
USB Power Delivery ENGINEERING CHANGE NOTICE

USB Power Delivery ECN Form 20200120 Page: 1

Title: Chunking Timing Issue

Applied to: USB Power Delivery Specification Revision 3.1
Version 1.3

Brief description of the functional changes proposed:

Add a mechanism to allow adaptive adjustment to tSenderResponse so that any length Extended Message responses

can be accommodated without timing out.

Increase the tSenderResponseTimer to 26ms to 32ms.

Correct the text description of SenderResponseTimer to match the description provided by state diagram in Figure 6-

65 Protocol layer Message reception.

Benefits as a result of the proposed changes:

Removes a potential cause of device incompatibility.

An assessment of the impact to the existing revision and systems that currently conform to
the USB specification:

Removes a potential cause of device incompatibility.

An analysis of the hardware implications:

An analysis of the software implications:

An analysis of the compliance testing implications:

USB Power Delivery ENGINEERING CHANGE NOTICE

USB Power Delivery ECN Form 20200120 Page: 2

Increasing the tSenderResponseTimer to 26ms to 32ms.

The change will not affect existing products as they will not require the new timing, and will not affect current designs

not yet released as product for the same reason. If all new designs make use of the new timing, then there will be no

issues in the future. Any design that uses an actual tSenderResponseTimer of between 26 and 30ms will not require

modification.

In compliance, only designs with tSenderResponseTimer between 24 and 26ms would need a waiver if they do not

expect to request full length unchunked extended messages. There should be no reason not to grant such a waiver. The

waiver would be a signal to the vendor to increase the timer for future designs.

USB Power Delivery ENGINEERING CHANGE NOTICE

USB Power Delivery ECN Form 20200120 Page: 3

Description of the Problem //**//

Unchunked Non-Extended Message Situation

When a device sends a request message (start of AMS) it starts a timer (Sender

Response Timer) and expects to have completely received a response message and

have sent a GoodCRC within that time. The time (24 to 30ms) was chosen before

Chunked Extended Messages were added.

The Policy Engine is responsible for maintaining this timer, and the Protocol Engine

sends a notification, via the Chunking Layer, that the response message has arrived.

In the description that follows, some liberties have been taken for timers with the same

value but different purposes, as they are officially named differently, and this causes

problems in describing combinations of the timers. This was simply done for

convenience here.

Problems arise in the situation where a request is sent and the response is an Extended

Message with more than one chunk. Depending on the speed with which the messages

are sent, it is possible that the Sender Response Timer will time out before the complete

chunked message has been received and a Soft Reset will be issued.

So far this issue has been avoided because the only Extended Messages with more

than one chunk has been Firmware Update and Security related and these were

defined as not being AMSs and therefore not involving the SenderResponseTimer.

Now however we have EPR_Get_Sink_Caps and EPR_Get_Source_Caps which

involve 2 chunk response messages plus a Chunk Request message, and are AMSs.

Request

GCRC Response

GCRC

SenderResponseTimer

Figure 1

tR
eceiv

erR
esp

o
n

se

m
ax

USB Power Delivery ENGINEERING CHANGE NOTICE

USB Power Delivery ECN Form 20200120 Page: 4

Chunked Situation

//**//

Taking as an example an EPR_Get_Sink_Caps request, the expected response is a

two chunk EPR_Sink_Caps Extended Message. This involves the transfer of three

message/GoodCRC pairs each of which is required to be completed within a time

equivalent to the Sender Response Timer, so the total response time could be at least 3

x tReceiverResponse max or >45ms. If it takes this long then the Sender Response

Timer (max 30ms) will time out and a Soft Reset will be issued.

Such a situation cannot be permitted to continue. We need to implement a solution that

prevents timing out on Extended Messages with more than one chunk.

Ideally we need to set a timer that is larger when there are more chunks. The problem is

that in the general case we may not know what length response to expect at the time

we need to start the timer.

Proposed Solution

The proposed solution is to use a mechanism to extend tSenderResponse as chunks

continue to be requested. This has the advantage of not changing the timeout value for

any extended messages with only one chunk, and does not increase the time waited in

the case of a breakdown in communication. It is a once and for all fix with very little

extra logic.

Request

GCRC Response

Chunk 0

tR
eceiv

erR
esp

o
n

se

m
ax

Request

Chunk 1
GCRC

GCRC Response

Chunk 1

GCRC

tC
h

u
n

k
R

eceiv
erR

eq
u

est

m
ax

tC
h

u
n

k
R

eceiv
erR

esp
o

n
se

m
ax

SenderResponseTimer

1 2

Figure 2

USB Power Delivery ENGINEERING CHANGE NOTICE

USB Power Delivery ECN Form 20200120 Page: 5

This would involve the Chunking Engine sending a notification (SRT_Stop) at point 1 in
Figure 2 to stop the SenderResponseTimer, and sending a notification (SRT_Start) at
point 2 in Figure 2 to restart the SenderResponseTimer.

To enable the change to be done with the minimum of complication it is proposed to
separate the SenderResponseTimer out from the Policy Engine, and describe it within
its own state machine. This state machine can then be stopped and started from the
Policy Engine and also the Chunking Layer. //**//

Finally it was noticed that the SenderResponseTimer text description has never
matched the state diagram implementation as Figure 6-65 shows that the received
message is not passed to the Policy Engine until the GoodCRC has been completely
sent. This should not effect implementations, that are assumed to follow the state
diagram. So it is proposed to bring the text description into line with the state diagrams.

6.12.2.3 Protocol Layer Message Reception

Figure 6-65 shows the state behavior for the Protocol Layer when receiving a Message.

Figure 6-65 Protocol layer Message reception

Message received

from PHY (except Soft Reset)

Message passed to

Policy Engine
(GoodCRC sent | Message discarded bus Idle

1
)

MessageID <> stored

 MessageID |

no stored value

MessageID = stored

 MessageID

Start

PRL_Rx_Send_GoodCRC

Actions on entry:
Send GoodCRC message to PHY

PRL_Rx_Store_MessageID

Actions on entry:
Protocol Layer message transmission
transitions to PRL_Tx_Discard_Message
state2.
Store new MessageID
Pass message to Policy Engine3

PRL_Rx_Wait_for_PHY_
message

Actions on entry:

PRL_Rx_Check_MessageID

Actions on entry:
If there is a stored value compare
MessageID with stored value.

Soft Reset Message received

from PHY
Soft Reset complete

PRL_Rx_Layer_Reset_
for_Receive

Actions on entry:
Reset MessageIDCounter and clear
stored MessageID value
Protocol Layer message
transmission transitions to
PRL_Tx_PHY_Layer_Reset state.

Soft Reset request from Policy Engine |

Exit from Hard Reset

Message discarded bus Idle
1

Policy Engine

does not see

received

message till

GoodCRC

has been sent

USB Power Delivery ENGINEERING CHANGE NOTICE

USB Power Delivery ECN Form 20200120 Page: 6

Unchunked Extended Message Situation

Duration of Longest Unchunked Extended Message

• Preamble 64 bits

• Start of Packet 20 bits

• Message Header 20 bits

• Extended Message Header 20 bits

• Data bits 260*10 = 2600 bits

• CRC 40 bits

• End of Packet 5 bits

Total bits = 2769

Duration of bit at 270kb/s = 3.704e-6

Duration of message = 10.256ms

Duration of Longest GoodCRC Message

• Preamble 64 bits

• Start of Packet 20 bits

• Message Header 20 bits

• CRC 40 bits

• End of Packet 5 bits

Total bits = 149

Duration of bit at 270kb/s = 3.704e-6

Duration of message = 0.552 ms

Request

GCRC Max Length Response

GCRC

SenderResponseTimer min (24ms)

Figure 3

tR
eceiv

erR
esp

o
n

se

m
ax

15ms

0.552 ms

s

10.256 ms

s

0.552 ms

s

195us

s

195us

s

.552+10.256+.195 = 11.003ms 15-.552-.195 = 14.253ms

24ms

= 25.265ms

USB Power Delivery ENGINEERING CHANGE NOTICE

USB Power Delivery ECN Form 20200120 Page: 7

So, longest time for message to arrive is 25.265ms and SenderResponseTimer can expire in 24ms.

The simplest fix for this is to increase the minimum tSenderResponseTimer to 26ms, and either leave the maximum

tSenderResponseTimer at 30ms or increase it to 32ms.

The change will not affect existing products as they will not require the new timing, and will not affect current

designs not yet released as product for the same reason. If all new designs make use of the new timing then there

will be no issues in the future. Any design that uses a tSenderResponseTimer of between 26 and 30ms will not

require modification.

In compliance only designs with tSenderResponseTimer between 24 and 26ms would need a waiver if they do not

expect to request full length unchunked extended messages. A waiver would be a signal to the vendor to increase the

timer for future designs.

USB Power Delivery ENGINEERING CHANGE NOTICE

USB Power Delivery ECN Form 20200120 Page: 8

Actual Change Requested

(a). Section 6.6.2 “SenderResponseTimer”, Page 227

From Text:

The SenderResponseTimer Shall be used by the sender’s Policy Engine to ensure that a Message requesting a

response (e.g. Get_Source_Cap Message) is responded to within a bounded time of tSenderResponse. Failure to

receive the expected response is detected when the SenderResponseTimer expires.

The Policy Engine’s response when the SenderResponseTimer expires Shall be dependent on the Message sent

(see Section 8.3).

The SenderResponseTimer Shall be started from the time the last bit of the GoodCRC Message EOP (i.e. the

GoodCRC Message corresponding to the Message requesting a response) has been received by the Physical Layer.

The SenderResponseTimer Shall be stopped when the last bit of the expected response Message EOP has been

received by the Physical Layer.

The receiver of a Message requiring a response Shall respond within tReceiverResponse in order to ensure that the

sender’s SenderResponseTimer does not expire.

The tReceiverResponse time Shall be measured from the time the last bit of the Message EOP has been received

by the Physical Layer until the first bit of the response Message Preamble has been transmitted by the Physical

Layer.

To Text:

The SenderResponseTimer Shall be used by the sender’s Policy Engine to ensure that a Message requesting a

response (e.g. Get_Source_Cap Message) is responded to within a bounded time of tSenderResponse. Failure to

receive the expected response is detected when the SenderResponseTimer expires.

For Extended Messages received as Chunks, the SenderResponseTimer will also be started and stopped by the

Chunking Rx State Machine. See Section 8.3.3.1.1 for more details of the SenderResponseTimer operation.

The Policy Engine’s response when the SenderResponseTimer expires Shall be dependent on the Message sent

(see Section 8.3).

The SenderResponseTimer Shall be started from the time the last bit of the GoodCRC Message EOP (i.e. the

GoodCRC Message corresponding to the Message requesting a response) has been received by the Physical Layer.

The SenderResponseTimer Shall be stopped when the last bit of the expected response Message EOP has been

received by the Physical Layer.

The receiver of a Message requiring a response Shall respond within tReceiverResponse in order to ensure that the

sender’s SenderResponseTimer does not expire.

The tReceiverResponse time Shall be measured from the time the last bit of the the GoodCRC Message EOP,
corresponding to the expected response Message, has been received by the Physical Layer until the first bit of the

response Message Preamble has been transmitted by the Physical Layer.

(b). Table 6-68 “Time Values”, Page 240

From Text:

tSenderResponse 24 27 30 ms Section 6.6.2

USB Power Delivery ENGINEERING CHANGE NOTICE

USB Power Delivery ECN Form 20200120 Page: 9

To Text:

tSenderResponse 26 29 32 ms Section 6.6.2

(c). Figure 6-59 “Chunked Rx State Diagram”, Page 252

From Text:

RCH_Pass_Up_Message

Actions on entry:
Pass Message to Policy Engine

RCH_Wait_For_
Message_From_
Protocol_Layer

Actions on entry:
Clear Extended Rx Buffer
Clear Abort Flag

RCH_Report_Error

Actions on entry:
Report Error to Policy Engine.
If a Message was received, pass it to
the Policy Engine.

RCH_Processing_
Extended_Message

Actions on entry:
If first chunk: set
Chunk_Number_Expected = 0 and
Num bytes received = 0

If expected Chunk Number: Append
data to Extended_Message_Buffer;
Increment Chunk_Number_Expected
and adjust Num bytes received.

RCH_Requesting_Chunk

Actions on entry:
Send Chunk Request to Protocol
Layer with Chunk Number =
Chunk_Number_Expected

RCH_Waiting_Chunk

Actions on entry:
Start ChunkSenderResponseTimer

Start

Message

not

Complete

Message

Transmitted

received from

Protocol Layer

Unexpected

Chunk Number

Other Message Received

 from Protocol Layer |

 ChunkSenderResponseTimer timeout

Reported

Chunked !=

Chunking

Received Non-Extended Message |

(Received Extended Message &

 (Chunking = 0 & Chunked = 0))

Message is Complete

 (Num bytes received

 >= specified Data Size)
2

Message Passed

Transmission Error

from Protocol Layer |

 Message Received

from Protocol Layer

Chunk Response Received

from Protocol Layer

Received

Extended Message &

 (Chunking = 1 &

 Chunked = 1)

Any Message Received and

not in state RCH_Waiting_Chunk

or RCH_Wait_For_Message_From_

Protocol_Layer

Abort Flag Set

Soft Reset occured |

Exit from Hard Reset

1 Chunking is an internal state that is set to 1 if the ‘Unchunked Extended Messages Supported’ bit in either Source

Capabilities or Request is 0. It defaults to 1 and is set after the first exchange of Source Capabilities and Request. It

is also set to 1 for SOP’ or SOP’’ communication.

2 Additional bytes received over specified Data Size will be as a result of padding in the last chunk.

USB Power Delivery ENGINEERING CHANGE NOTICE

USB Power Delivery ECN Form 20200120 Page: 10

To Text:

RCH_Pass_Up_Message

Actions on entry:
Pass Message to Policy Engine

RCH_Wait_For_
Message_From_
Protocol_Layer

Actions on entry:
Clear Extended Rx Buffer
Clear Abort Flag

RCH_Report_Error

Actions on entry:
Report Error to Policy Engine.
If a Message was received, pass it to
the Policy Engine.

RCH_Processing_
Extended_Message

Actions on entry:
If first chunk: set
Chunk_Number_Expected = 0 and
Num bytes received = 0

If expected Chunk Number: Append
data to Extended_Message_Buffer;
Increment Chunk_Number_Expected
and adjust Num bytes received.

RCH_Requesting_Chunk

Actions on entry:
Send notification SRT_Stop to
SenderResponseTimer State
Machine.

Send Chunk Request to Protocol
Layer with Chunk Number =
Chunk_Number_Expected.

RCH_Waiting_Chunk

Actions on entry:
Start ChunkSenderResponseTimer3

Send notification SRT_Start to
SenderResponseTimer State
Machine.3

Start

Message

not

Complete

Message

Transmitted

received from

Protocol Layer

Unexpected

Chunk Number

Other Message Received

 from Protocol Layer |

 ChunkSenderResponseTimer timeout

Reported

Chunked !=

Chunking

Received Non-Extended Message |

(Received Extended Message &

 (Chunking = 0 & Chunked = 0))

Message is Complete

 (Num bytes received

 >= specified Data Size)
2

Message Passed

Transmission Error

from Protocol Layer |

 Message Received

from Protocol Layer

Chunk Response Received

from Protocol Layer

Received

Extended Message &

 (Chunking = 1 &

 Chunked = 1)

Any Message Received and

not in state RCH_Waiting_Chunk

or RCH_Wait_For_Message_From_

Protocol_Layer

Abort Flag Set

Soft Reset occured |

Exit from Hard Reset

1 Chunking is an internal state that is set to 1 if the ‘Unchunked Extended Messages Supported’ bit in either Source

Capabilities or Request is 0. It defaults to 1 and is set after the first exchange of Source Capabilities and Request. It

is also set to 1 for SOP’ or SOP’’ communication.

2 Additional bytes received over specified Data Size will be as a result of padding in the last chunk.

3. This state is responsible for starting two timers of similar length. The implementor should mitigate against more

than one of these timers resulting in recovery action.

(d). Section 6.12.2.1.2.4 “RCH_Requesting_Chunk State”, Page 253

From Text:

On entry to the RCH_Requesting_Chunk state the Chunked Rx state machine Shall:

• Send Chunk Request to Protocol Layer with Chunk Number = Chunk_Number_Expected.
The Chunked Rx State Machine Shall transition to the RCH_Waiting_Chunk state when:

• Message Transmitted is received from the Protocol Layer.
The Chunked Rx State Machine Shall transition to the RCH_Report_Error state when:

• Transmission Error is received from the Protocol Layer, or

• A Message is received from the Protocol Layer.

To Text:

On entry to the RCH_Requesting_Chunk state the Chunked Rx state machine Shall:

• Send notification SRT_Stop to SenderResponseTimer state machine (see Section 8.3.3.1.1)

• Send Chunk Request to Protocol Layer with Chunk Number = Chunk_Number_Expected.
The Chunked Rx State Machine Shall transition to the RCH_Waiting_Chunk state when:

USB Power Delivery ENGINEERING CHANGE NOTICE

USB Power Delivery ECN Form 20200120 Page: 11

• Message Transmitted is received from the Protocol Layer.
The Chunked Rx State Machine Shall transition to the RCH_Report_Error state when:

• Transmission Error is received from the Protocol Layer, or

• A Message is received from the Protocol Layer.

(e). Section 6.12.2.1.2.5 “RCH_Waiting_Chunk State”, Page 253

From Text:

On entry to the RCH_Waiting_Chunk state the Chunked Rx state machine Shall:

• Start the ChunkSenderResponseTimer.
The Chunked Rx State Machine Shall transition to the RCH_Processing_Extended_Message state when:

• A Chunk is received from the Protocol Layer.
The Chunked Rx State Machine Shall transition to the RCH_Report_Error state when:

• A Message, other than a Chunk, is received from the Protocol Layer, or

• The ChunkSenderResponseTimer expires.

To Text:

On entry to the RCH_Waiting_Chunk state the Chunked Rx state machine Shall:

• Start the ChunkSenderResponseTimer.

• Send notification SRT_Start to SenderResponseTimer state machine (see Section 8.3.3.1.1)
The Chunked Rx State Machine Shall transition to the RCH_Processing_Extended_Message state when:

• A Chunk is received from the Protocol Layer.
The Chunked Rx State Machine Shall transition to the RCH_Report_Error state when:

• A Message, other than a Chunk, is received from the Protocol Layer, or

• The ChunkSenderResponseTimer expires.

(e). Section 8.3.3.1 “8.3.3.1 Introduction to state diagrams used in
Chapter 8”, Page 567

From Text:

Timers are included in many of the states. Timers are initialized (set to their starting condition) and run (timer is

counting) in the particular state it is referenced. As soon as the state is exited then the timer is no longer active.

Where the timers continue to run outside of the state (such as the NoResponseTimer), this is called out in the text.

Timeouts of the timers are listed as conditions on state transitions.

To Text:

Timers are included in many of the states. Timers are initialized (set to their starting condition) and run (timer is

counting) in the particular state it is referenced. As soon as the state is exited then the timer is no longer active.

Where the timers continue to run outside of the state (such as the NoResponseTimer), this is called out in the text.

Timeouts of the timers are listed as conditions on state transitions.

The SenderResponseTimer is a special case, as it may be stopped and started from outside the states in which it is

used. To allow this to be done without over-complicating the state diagrams, the SenderResponseTimer is described

USB Power Delivery ENGINEERING CHANGE NOTICE

USB Power Delivery ECN Form 20200120 Page: 12

with its own state diagram (Figure 8-8xx). The control of this Timer is shared between the Policy Engine and the

Chunking Layer.

(d). Section 8.3.3.1.1 “SenderResponseTimer State Diagram”, Page 253

New Text:

Figure 8-8xx below shows the state diagram for the Policy Engine in a Source or a Sink Port. The following

sections describe operation in each of the states.

Figure 8-8xx SenderResponseTimer State Diagram

SRT_Stopped

Actions on entry:
Stop Incrementing SR_Timer1

Power-up |
Hard Reset |

SenderResponseTimer stopped on exit from Policy Engine State |
Stop_SRT requested from Chunking Layer

Actions on entry:
Zero SR_Timer
Start Incrementing SR_Timer1

SRT_Running

SenderResponseTimer started
from within Policy Engine State |

Start_SRT requested from Chunking Layer

Actions on entry:
Inform Policy Engine of
SenderResponseTimer timeout

SRT_Expired

SR_Timer1 reached
 maximum count

Policy Engine informed

1. The SR_Timer is regarded as the mechanism within the SenderResponseTimer state machine that
implements the SenderResponseTimer.

8.3.3.1.1.1 SRT_Stopped State
The SRT_Stopped State Shall be the starting state for the SenderResponseTimer either on power up or after a Hard

Reset. On entry to this state the Policy Engine Shall stop incrementing the SR_Timer.

The Policy Engine Shall transition to the SRT_Running state:

• When the SenderResponseTimer is started from within a Policy Engine st ate, or

• When a Start_SRT is requested from the Chunking Layer.

USB Power Delivery ENGINEERING CHANGE NOTICE

USB Power Delivery ECN Form 20200120 Page: 13

8.3.3.1.1.2 SRT_Running State
On entry to the SRT_Running state the SenderResponseTimer state machine Shall:

• set the SR_Timer to zero

• start running SR_Timer.

The SenderResponseTimer state machine Shall transition to the SRT_Expired state:

• When the SR_Timer reaches its maximum count
The SenderResponseTimer state machine Shall transition to the SRT_Stopped state:

• When the SenderResponseTimer is stopped by exiting a Policy Engine state, or

• When a Stop_SRT is requested from the Chunking Layer

8.3.3.1.1.3 SRT_Expired State
On entry to the SRT_Running state the SenderResponseTimer state machine Shall Inform Policy Engine of

SenderResponseTimer timeout

The Policy Engine Shall then transition to the SRT_Stopped state:

• When the policy Engine has been informed.

(d). Section 8.3.3.28 “Policy Engine States”, Page 665

New Text:

State name Reference

Error! Reference source not found.

SRT_Stopped Section Error! Reference
source not found.

SRT_Running Section Error! Reference
source not found.

SRT_Expired Section Error! Reference
source not found.

