg -d
```

Wait until proFPGA finishes shutdown.

Troubleshooting:

If you are not able to turn on the FPGA with the batch files, please make sure that you followed the initial setup procedure correctly. Files need to be in a specific folder path and uses the specific IP address indicated in this procedure.

D3. LEDs for PA and PB

When connecting to test setups defined in TMU CTS, FPGA module has dedicated LEDs that will light up when it is getting TMU_CLK_OUT from a device that is connected to a host and has established a stable link.
Figure 30: Blue LED lit for PA connection

Figure 31: Orange LED lit for PB connection