Universal Serial Bus
Type-C Cable and Connector Specification

Release 2.0
August 2019
NOTE: Adopters may only use the USB Type-C® cable and connector to implement USB or third party functionality as expressly described in this Specification; all other uses are prohibited.

LIMITED COPYRIGHT LICENSE: The USB 3.0 Promoters grant a conditional copyright license under the copyrights embodied in the USB Type-C Cable and Connector Specification to use and reproduce the Specification for the sole purpose of, and solely to the extent necessary for, evaluating whether to implement the Specification in products that would comply with the specification. Without limiting the foregoing, use of the Specification for the purpose of filing or modifying any patent application to target the Specification or USB compliant products is not authorized. Except for this express copyright license, no other rights or licenses are granted, including without limitation any patent licenses. In order to obtain any additional intellectual property licenses or licensing commitments associated with the Specification a party must execute the USB 3.0 Adopters Agreement. NOTE: By using the Specification, you accept these license terms on your own behalf and, in the case where you are doing this as an employee, on behalf of your employer.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED TO YOU "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE. THE AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO USE OR IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. THE PROVISION OF THIS SPECIFICATION TO YOU DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS.

All implementation examples and reference designs contained within this Specification are included as part of the limited patent license for those companies that execute the USB 3.0 Adopters Agreement.

USB Type-C®, USB-C® and USB4™ are trademarks of the Universal Serial Bus Implementers Forum (USB-IF). DisplayPort™ is a trademark of VESA. All product names are trademarks, registered trademarks, or service marks of their respective owners.

Thunderbolt™ is a trademark of Intel Corporation. You may only use the Thunderbolt™ trademark or logo in conjunction with products designed to this specification that complete proper certification and executing a Thunderbolt™ trademark license – see usb.org/compliance for further information.
CONTENTS

Specification Work Group Chairs / Specification Editors .. 16
 Specification Work Group Contributors ... 16
 Pre-Release Draft Industry Reviewing Companies That Provided Feedback 22
 Revision History ... 22

1 Introduction .. 23
 1.1 Purpose ... 23
 1.2 Scope ... 23
 1.3 Related Documents ... 24
 1.4 Conventions ... 24
 1.4.1 Precedence .. 24
 1.4.2 Keywords .. 24
 1.4.3 Numbering .. 25
 1.5 Terms and Abbreviations ... 25

2 Overview .. 30
 2.1 Introduction ... 30
 2.2 USB Type-C Receptacles, Plugs and Cables ... 31
 2.3 Configuration Process .. 32
 2.3.1 Source-to-Sink Attach/Detach Detection .. 33
 2.3.2 Plug Orientation/Cable Twist Detection .. 33
 2.3.3 Initial Power (Source-to-Sink) Detection and Establishing the Data (Host-to-Device) Relationship ... 33
 2.3.4 USB Type-C VBUS Current Detection and Usage .. 34
 2.3.5 USB PD Communication .. 35
 2.3.6 Functional Extensions ... 35
 2.4 VBUS ... 35
 2.5 VCONN .. 36
 2.6 Hubs ... 36

3 Mechanical .. 37
 3.1 Overview ... 37
 3.1.1 Compliant Connectors ... 37
 3.1.2 Compliant Cable Assemblies ... 37
 3.1.3 Compliant USB Type-C to Legacy Cable Assemblies 37
 3.1.4 Compliant USB Type-C to Legacy Adapter Assemblies 38
 3.2 USB Type-C Connector Mating Interfaces ... 39
 3.2.1 Interface Definition .. 39
 3.2.2 Reference Designs .. 61
 3.2.3 Pin Assignments and Descriptions ... 68
 3.3 Cable Construction and Wire Assignments .. 69
 3.3.1 Cable Construction (Informative) .. 69
 3.3.2 Wire Assignments ... 71
 3.3.3 Wire Gauges and Cable Diameters (Informative) ... 72

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
3.4 Standard USB Type-C Cable Assemblies ... 74
 3.4.1 USB Full-Featured Type-C Cable Assembly ... 74
 3.4.2 USB 2.0 Type-C Cable Assembly ... 75
 3.4.3 USB Type-C Captive Cable Assemblies ... 76
3.5 Legacy Cable Assemblies ... 76
 3.5.1 USB Type-C to USB 3.1 Standard-A Cable Assembly 77
 3.5.2 USB Type-C to USB 2.0 Standard-A Cable Assembly 78
 3.5.3 USB Type-C to USB 3.1 Standard-B Cable Assembly 79
 3.5.4 USB Type-C to USB 2.0 Standard-B Cable Assembly 80
 3.5.5 USB Type-C to USB 2.0 Mini-B Cable Assembly ... 81
 3.5.6 USB Type-C to USB 3.1 Micro-B Cable Assembly .. 82
 3.5.7 USB Type-C to USB 2.0 Micro-B Cable Assembly .. 84
3.6 Legacy Adapter Assemblies .. 85
 3.6.1 USB Type-C to USB 3.1 Standard-A Receptacle Adapter Assembly 85
 3.6.2 USB Type-C to USB 2.0 Micro-B Receptacle Adapter Assembly 87
3.7 Electrical Characteristics ... 88
 3.7.1 Raw Cable (Informative) .. 88
 3.7.2 USB Type-C to Type-C Passive Cable Assemblies (Normative) 89
 3.7.3 Mated Connector (Informative – USB 3.2 Gen2 and USB4 Gen2) 108
 3.7.4 Mated Connector (Normative – USB4 Gen3) .. 112
 3.7.5 USB Type-C to Legacy Cable Assemblies (Normative) 113
 3.7.6 USB Type-C to USB Legacy Adapter Assemblies (Normative) 117
 3.7.7 Shielding Effectiveness Requirements (Normative) 119
 3.7.8 DC Electrical Requirements (Normative) ... 122
3.8 Mechanical and Environmental Requirements (Normative) 125
 3.8.1 Mechanical Requirements .. 126
 3.8.2 Environmental Requirements ... 131
3.9 Docking Applications (Informative) .. 132
3.10 Implementation Notes and Design Guides .. 133
 3.10.1 EMC Management (Informative) .. 133
 3.10.2 Stacked and Side-by-Side Connector Physical Spacing (Informative) 136
 3.10.3 Cable Mating Considerations (Informative) .. 136
4 Functional .. 138
 4.1 Signal Summary ... 138
 4.2 Signal Pin Descriptions ... 138
 4.2.1 SuperSpeed USB Pins .. 138
 4.2.2 USB 2.0 Pins .. 139
 4.2.3 Auxiliary Signal Pins .. 139
 4.2.4 Power and Ground Pins ... 139
 4.2.5 Configuration Pins .. 139
 4.3 Sideband Use (SBU) .. 139
 4.4 Power and Ground .. 140
 4.4.1 IR Drop .. 140

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.

4.4.2 VBUS

4.4.3 VCONN

4.5 Configuration Channel (CC)

4.5.1 Architectural Overview

4.5.2 CC Functional and Behavioral Requirements

4.5.3 USB Port Interoperability Behavior

4.6 Power

4.6.1 Power Requirements during USB Suspend

4.6.2 VBUS Power Provided Over a USB Type-C Cable

4.7 USB Hubs

4.8 Power Sourcing and Charging

4.8.1 DFP as a Power Source

4.8.2 Non-USB Charging Methods

4.8.3 Sinking Host

4.8.4 Sourcing Device

4.8.5 Charging a System with a Dead Battery

4.8.6 USB Type-C Multi-Port Chargers

4.9 Electronically Marked Cables

4.9.1 Parameter Values

4.9.2 Active Cables

4.10 VCONN-Powered Accessories (VPAs) and VCONN-Powered USB Devices (VPDs)

4.10.1 VCONN-Powered Accessories (VPAs)

4.10.2 VCONN-Powered USB Devices (VPDs)

4.11 Parameter Values

4.11.1 Termination Parameters

4.11.2 Timing Parameters

4.11.3 Voltage Parameters

5 USB4 Discovery and Entry

5.1 Overview of the Discovery and Entry Process

5.2 USB4 Functional Requirements

5.2.1 USB4 Host Functional Requirements

5.2.2 USB4 Device Functional Requirements

5.2.3 USB4 Alternate Mode Support

5.2.3.1 USB4 Alternate Mode Support on Hosts

5.2.3.2 USB4 Alternate Mode Support on Hubs and USB4-based Docks

5.3 USB4 Power Requirements

5.3.1 Source Power Requirements

5.3.2 Sink Power Requirements

5.3.3 Device Power Management Requirements

5.4 USB4 Discovery and Entry Flow Requirements

5.4.1 USB Type-C Initial Connection

5.4.2 USB Power Delivery Contract

5.4.3 USB4 Discovery and Entry Flow

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
5.4.3.1 USB4 Device Discovery (SOP) .. 246
5.4.3.2 USB4 Cable Discovery (SOP') 247
5.4.3.3 USB4 Operational Entry ... 249
5.4.4 USB4 Post-Entry Operation .. 249
5.4.4.1 During USB4 Operation ... 249
5.4.4.2 Exiting USB4 Operation .. 250

5.5 USB4 Hub Connection Requirements 250
5.5.1 USB4 Hub Port Initial Connection Requirements 250
5.5.2 USB4 Hub UFP and Host Capabilities Discovery 250
5.5.3 Hub DFP Connection Requirements 251
5.5.3.1 Speculative Connections .. 251
5.5.3.2 Operational Connections 251
5.5.4 Hub Ports Connection Behavior Flow Model 252
5.5.5 Connecting to Downstream USB4 Hubs 258
5.5.6 Fallback Functional Requirements for USB4 Hubs 258

5.6 USB4 Device Connection Requirements 259
5.6.1 Fallback Mapping of USB4 Peripheral Functions to USB Device Class Types .. 259

5.7 Parameter Values ... 260
5.7.1 Timing Parameters .. 260

6 Active Cables .. 261
6.1 USB Type-C State Machine ... 262
6.2 USB PD Requirements .. 263
6.2.1 Active Cable USB PD Requirements 264
6.2.2 USB PD Messages for OIAC 264
6.2.3 Short Active Cable Behaviors in Response to Power Delivery Events ... 276

6.3 OIAC Connection Flow and State Diagrams 276
6.3.1 OIAC Connection Flow – Discovery – Phase 1 277
6.3.2 OIAC Connection Flow – Reboot – Phase 2 278
6.3.3 OIAC Connection Flow – Configuration – Phase 3 279
6.3.4 OIAC Connection State Diagram Master 282
6.3.5 OIAC Connection State Diagram Slave 290

6.4 Active Cable Power Requirements 295
6.4.1 VBUS Requirements .. 295
6.4.2 OIAC VBUS Requirements .. 295
6.4.3 USB PD Rules in Active State 297
6.4.4 VCONN Requirements ... 298

6.5 Mechanical .. 298
6.5.1 Thermal .. 298
6.5.2 Plug Spacing ... 299

6.6 Electrical Requirements ... 299
6.6.1 Shielding Effectiveness Requirement 299
6.6.2 Low Speed Signal Requirement 299
6.6.3 USB 2.0 .. 300
6.6.4 USB 3.2 .. 301
6.6.5 Return Loss ... 308
6.7 Active Cables That Support Alternate Modes 308
 6.7.1 Discover SVIDs .. 308
 6.7.2 Discover Modes ... 308
 6.7.3 Enter/Exit Modes .. 308
 6.7.4 Power in Alternate Modes 308
A Audio Adapter Accessory Mode 309
 A.1 Overview .. 309
 A.2 Detail .. 309
 A.3 Electrical Requirements .. 310
 A.4 Example Implementations 312
 A.4.1 Passive 3.5 mm to USB Type-C Adapter – Single Pole Detection Switch 312
 A.4.2 3.5 mm to USB Type-C Adapter Supporting 500 mA Charge-Through 312
B Debug Accessory Mode ... 314
 B.1 Overview ... 314
 B.2 Functional .. 314
 B.2.1 Signal Summary ... 315
 B.2.2 Port Interoperability ... 315
 B.2.3 Debug Accessory Mode Entry 315
 B.2.4 Connection State Diagrams 316
 B.2.5 DTS Port Interoperability Behavior 325
 B.2.6 Orientation Detection 334
 B.3 Security/Privacy Requirements: 335
C USB Type-C Digital Audio .. 336
 C.1 Overview ... 336
 C.2 USB Type-C Digital Audio Specifications 336
D Thermal Design Considerations for Active Cables 338
 D.1 Introduction .. 338
 D.2 Model ... 338
 D.2.1 Assumptions .. 338
 D.2.2 Model Architecture ... 339
 D.2.3 Heat Sources .. 340
 D.2.4 Heat Flow .. 340
 D.3 USB 3.2 Single Lane Active Cable 341
 D.3.1 USB 3.2 Single-Lane Active Cable Design Considerations 341
 D.4 Dual-Lane Active Cables .. 344
 D.4.1 USB 3.2 Dual-Lane Active Cable Design Considerations .. 344
 D.4.2 USB 3.2 Dual-Lane Active Cable in a Multi-Port Configuration 346
 D.5 USB 3.2 Host and Device Design Considerations 348
 D.5.1 Heat Spreading or Heat Sinking from Host or Device ... 348
D.5.2 Motherboard Temperature Control .. 349
D.5.3 Wider Port Spacing for Multi-Port Applications 349
D.5.4 Power Policies .. 349
E Alternate Modes ... 350
E.1 Alternate Mode Architecture ... 350
E.2 Alternate Mode Requirements ... 350
E.2.1 Alternate Mode Pin Reassignment ... 351
E.2.2 Alternate Mode Electrical Requirements 352
E.3 Parameter Values .. 354
E.4 Example Alternate Mode – USB DisplayPort™ Dock 355
E.4.1 USB DisplayPort Dock Example .. 355
E.4.2 Functional Overview .. 356
E.4.3 Operational Summary ... 357
F Thunderbolt 3 Compatibility Discovery and Entry 359
F.1 TBT3 Compatibility Mode Functional Requirements 359
F.1.1 TBT3-Compatible Power Requirements 359
F.1.2 TBT3-Compatible Host Requirements ... 359
F.1.3 TBT3-Compatible Device Upstream Requirements 359
F.1.4 TBT3-Compatible Device Downstream Requirements 359
F.1.5 TBT3-Compatible Self-Powered Device Without Predefined Upstream Port Rules .. 360
F.1.6 TBT3-Compatible Devices with a Captive Cable 360
F.2 TBT3 Discovery and Entry Flow .. 360
F.2.1 TBT3 Passive Cable Discover Identity Responses 362
F.2.2 TBT3 Active Cable Discover Identity Responses 364
F.2.3 TBT3 Device Discover Identity Responses 367
F.2.4 TBT3 Discover SVID Responses ... 368
F.2.5 TBT3 Device Discover Mode Responses 369
F.2.6 TBT3 Cable Discover Mode Responses 370
F.2.7 TBT3 Cable Enter Mode Command .. 371
F.2.8 TBT3 Device Enter Mode Command ... 372
F.2.9 TBT3 Cable Functional Difference Summary 373

FIGURES

Figure 2-1 USB Type-C Receptacle Interface (Front View) 30
Figure 2-2 USB Full-Featured Type-C Plug Interface (Front View) 31
Figure 3-1 USB Type-C Receptacle Interface Dimensions 42
Figure 3-2 Reference Design USB Type-C Plug External EMC Spring Contact Zones .. 45
Figure 3-3 USB Full-Featured Type-C Plug Interface Dimensions 46
Figure 3-4 Reference Footprint for a USB Type-C Vertical Mount Receptacle (Informative) .. 49
Figure 3-5 Reference Footprint for a USB Type-C Dual-Row SMT Right Angle Receptacle (Informative) .. 50
Figure 3-6 Reference Footprint for a USB Type-C Hybrid Right-Angle Receptacle (Informative) 51
Figure 3-7 Reference Footprint for a USB Type-C Mid-Mount Dual-Row SMT Receptacle (Informative) .. 52
Figure 4-27 Sink to Sink Functional Model ... 204
Figure 4-28 DRP to VPD Model ... 204
Figure 4-29 Example DRP to Charge-Through VCONN-Powered USB Device Model .. 205
Figure 4-30 Source to Legacy Device Port Functional Model 213
Figure 4-31 Legacy Host Port to Sink Functional Model 214
Figure 4-32 DRP to Legacy Device Port Functional Model 215
Figure 4-33 Legacy Host Port to DRP Functional Model 216
Figure 4-34 Sink Monitoring for Current in Pull-Up/Pull-Down CC Model 220
Figure 4-35 Sink Monitoring for Current in Current Source/Pull-Down CC Model ... 220
Figure 4-36 USB PD over CC Pins ... 221
Figure 4-37 USB PD BMC Signaling over CC .. 221
Figure 4-38 USB Type-C Cable's Output as a Function of Load for Non-PD-based USB Type-C Charging ... 226
Figure 4-39 0 – 3 A USB PD-based Charger USB Type-C Cable’s Output as a Function of Load 226
Figure 4-40 3 – 5 A USB PD-based Charger USB Type-C Cable’s Output as a Function of Load 227
Figure 4-41 Electronically Marked Cable with VCONN connected through the cable ... 231
Figure 4-42 Electronically Marked Cable with SOP’ at both ends 232
Figure 4-43 Example Charge-Through VCONN-Power USB Device Use Case ... 235
Figure 4-44 DRP Timing ... 238
Figure 5-1 USB4 Discovery and Entry Flow Model 246
Figure 5-2 USB4 Hub with USB4 Host and Device Connection Flow Alignment ... 253
Figure 5-3 USB4 Hub with USB 3.2 Host and USB4 Device Host Connection Flow Model ... 254
Figure 5-4 USB4 Hub with USB4 Host and USB 3.2 Device Connection Flow Model ... 255
Figure 5-5 USB4 Hub with USB 3.2 Host and Device Connection Flow Model ... 256
Figure 5-6 USB4 Hub with USB4 Host and DP Alt Mode Device Connection Flow Model ... 257
Figure 5-7 USB4 Hub with USB 3.2 Host and DP Alt Mode Device Connection Flow Model ... 258
Figure 6-1 Electronically Marked Short Active Cable with SOP’ Only 263
Figure 6-2 Electronically Marked Short Active Cable with SOP’ and SOP” 263
Figure 6-3 Electronically Marked Optically Isolated Active Cable 264
Figure 6-4 OIAC USB PD Message Forwarding ... 270
Figure 6-5 OIAC Successful Data Role Swap ... 273
Figure 6-6 OIAC Rejected Data Role Swap ... 274
Figure 6-7 OIAC Wait Data Role Swap .. 274
Figure 6-8 OIAC Initiator Reject Data Role Swap 275
Figure 6-9 OIAC Initiator Wait Data Role Swap ... 276
Figure 6-10 OIAC Discovery – Phase 1 .. 278
Figure 6-11 OIAC Reboot – Phase 2 .. 279
Figure 6-12 OIAC Master Plug Configure as DFP – Phase 3 280
Figure 6-13 OIAC Master Plug Configure as UFP – Phase 3 281
Figure 6-14 OIAC Master Plug No Connection Possible Billboard – Phase 3 282
Figure 6-15 OIAC Master Plug State Diagram Part 1 (Phase 1 and 2) 283
Figure 6-16 OIAC Master Plug State Diagram Part 2 (Phase 3) 284
Figure 6-17 OIAC Slave Plug State Diagram ... 291
Figure 6-18 Active Cable Topologies ... 301
Figure 6-19 Illustrations of Usages for OIAC That Require an Adapter or Hub ... 304
Figure 6-20 SuperSpeed USB Electrical Test Points 305
Figure 6-21 SuperSpeed USB Compliance Test Setup 305
Figure A-1 Example Passive 3.5 mm to USB Type-C Adapter 312
Figure A-2 Example 3.5 mm to USB Type-C Adapter Supporting 500 mA Charge-Through 313
Figure B-1 USB Type-C Debug Accessory Layered Behavior 314
Figure B-2 DTS Plug Interface .. 315
Figure B-3 Connection State Diagram: DTS Source 316
Figure B-4 Connection State Diagram: DTS Sink 317
Figure B-5 Connection State Diagram: DTS DRP 318
Figure B-6 TS Sink Power Sub-States .. 323

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
Figure D-1 Active Cable Model (Single Port, Top Mount Receptacle).. 339
Figure D-2 Model Architecture... 339
Figure D-3 Heat Sources and Heat Flow Paths... 340
Figure D-4 Vertically Stacked Horizontal Connectors 3x1 Configuration (VERT).......................... 342
Figure D-5 Horizontally Stacked Vertical Connectors 1x3 Configuration (H290)........................... 342
Figure D-6 Horizontally Stacked Horizontal Connector 1x3 Configuration (HORZ).................... 342
Figure D-7 USB 3.2 Single-Lane 3A Active Cable in a 3-Port Configuration................................. 343
Figure D-8 USB 3.2 Single-Lane 5A Active Cable in a 3-Port Configuration................................. 344
Figure D-9 Impact of Over-mold Power P_o and Thermal Boundary Temperature T_{MB} at 3 A V_{BUS} in a
Single Port Configuration.. 345
Figure D-10 Impact of Over-mold Power P_o and Thermal Boundary Temperature T_{MB} at 5 A V_{BUS} in a
Single Port Configuration.. 346
Figure D-11 USB 3.2 Active Cable Dongle Design (One End Shown).. 346
Figure D-12 USB 3.2 Dual-Lane 3A Active Cable in a 3-Port Configuration................................. 347
Figure D-13 USB 3.2 Dual-Lane 5A Active Cable in a 3-Port Configuration................................. 348
Figure D-14 Example: Additional Heat Spreader on Receptacle in Host or Device..................... 349
Figure D-15 Example: Heat Sinking by Chassis of Host or Device... 349
Figure E-1 Pins Available for Reconfiguration over the Full-Featured Cable 351
Figure E-2 Pins Available for Reconfiguration for Direct Connect Applications.......................... 351
Figure E-3 Alternate Mode Implementation using a USB Type-C to USB Type-C Cable............... 353
Figure E-4 Alternate Mode Implementation using a USB Type-C to Alternate Mode Cable or Device
.. 354
Figure E-5 USB DisplayPort Dock Example... 356
Figure F-1 TBT3 Discovery Flow.. 361

TABLES

Table 2-1 Summary of power supply options .. 36
Table 3-1 USB Type-C Standard Cable Assemblies... 37
Table 3-2 USB Type-C Legacy Cable Assemblies.. 38
Table 3-3 USB Type-C Legacy Adapter Assemblies.. 38
Table 3-4 USB Type-C Receptacle Interface Pin Assignments... 68
Table 3-5 USB Type-C Receptacle Interface Pin Assignments for USB 2.0-only Support.............. 69
Table 3-6 USB Type-C Standard Cable Wire Assignments... 71
Table 3-7 USB Type-C Cable Wire Assignments for Legacy Cables/Adapters................................. 72
Table 3-8 Reference Wire Gauges for standard USB Type-C Cable Assemblies............................ 73
Table 3-9 Reference Wire Gauges for USB Type-C to Legacy Cable Assemblies.......................... 73
Table 3-10 USB Full-Featured Type-C Standard Cable Assembly Wiring.. 75
Table 3-11 USB 2.0 Type-C Standard Cable Assembly Wiring... 76
Table 3-12 USB Type-C to USB 3.1 Standard-A Cable Assembly Wiring... 77
Table 3-13 USB Type-C to USB 2.0 Standard-A Cable Assembly Wiring.. 78
Table 3-14 USB Type-C to USB 3.1 Standard-B Cable Assembly Wiring... 79
Table 3-15 USB Type-C to USB 2.0 Standard-B Cable Assembly Wiring... 80
Table 3-16 USB Type-C to USB 2.0 Mini-B Cable Assembly Wiring.. 81
Table 3-17 USB Type-C to USB 3.1 Micro-B Cable Assembly Wiring... 83
Table 3-18 USB Type-C to USB 2.0 Micro-B Cable Assembly Wiring... 84
Table 3-19 USB Type-C to USB 3.1 Standard-A Receptacle Adapter Assembly Wiring.................. 86
Table 3-20 USB Type-C to USB 2.0 Micro-B Receptacle Adapter Assembly Wiring........................ 87
Table 3-21 Differential Insertion Loss Examples for TX/RX with Twisted Pair Construction........... 88
Table 3-22 Differential Insertion Loss Examples for USB TX/RX with Coaxial Construction........... 89
Table 3-23 Key Parameters in COM Configuration File ... 102
Table 3-24 Electrical Requirements for CC and SBU wires .. 103
Table 3-25 Coupling Matrix for Low Speed Signals .. 103
Table 3-26 Maximum Mutual Inductance (M) between V_{BUS} and Low Speed Signal Lines......... 106
Table 3-27 USB D+/D– Signal Integrity Requirements for USB Type-C to USB Type-C Passive Cable Assemblies

Table 3-28 USB Type-C Mated Connector Recommended Signal Integrity Characteristics (Informative)

Table 3-29 USB Type-C Mated Connector Signal Integrity Characteristics for USB4 Gen3 (Normative)

Table 3-30 USB D+/D– Signal Integrity Requirements for USB Type-C to Legacy USB Cable Assemblies

Table 3-31 Design Targets for USB Type-C to USB 3.1 Gen2 Legacy Cable Assemblies (Informative)

Table 3-32 USB Type-C to USB 3.1 Gen2 Legacy Cable Assembly Signal Integrity Requirements (Normative)

Table 3-33 USB D+/D– Signal Integrity Requirements for USB Type-C to Legacy USB Adapter Assemblies (Normative)

Table 3-34 Design Targets for USB Type-C to USB 3.1 Standard-A Adapter Assemblies (Informative)

Table 3-35 USB Type-C to USB 3.1 Standard-A Receptacle Adapter Assembly Signal Integrity Requirements (Normative)

Table 3-36 Current Rating Test PCB

Table 3-37 Maximum DC Resistance Requirement (Normative)

Table 3-38 Force and Moment Requirements

Table 3-39 Environmental Test Conditions

Table 3-40 Reference Materials

Table 4-1 USB Type-C List of Signals

Table 4-2 VBUS Source Characteristics

Table 4-3 VBUS Sink Characteristics

Table 4-4 USB Type-C Source Port’s VCONN Requirements Summary

Table 4-5 VCONN Source Characteristics

Table 4-6 Cable VCONN Sink Characteristics

Table 4-7 VCONN-Powered Accessory (VPA) Sink Characteristics

Table 4-8 VCONN-Powered USB Device (VPD) Sink Characteristics

Table 4-9 USB Type-C-based Port Interoperability

Table 4-10 Source Perspective

Table 4-11 Source (Host) and Sink (Device) Behaviors by State

Table 4-12 USB PD Swapping Port Behavior Summary

Table 4-13 Power Role Behavioral Model Summary

Table 4-14 Source Port CC Pin State

Table 4-15 Sink Port CC Pin State

Table 4-16 Mandatory and Optional States

Table 4-17 Precedence of power source usage

Table 4-18 USB Type-C Current Advertisement and PDP Equivalent

Table 4-19 Precedence of power source usage

Table 4-20 Example Charge-Through VPD Sink Maximum Currents based on VBUS Impedance and GND Impedance

Table 4-21 SOP’ and SOP” Timing

Table 4-22 Charge-Through VPD CC Impedance (RccCON) Requirements

Table 4-23 CTPVD Charge-Through Port VBUS Bypass Requirements

Table 4-24 Source CC Terminal (Rp) Requirements

Table 4-25 Sink CC Terminal (Rd) Requirements

Table 4-26 Powered Cable Terminal Requirements

Table 4-27 CC Terminal Requirements for Disabled state, ErrorRecovery state, and Unpowered Source

Table 4-28 SBU Termination Requirements

Table 4-29 VBUS and VCONN Timing Parameters

Table 4-30 DRP Timing Parameters
Release 2.0 - 14 - USB Type-C Cable and Connector Specification

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4-31</td>
<td>CC Timing</td>
<td>239</td>
</tr>
<tr>
<td>Table 4-32</td>
<td>CC Voltages on Source Side – Default USB</td>
<td>240</td>
</tr>
<tr>
<td>Table 4-33</td>
<td>CC Voltages on Source Side – 1.5 A @ 5 V</td>
<td>240</td>
</tr>
<tr>
<td>Table 4-34</td>
<td>CC Voltages on Source Side – 3.0 A @ 5 V</td>
<td>241</td>
</tr>
<tr>
<td>Table 4-35</td>
<td>Voltage on Sink CC Pins (Default USB Type-C Current only)</td>
<td>241</td>
</tr>
<tr>
<td>Table 4-36</td>
<td>Voltage on Sink CC pins (Multiple Source Current Advertisements)</td>
<td>241</td>
</tr>
<tr>
<td>Table 5-1</td>
<td>Certified Cables Where USB4-compatible Operation is Expected</td>
<td>247</td>
</tr>
<tr>
<td>Table 5-2</td>
<td>Fallback Mapping USB4 Peripheral Functions to USB Device Class Types</td>
<td>259</td>
</tr>
<tr>
<td>Table 5-3</td>
<td>USB Billboard Device Class Availability Following USB4 Device Entry Failure</td>
<td>260</td>
</tr>
<tr>
<td>Table 6-1</td>
<td>Comparison of Active Cables</td>
<td>262</td>
</tr>
<tr>
<td>Table 6-2</td>
<td>Summary of Active Cable Features</td>
<td>262</td>
</tr>
<tr>
<td>Table 6-3</td>
<td>OIAC USB PD Message Behavior on Initial Connection</td>
<td>265</td>
</tr>
<tr>
<td>Table 6-4</td>
<td>OIAC USB PD Messages Which Do Not Traverse in Active State</td>
<td>267</td>
</tr>
<tr>
<td>Table 6-5</td>
<td>OIAC USB PD Messages Addressed to SOP Which Traverse the OIAC in the Active State</td>
<td>269</td>
</tr>
<tr>
<td>Table 6-6</td>
<td>OIAC USB PD Message Timing</td>
<td>270</td>
</tr>
<tr>
<td>Table 6-7</td>
<td>OIAC SOP Messages Which Terminate at the Cable Plug</td>
<td>271</td>
</tr>
<tr>
<td>Table 6-8</td>
<td>Port and Plug Capabilities</td>
<td>277</td>
</tr>
<tr>
<td>Table 6-9</td>
<td>OIAC Sink_Capabilities PDO (SOP) on Initial Connection</td>
<td>296</td>
</tr>
<tr>
<td>Table 6-10</td>
<td>OIAC Sink_Capabilities_Extended PDO (SOP) on Initial Connection</td>
<td>296</td>
</tr>
<tr>
<td>Table 6-11</td>
<td>OIAC Sink RDO (SOP) on Initial Connection</td>
<td>297</td>
</tr>
<tr>
<td>Table 6-12</td>
<td>OIAC Active Sink RDO (SOP)</td>
<td>297</td>
</tr>
<tr>
<td>Table 6-13</td>
<td>OIAC Sink_Capabilities PDO (SOP) in Active</td>
<td>298</td>
</tr>
<tr>
<td>Table 6-14</td>
<td>Cable Temperature Requirements</td>
<td>299</td>
</tr>
<tr>
<td>Table 6-15</td>
<td>Summary of Active Cable Features</td>
<td>300</td>
</tr>
<tr>
<td>Table 6-16</td>
<td>Active Cable Power-on Requirements</td>
<td>302</td>
</tr>
<tr>
<td>Table 6-17</td>
<td>OIAC Maximum USB 3.2 U0 Delay</td>
<td>303</td>
</tr>
<tr>
<td>Table 6-18</td>
<td>Usages for OIAC That Require an Adapter or Hub</td>
<td>303</td>
</tr>
<tr>
<td>Table 6-19</td>
<td>USB 3.2 U-State Requirements</td>
<td>304</td>
</tr>
<tr>
<td>Table 6-20</td>
<td>Active Cable USB 3.2 Stressed Source Swing, TP1</td>
<td>306</td>
</tr>
<tr>
<td>Table 6-21</td>
<td>Active Cable USB 3.2 Stressed Source Jitter, TP1</td>
<td>306</td>
</tr>
<tr>
<td>Table 6-22</td>
<td>Active Cable USB 3.2 Input Swing at TP2 (Informative)</td>
<td>307</td>
</tr>
<tr>
<td>Table 6-23</td>
<td>Active Cable USB 3.2 Output Swing at TP3 (Informative)</td>
<td>307</td>
</tr>
<tr>
<td>Table A-1</td>
<td>USB Type-C Analog Audio Pin Assignments</td>
<td>310</td>
</tr>
<tr>
<td>Table A-2</td>
<td>USB Type-C Analog Audio Pin Electrical Parameter Ratings</td>
<td>311</td>
</tr>
<tr>
<td>Table B-1</td>
<td>DTS to TS Port Interoperability</td>
<td>315</td>
</tr>
<tr>
<td>Table B-2</td>
<td>Rp/Rp Charging Current Values for a DTS Source</td>
<td>323</td>
</tr>
<tr>
<td>Table B-3</td>
<td>Mandatory and Optional States</td>
<td>325</td>
</tr>
<tr>
<td>Table D-1</td>
<td>Heat Sources and Heat Dissipation Example (1.5 W cable and 5 A)</td>
<td>341</td>
</tr>
<tr>
<td>Table D-2</td>
<td>USB 3.2 Active Cable Design Single Port Case Study at 35 °C Ambient and 60 °C Thermal Boundary (Single Lane)</td>
<td>341</td>
</tr>
<tr>
<td>Table D-3</td>
<td>USB 3.2 Active Cable Design Single Port Case Study at 35 °C Ambient and 60 °C Thermal Boundary (Dual Lane)</td>
<td>345</td>
</tr>
<tr>
<td>Table E-1</td>
<td>USB Safe State Electrical Requirements</td>
<td>354</td>
</tr>
<tr>
<td>Table E-2</td>
<td>USB Billboard Device Class Availability Following Alternate Mode Entry Failure</td>
<td>355</td>
</tr>
<tr>
<td>Table E-3</td>
<td>Alternate Mode Signal Noise Ingression Requirements</td>
<td>355</td>
</tr>
<tr>
<td>Table F-1</td>
<td>TBT3 Passive Cable Discover Identity VDO Responses</td>
<td>362</td>
</tr>
<tr>
<td>Table F-2</td>
<td>TBT3 Passive Cable VDO for USB PD Revision 2.0, Version 1.3</td>
<td>363</td>
</tr>
<tr>
<td>Table F-3</td>
<td>TBT3 Passive Cable VDO for USB PD Revision 3.0, Version 1.2</td>
<td>363</td>
</tr>
<tr>
<td>Table F-4</td>
<td>TBT3 Active Cable Discover Identity VDO Responses</td>
<td>364</td>
</tr>
<tr>
<td>Table F-5</td>
<td>TBT3 Active Cable VDO for USB PD Revision 2.0, Version 1.3</td>
<td>365</td>
</tr>
<tr>
<td>Table F-6</td>
<td>TBT3 Active Cable VDO 1 for USB PD Revision 3.0, Version 1.2</td>
<td>365</td>
</tr>
<tr>
<td>Table F-7</td>
<td>TBT3 Active Cable VDO 2 for USB PD Revision 3.0, Version 1.2</td>
<td>366</td>
</tr>
<tr>
<td>Table F-8</td>
<td>TBT3 Device Discover Identity VDO Responses</td>
<td>367</td>
</tr>
<tr>
<td>Table F-9</td>
<td>TBT3 Discover SVID VDO Responses</td>
<td>368</td>
</tr>
<tr>
<td>Table F-10</td>
<td>TBT3 Device Discover Mode VDO Responses</td>
<td>369</td>
</tr>
</tbody>
</table>
Table F-11 TBT3 Cable Discover Mode VDO Responses.. 370
Table F-12 TBT3 Cable Enter Mode Command.. 371
Table F-13 TBT3 Device Enter Mode Command... 372
Table F-14 TBT3 Cable Functional Difference Summary... 373
Specification Work Group Chairs / Specification Editors

<table>
<thead>
<tr>
<th>Company</th>
<th>Mechanical WG co-chair, Mechanical Chapter Co-editor</th>
<th>Plenary/Functional WG chair, Specification Co-author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Corporation</td>
<td>Yun Ling</td>
<td>Brad Saunders</td>
</tr>
<tr>
<td>(USB Promoter company)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renesas Electronics Corp.</td>
<td>Bob Dunstan</td>
<td></td>
</tr>
<tr>
<td>(USB Promoter company)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seagate</td>
<td>Alvin Cox</td>
<td></td>
</tr>
</tbody>
</table>

Specification Work Group Contributors

Note: For historical reasons, the following list also includes individual contributors that were members of the work group and associated with their company affiliations at the time of the original Release 1.0 and Release 2.0.

<table>
<thead>
<tr>
<th>Company</th>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced-Connectek, Inc. (ACON)</td>
<td>Victory Chen, Glen Chandler, Dennis Cheung, Jeff Chien, Lee (Dick Lee) Ching</td>
</tr>
<tr>
<td></td>
<td>Conrad Choy, Vicky Chuang, Jessica Feng, Aven Kao, Danny Lio</td>
</tr>
<tr>
<td></td>
<td>Alan Tsai, Wayne Wang, Stephen Yang, Sunney Yang</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Micro Devices</td>
<td>Steve Capezza, Walter Fry, Will Harris</td>
</tr>
<tr>
<td></td>
<td>Jason Hawken, Tim Perley, Joseph Scanlon, Peter Teng</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Allion Labs, Inc.</td>
<td>Howard Chang, Minoru Ohara</td>
</tr>
<tr>
<td></td>
<td>Brian Shih, Chester Tsai</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenol AssembleTech (Xiamen) Co., Ltd.</td>
<td>Louis Chan, Jesse Jaramillo, Terry Ke</td>
</tr>
<tr>
<td></td>
<td>Martin Li, Lino Liu, Shawn Wei</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenol Corporation</td>
<td>Zhineng Fan</td>
</tr>
<tr>
<td></td>
<td>James Choate</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Analogix Semiconductor, Inc.</td>
<td>Mehran Badii, Greg Stewart</td>
</tr>
<tr>
<td></td>
<td>Haijian Sui, Yueke Tang</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Apple Inc. (USB Promoter company)</td>
<td>Colin Abraham, Mahmoud Amini, Sree Anantharaman</td>
</tr>
<tr>
<td></td>
<td>Brian Baek, Paul Baker, Michael Bonham, Carlos Calderon</td>
</tr>
<tr>
<td></td>
<td>Jason Chung, David Conroy, Bill Cornelius, Christophe Daniel</td>
</tr>
<tr>
<td></td>
<td>William Ferry, Brian Follis, Alex Chou</td>
</tr>
<tr>
<td></td>
<td>Zheng Gao, Derek Iwamoto, Scott Jackson, Girault Jones, Keong Kam, Kevin Keeler, Min Kim, Wei Kim, Alexei Kosut, Christine Krause, Chris Ligtenberg, Matthew Mora, Nathan Ng, Alex Chou</td>
</tr>
<tr>
<td></td>
<td>James Orr, Keith Porthouse, Breton Saunders, Reese Schreiber, Sascha Tietz, Jennifer Tsai, Colin Whitby-Strevens, Jeff Wilcox, Eric Wiles, Dan Wilson, Dennis Yarak</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Bizlink Technology, Inc.</td>
<td>Alex Chou</td>
</tr>
<tr>
<td></td>
<td>Morphy Hsieh</td>
</tr>
</tbody>
</table>

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
<table>
<thead>
<tr>
<th>Company</th>
<th>Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google</td>
<td>Alec Berg, Nithya Jagannathan, Adam Rodriguez</td>
</tr>
<tr>
<td></td>
<td>Joshua Boilard, Lawrence Lam, David Schneider</td>
</tr>
<tr>
<td></td>
<td>Alec Berg, Adam Langley, Stephan Schooley</td>
</tr>
<tr>
<td></td>
<td>Todd Broch, Ingrid Lin, Toshak Singhal</td>
</tr>
<tr>
<td></td>
<td>Jim Guerin, Richard Palatin, Ken Wu</td>
</tr>
<tr>
<td></td>
<td>Jeffrey Hayashida, Vincent Palatin, Dylan Reid</td>
</tr>
<tr>
<td></td>
<td>Mark Hayter</td>
</tr>
<tr>
<td>Granite River Labs</td>
<td>Yung Han Ang, Alan Chuang, Krishna Murthy</td>
</tr>
<tr>
<td></td>
<td>Sandy Chang, Mike Engbreton, Johnson Tan</td>
</tr>
<tr>
<td></td>
<td>Allen Chen, Caspar Lin, Chin Hun Yaep</td>
</tr>
<tr>
<td></td>
<td>Swee Guan Chua</td>
</tr>
<tr>
<td>HP Inc. (USB Promoter company)</td>
<td>Lee Atkinson, Robin Castell, Jim Mann</td>
</tr>
<tr>
<td></td>
<td>Srinath Balaraman, Steve Chen, Linden McClure</td>
</tr>
<tr>
<td></td>
<td>Roger Benson, Michael Krause, Mike Pescetto</td>
</tr>
<tr>
<td></td>
<td>Alan Berkema, Rahul Lakdawala, Asjad Shamim</td>
</tr>
<tr>
<td>Hirose Electric Co., Ltd.</td>
<td>Jeremy Buan, William MacKillop, Eungsoo Shin</td>
</tr>
<tr>
<td></td>
<td>William Kysiak, Gourgen Oganessyan, Sid Tono</td>
</tr>
<tr>
<td></td>
<td>Sang-Muk Lim</td>
</tr>
<tr>
<td>Hosiden Corporation</td>
<td>Takahisa Otsuji, Fumitake Tamaki</td>
</tr>
<tr>
<td>I-PEX (Dai-ichi Seiko)</td>
<td>Alan Kinningham, Ro Richard, Tetsuya Tagawa</td>
</tr>
<tr>
<td>Infineon Technologies</td>
<td>Tue Fatt David Wee</td>
</tr>
<tr>
<td>Intel Corporation</td>
<td>Dave Ackelson, Ziv Kabiry, Sridharan Ranganathan</td>
</tr>
<tr>
<td>(USB Promoter company)</td>
<td>Mike Bell, Vijaykumar Kadgi, Rajaram Regupathy</td>
</tr>
<tr>
<td></td>
<td>Brad Berlin, Luke Johnson, Brad Saunders</td>
</tr>
<tr>
<td></td>
<td>Pierre Bossart, Jerzy Kolina, Ehud Shoor</td>
</tr>
<tr>
<td></td>
<td>Kuan-Yu Chen, Rolf Kuhnis, Amit Srivastava</td>
</tr>
<tr>
<td></td>
<td>Hengji Cheng, Henrik Leegaard, Einat Surijan</td>
</tr>
<tr>
<td></td>
<td>Jhuda Dayan, Edmond Lau, Ron Swartz</td>
</tr>
<tr>
<td></td>
<td>Paul Durley, Xiang Li, David Thompson</td>
</tr>
<tr>
<td></td>
<td>Saranya Gopal, Yun Ling, Karthi Vadivelu</td>
</tr>
<tr>
<td></td>
<td>Howard Heck, Guobin Liu, Tsion Vidal</td>
</tr>
<tr>
<td></td>
<td>Hao-Han Hsu, Steve McGowan, Stephanie Wallick</td>
</tr>
<tr>
<td></td>
<td>Seppo Ingalsuo, Sankaran Menon, Rafal Wielicki</td>
</tr>
<tr>
<td></td>
<td>Abdul (Rahman) Ismail, Chee Lim Nge, Devon Worrell</td>
</tr>
<tr>
<td></td>
<td>James Jaussi, Sagar Pawar</td>
</tr>
<tr>
<td>Japan Aviation Electronics</td>
<td>Kenji Hagiwara, Tadashi Okubo, Masaaki Takaku</td>
</tr>
<tr>
<td>Industry Ltd. (JAE)</td>
<td>Hiroaki Ikeda, Kazuhiro Saito, Jussi Takaneya</td>
</tr>
<tr>
<td></td>
<td>Masaki Kimura, Kimiaki Saito, Tomohiko Tamada</td>
</tr>
<tr>
<td></td>
<td>Toshio Masumoto, Yuichi Saito, Kentaro Toda</td>
</tr>
<tr>
<td></td>
<td>Kenta Minejima, Mark Saubert, Kouhei Oeda</td>
</tr>
<tr>
<td></td>
<td>Toshiyuki Moritake, Toshio Shimoyama, Takakazu Usami</td>
</tr>
<tr>
<td></td>
<td>Joe Motojima, Tatsuya Shioda, Masahide Watanabe</td>
</tr>
<tr>
<td></td>
<td>Ron Muir, Atsuo Tago, Youhei Yokoyama</td>
</tr>
<tr>
<td>JPC/Main Super Inc.</td>
<td>Sam Tseng, Ray Yang</td>
</tr>
<tr>
<td>LeCroy Corporation</td>
<td>Daniel H. Jacobs, Tyler Joe</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
<table>
<thead>
<tr>
<th>Lenovo</th>
<th>Rob Bowser</th>
<th>Jianye Li</th>
<th>Howard Locker</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tomoki Harada</td>
<td>Wei Liu</td>
<td></td>
</tr>
<tr>
<td>LG Electronics Inc.</td>
<td>Do Kyun Kim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lintes Technology Co., Ltd.</td>
<td>Tammy Huang</td>
<td>Max Lo</td>
<td>JinYi Tu</td>
</tr>
<tr>
<td></td>
<td>Charles Kaun</td>
<td>CT Pien</td>
<td>Jason Yang</td>
</tr>
<tr>
<td></td>
<td>RD Lintes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lotes Co., Ltd.</td>
<td>Ariel Delos Reyes</td>
<td>Charles Kaun</td>
<td>John Lynch</td>
</tr>
<tr>
<td></td>
<td>Ernest Han</td>
<td>Chi-Chang Lin</td>
<td>JinYi Tu</td>
</tr>
<tr>
<td></td>
<td>Mark Ho</td>
<td>Max Lo</td>
<td>Jason Yang</td>
</tr>
<tr>
<td></td>
<td>Regina Liu-Hwang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSI Corporation</td>
<td>Dave Liu-Hwang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luxshare-ICT</td>
<td>Josue Castillo</td>
<td>Alan Kinningham</td>
<td>Sean O’Neal</td>
</tr>
<tr>
<td></td>
<td>Daniel Chen</td>
<td>Gorden Lin</td>
<td>Scott Shuey</td>
</tr>
<tr>
<td></td>
<td>Lisen Chen</td>
<td>John Lin</td>
<td>James Stevens</td>
</tr>
<tr>
<td></td>
<td>Sally Chiu</td>
<td>Stone Lin</td>
<td>Pat Young</td>
</tr>
<tr>
<td></td>
<td>CY Hsu</td>
<td>Alan Liu</td>
<td></td>
</tr>
<tr>
<td>Maxim Integrated Products</td>
<td>Forrest Christo</td>
<td>Sang Kim</td>
<td>Michael Miskho</td>
</tr>
<tr>
<td></td>
<td>Ken Helfrich</td>
<td>Jeff Lo</td>
<td>Jacob Scott</td>
</tr>
<tr>
<td>MCCI Corporation</td>
<td>Terry Moore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MediaTek Inc.</td>
<td>Alex YC Lin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MegaChips Corporation</td>
<td>Alan Kobayashi</td>
<td>Satoru Kumashiro</td>
<td></td>
</tr>
<tr>
<td>Microchip (SMSC)</td>
<td>Josh Avery</td>
<td>Matthew Kalbat</td>
<td>John Sisto</td>
</tr>
<tr>
<td></td>
<td>Mark Bohm</td>
<td>Donald Perkins</td>
<td>Anthony Tarascio</td>
</tr>
<tr>
<td></td>
<td>Shannon Cash</td>
<td>Richard Petrie</td>
<td>Kiet Tran</td>
</tr>
<tr>
<td></td>
<td>Thomas Farkas</td>
<td>Mohammed Rahman</td>
<td>Christopher Twigg</td>
</tr>
<tr>
<td></td>
<td>Fernando Gonzalez</td>
<td>Andrew Rogers</td>
<td>Prasanna Vengateshan</td>
</tr>
<tr>
<td>Microsoft Corporation (USB Promoter company)</td>
<td>Randy Aull</td>
<td>Teemu Helenius</td>
<td>Toby Nixon</td>
</tr>
<tr>
<td></td>
<td>Jim Belesiu</td>
<td>Dan Iatco</td>
<td>Rahul Ramadas</td>
</tr>
<tr>
<td></td>
<td>Michelle Bergeron</td>
<td>Kai Inha</td>
<td>Srivatsan Ravindran</td>
</tr>
<tr>
<td></td>
<td>Fred Bhesania</td>
<td>Jayson Kastens</td>
<td>Nathan Sherman</td>
</tr>
<tr>
<td></td>
<td>Anthony Chen</td>
<td>Andrea Keating</td>
<td>Bala Sivakumar</td>
</tr>
<tr>
<td></td>
<td>Philip Froese</td>
<td>Shoaib Khan</td>
<td>Timo Toivola</td>
</tr>
<tr>
<td></td>
<td>Vivek Gupta</td>
<td>Eric Lee</td>
<td>David Voth</td>
</tr>
<tr>
<td></td>
<td>David Hargrove</td>
<td>Ivan McCracken</td>
<td>Andrew Yang</td>
</tr>
<tr>
<td></td>
<td>Robbie Harris</td>
<td>Arvind Murching</td>
<td>Panu Ylihaavisto</td>
</tr>
<tr>
<td></td>
<td>Robert Hollyer</td>
<td>Gene Obie</td>
<td></td>
</tr>
<tr>
<td>Molex LLC</td>
<td>Adib Al Abaji</td>
<td>Alan MacDougall</td>
<td></td>
</tr>
<tr>
<td>Monolithic Power Systems</td>
<td>Di Han</td>
<td>Chris Sporck</td>
<td></td>
</tr>
<tr>
<td>MQP Electronics Ltd.</td>
<td>Sten Carlsen</td>
<td>Pat Crowe</td>
<td></td>
</tr>
<tr>
<td>NEC Corporation</td>
<td>Kenji Oguma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newnex Technology Corp.</td>
<td>Sam Liu</td>
<td>Nimrod Peled</td>
<td></td>
</tr>
<tr>
<td>Nokia Corporation</td>
<td>Daniel Gratiot</td>
<td>Samuli Makinen</td>
<td>Timo Toivola</td>
</tr>
<tr>
<td></td>
<td>Pekka Leinonen</td>
<td>Pekka Talmola</td>
<td>Panu Ylihaavisto</td>
</tr>
<tr>
<td>NXP Semiconductors</td>
<td>Mahmoud EL Sabbagh</td>
<td>Ken Jaramillo</td>
<td>Guru Prasad</td>
</tr>
<tr>
<td></td>
<td>Dennis Ha</td>
<td>Vijendra Kuroodi</td>
<td>Krishnan TN</td>
</tr>
<tr>
<td>Oculus VR LLC</td>
<td>Amish Babu</td>
<td>Marty Evans</td>
<td>Joaquin Fierro</td>
</tr>
</tbody>
</table>

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
<table>
<thead>
<tr>
<th>Company</th>
<th>Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON Semiconductor</td>
<td>Eduardo De Reza, Oscar Freitas, Christian Klein, Amir Lahooti, Michael Smith</td>
</tr>
<tr>
<td>Parade Technologies, Inc.</td>
<td>Jian Chen, Craig Wiley, Paul Xu, Alan Yuen</td>
</tr>
<tr>
<td>Power Integrations</td>
<td>Shruti Anand, Rahul Joshi, Aditya Kulkarni, Akshay Nayaknur, Amruta Patra</td>
</tr>
<tr>
<td>Qualcomm, Inc.</td>
<td>Lior Amarilio, Philip Hardy, Will Kun, Matthew Sienko, Jack Pham</td>
</tr>
<tr>
<td></td>
<td>Aris Balatsos, Tomer Ben Chen, Jonathan Luty, Dmitrii Vasilchenko</td>
</tr>
<tr>
<td></td>
<td>Richard Burrows, Amit Gil, George Paparrizos, Joshua Warner</td>
</tr>
<tr>
<td></td>
<td>James Goel, Amit Gupta, Vatsal Patel, Chris Wiesner</td>
</tr>
<tr>
<td>Realtek Semiconductor Corp.</td>
<td>Marco Chiu, Ty Kingsmore, Terry Lin</td>
</tr>
<tr>
<td></td>
<td>Tsung-Peng Chuang, Ray Lee, Chuting Su</td>
</tr>
<tr>
<td></td>
<td>Charlie Hsu, Jay Lin, Changhung Wu</td>
</tr>
<tr>
<td></td>
<td>Fan-Hau Hsu, Ryan Lin</td>
</tr>
<tr>
<td>Renesas Electronics Corp.</td>
<td>Kai Bao, Philip Leung, Hajime Nozaki</td>
</tr>
<tr>
<td>(USB Promoter company)</td>
<td>Bob Dunstan, Kiichi Muto, Yosuke Sasaki</td>
</tr>
<tr>
<td></td>
<td>Nobuo Furuya, Ziba Nami, Toshifumi Yamaoka</td>
</tr>
<tr>
<td>Richtek Technology Corp.</td>
<td>Roger Lo</td>
</tr>
<tr>
<td>Rohm Co., Ltd.</td>
<td>Mark Aaldering, Yusuke Kondo, Yoshinori Ohwaki</td>
</tr>
<tr>
<td></td>
<td>Kris Bahar, Arun Kumar, Takashi Sato</td>
</tr>
<tr>
<td></td>
<td>Ruben Balbuena, Chris Lin, Hiroshi Yoshimura</td>
</tr>
<tr>
<td></td>
<td>Nobutaka Itakura, Kazuomi Nagai</td>
</tr>
<tr>
<td>Samsung Electronics Co., Ltd.</td>
<td>Jaeedo Cha, Sangju Kim, Jun Bum Lee</td>
</tr>
<tr>
<td></td>
<td>KangSeok Cho, Soondo Kim, Jinyoung Oh</td>
</tr>
<tr>
<td></td>
<td>Woonin Choi, Woonki Kim, Chahoon Park</td>
</tr>
<tr>
<td></td>
<td>Yeongbok Choi, Jagoun Koo, Chulwoo Park</td>
</tr>
<tr>
<td></td>
<td>Cheolyoon Chung, Termi Kwon, Youngjin Park</td>
</tr>
<tr>
<td></td>
<td>JaeRyong Han, Cheolho Lee, Jung Waneui</td>
</tr>
<tr>
<td></td>
<td>Jaehyeok Jang, Edward Lee, Sunggeun Yoon</td>
</tr>
<tr>
<td></td>
<td>Wonseok Jang</td>
</tr>
<tr>
<td>Seagate</td>
<td>Alvin Cox, Tony Priborsky, Dan Smith</td>
</tr>
<tr>
<td>Shenzhen Deren Electronic Co.,</td>
<td>Emmanuel Lemay, Tom Skaar, Lucy Zhang</td>
</tr>
<tr>
<td>Ltd.</td>
<td>Smark (Zhudong) Huo, Yang Lirong</td>
</tr>
<tr>
<td>Silicon Line Gmbh</td>
<td>Wen Fa Lei</td>
</tr>
<tr>
<td>SiliConch Systems Private</td>
<td>Ian Jackson</td>
</tr>
<tr>
<td>Limited</td>
<td>Jaswanth Ammineni, Shubham Paliwal, Vishnu Pusuluri</td>
</tr>
<tr>
<td></td>
<td>Pavitra, Jinisha Patel, Abhishek</td>
</tr>
<tr>
<td></td>
<td>Balasubramanian, Vinay Patel, Sardeshpande</td>
</tr>
<tr>
<td></td>
<td>Kaustubh Kumar, Rakesh Polasa, Satish Anand Verkila</td>
</tr>
<tr>
<td></td>
<td>Aniket Mathad</td>
</tr>
<tr>
<td>Simula Technology Inc.</td>
<td>John Chang, Jung Lin, CK Wang</td>
</tr>
<tr>
<td></td>
<td>Voss Cheng, Iyunming Lin, Alice Yu</td>
</tr>
<tr>
<td></td>
<td>Thomas Li, Doris Liu</td>
</tr>
<tr>
<td>Softnautics LLP</td>
<td>Bhavesh Desai, Dipakkumar Modi, Ujjwal Talati</td>
</tr>
<tr>
<td></td>
<td>Hetal Jariwala, Ishita Shah</td>
</tr>
</tbody>
</table>

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
<table>
<thead>
<tr>
<th>Company</th>
<th>Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sony Corporation</td>
<td>Shinichi Hirata, Shigenori Tagami</td>
</tr>
<tr>
<td>Spectra7 Microsystems Corp.</td>
<td>Andrew Kim, James McGrath, John Mitchell</td>
</tr>
<tr>
<td>Specwerkz</td>
<td>Amanda Hosler, Diane Lenox</td>
</tr>
<tr>
<td>STMicroelectronics</td>
<td>Jerome Bach, Nathalie Ballot, Filippo Bonaccorso, Christophe Cochard, Nicolas Florenchie, Cedric Force</td>
</tr>
<tr>
<td>(USB Promoter company)</td>
<td>Gregory Cosciniak, Chekib Hammami, Joel Huloux, Christophe Lorin, Patrizia Milazzo, Federico Musarra</td>
</tr>
<tr>
<td>Sumitomo Electric Ind., Ltd.</td>
<td>Takeshi Inoue, Wataru Sakurai, Sainer Slagian, Masaki Suzuki</td>
</tr>
<tr>
<td>Synaptics Inc.</td>
<td>Daniel Bogard, Jeff Lukanc, Prashant Shamarao</td>
</tr>
<tr>
<td>Synopsys, Inc.</td>
<td>Subramaniam Aravindhan, Morten Christiansen, Satya Patnala</td>
</tr>
<tr>
<td>Tektronix, Inc.</td>
<td>Randy White</td>
</tr>
<tr>
<td>Texas Instruments</td>
<td>Jawaid Ahmad, Mike Campbell, Greg Collins, Gary Cooper, GP Gopalakrishnan, Craig Greenberg, Richard Hubbard, Nate Johnson, Michael Koltun IV, Yoon Lee, Grant Ley</td>
</tr>
<tr>
<td>(USB Promoter company)</td>
<td>Win Maung, Shafuddin Mohammed, Lauren Moore, Brian Parten, Martin Patoka, Jason Peck, John Perry, Louis Peryea, Brian Quach</td>
</tr>
<tr>
<td>Total Phase</td>
<td>Chris Yokum</td>
</tr>
<tr>
<td>Tyco Electronics Corp.</td>
<td>Max Chao, Mike Lockyer, Hiroshi Shirai, Hidenori Taguchi, Nathan Tracy</td>
</tr>
<tr>
<td>(TE Connectivity Ltd.)</td>
<td>Robert E. Cid, Calvin Feng, Kengo Ijiro, Eiji Ikematsu, Joan Leu, Clark Li, Grant Ley</td>
</tr>
<tr>
<td>UL LLC</td>
<td>Michael Hu</td>
</tr>
<tr>
<td>Varjo Technologies</td>
<td>Kai Inha</td>
</tr>
<tr>
<td>Ventev Mobile</td>
<td>Brad Cox, Colin Vose</td>
</tr>
<tr>
<td>VIA Technologies Inc.</td>
<td>Terrance Shih, Jay Tseng, Fong-Jim Wang</td>
</tr>
<tr>
<td>Weltrend Semiconductor</td>
<td>Hung Chiang, Wayne Lo, Eric Wu</td>
</tr>
<tr>
<td>Xiaomi Communications Co., Ltd.</td>
<td>Xiaoxing Yang, Juejia Zhou</td>
</tr>
</tbody>
</table>

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
Pre-Release Draft Industry Reviewing Companies That Provided Feedback

Aces
Fairchild Semiconductor
Fujitsu Ltd.
Industrial Technology Research Institute (ITRI)
Joinsoon Electronics Mfg. Co. Ltd.
JST Mfg. Co., Ltd.
Korea Electric Terminal
Marvell Semiconductor
Motorola Mobility LLC
PalICONN/PalNova (Palpilot International Corp.)
Pericom
Semtech Corporation
Silicon Image
SMK Corporation
Toshiba Corporation

Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>August 11, 2014</td>
<td>Initial Release</td>
</tr>
<tr>
<td>1.1</td>
<td>April 3, 2015</td>
<td>Reprint release including incorporation of all approved ECNs as of the revision date plus editorial clean-up.</td>
</tr>
<tr>
<td>1.2</td>
<td>March 25, 2016</td>
<td>Reprint release including incorporation of all approved ECNs as of the revision date plus editorial clean-up.</td>
</tr>
<tr>
<td>1.3</td>
<td>July 14, 2017</td>
<td>Reprint release including incorporation of all approved ECNs as of the revision date plus editorial clean-up.</td>
</tr>
<tr>
<td>1.4</td>
<td>March 29, 2019</td>
<td>Reprint release including incorporation of all approved ECNs as of the revision date plus editorial clean-up.</td>
</tr>
<tr>
<td>2.0</td>
<td>August 2019</td>
<td>New release primarily for enabling USB4 over USB Type-C connectors and cables. Also includes incorporation of all approved ECNs as of the revision date plus editorial clean-up.</td>
</tr>
</tbody>
</table>
1 Introduction

With the continued success of the USB interface, there exists a need to adapt USB technology to serve newer computing platforms and devices as they trend toward smaller, thinner and lighter form-factors. Many of these newer platforms and devices are reaching a point where existing USB receptacles and plugs are inhibiting innovation, especially given the relatively large size and internal volume constraints of the Standard-A and Standard-B versions of USB connectors. Additionally, as platform usage models have evolved, usability and robustness requirements have advanced and the existing set of USB connectors were not originally designed for some of these newer requirements. This specification is to establish a new USB connector ecosystem that addresses the evolving needs of platforms and devices while retaining all of the functional benefits of USB that form the basis for this most popular of computing device interconnects.

1.1 Purpose

This specification defines the USB Type-C® receptacles, plug and cables.

The USB Type-C Cable and Connector Specification is guided by the following principles:

- Enable new and exciting host and device form-factors where size, industrial design and style are important parameters
- Work seamlessly with existing USB host and device silicon solutions
- Enhance ease of use for connecting USB devices with a focus on minimizing user confusion for plug and cable orientation

The USB Type-C Cable and Connector Specification defines a new receptacle, plug, cable and detection mechanisms that are compatible with existing USB interface electrical and functional specifications. This specification covers the following aspects that are needed to produce and use this new USB cable/connector solution in newer platforms and devices, and that interoperate with existing platforms and devices:

- USB Type-C receptacles, including electro-mechanical definition and performance requirements
- USB Type-C plugs and cable assemblies, including electro-mechanical definition and performance requirements
- USB Type-C to legacy cable assemblies and adapters
- USB Type-C-based device detection and interface configuration, including support for legacy connections
- USB Power Delivery optimized for the USB Type-C connector

The USB Type-C Cable and Connector Specification defines a standardized mechanism that supports Alternate Modes, such as repurposing the connector for docking-specific applications.

1.2 Scope

This specification is intended as a supplement to the existing USB 2.0, USB 3.2, USB4™ and USB Power Delivery specifications. It addresses only the elements required to implement and support the USB Type-C receptacles, plugs and cables.

Normative information is provided to allow interoperability of components designed to this specification. Informative information, when provided, may illustrate possible design implementations.
1.3 Related Documents

USB 2.0 *Universal Serial Bus Revision 2.0 Specification*
This includes the entire document release package.

USB 3.2 *Universal Serial Bus Revision 3.2 Specification*
This includes the entire document release package.
USB 3.1 Legacy Cable and Connector Specification, Revision 1.0

USB4 *USB4™ Specification, Version 1.0, August 2019* (including posted errata and ECNs)

TBT3 Chapter 13 of *USB4 Specification, Version 1.0, August 2019*

USB PD *USB Power Delivery Specification, Revision 2.0, Version 1.3, January 12, 2017*
USB Power Delivery Specification, Revision 3.0, Version 2.0, August 2019 (including posted errata and ECNs)

USB BB *USB Billboard Device Class Specification, Revision 1.21, September 8, 2016*

USB BC *Battery Charging Specification, Revision 1.2 (including errata and ECNs through March 15, 2012), March 15, 2012*

DP AM *DisplayPort™ Alt Mode on USB Type-C Standard, Version 1.0b, 03 November 2017*

All USB-specific documents are available for download at http://www.usb.org/documents. The DisplayPort Alt Mode specification is available from VESA (http://www.vesa.org).

1.4 Conventions

1.4.1 Precedence

If there is a conflict between text, figures, and tables, the precedence shall be tables, figures, and then text.

1.4.2 Keywords

The following keywords differentiate between the levels of requirements and options.

1.4.2.1 Informative

Informative is a keyword that describes information with this specification that intends to discuss and clarify requirements and features as opposed to mandating them.

1.4.2.2 May

May is a keyword that indicates a choice with no implied preference.

1.4.2.3 N/A

N/A is a keyword that indicates that a field or value is not applicable and has no defined value and shall not be checked or used by the recipient.

1.4.2.4 Normative

Normative is a keyword that describes features that are mandated by this specification.

1.4.2.5 Optional

Optional is a keyword that describes features not mandated by this specification. However, if an optional feature is implemented, the feature shall be implemented as defined by this specification (optional normative).
1.4.2.6 Reserved
Reserved is a keyword indicating reserved bits, bytes, words, fields, and code values that are set-aside for future standardization. Their use and interpretation may be specified by future extensions to this specification and, unless otherwise stated, shall not be utilized or adapted by vendor implementation. A reserved bit, byte, word, or field shall be set to zero by the sender and shall be ignored by the receiver. Reserved field values shall not be sent by the sender and, if received, shall be ignored by the receiver.

1.4.2.7 Shall
Shall is a keyword indicating a mandatory (normative) requirement. Designers are mandated to implement all such requirements to ensure interoperability with other compliant Devices.

1.4.2.8 Should
Should is a keyword indicating flexibility of choice with a preferred alternative. Equivalent to the phrase “it is recommended that”.

1.4.3 Numbering
Numbers that are immediately followed by a lowercase “b” (e.g., 01b) are binary values. Numbers that are immediately followed by an uppercase “B” are byte values. Numbers that are immediately followed by a lowercase “h” (e.g., 3Ah) are hexadecimal values. Numbers not immediately followed by either a “b”, “B”, or “h” are decimal values.

1.5 Terms and Abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessory Mode</td>
<td>A reconfiguration of the connector based on the presence of Rd/Rd or Ra/Ra on CC1/CC2, respectively.</td>
</tr>
<tr>
<td>Active cable</td>
<td>Active cables are USB Full-Featured Type-C Cables that incorporate repeaters in the USB 3.2 data path. All active cables, regardless of length, are expected to comply with this specification, the USB 3.2 Appendix E, and the USB 3.2 active cable CTS. Active cables may incorporate repeaters in both ends of the cable, one end, or anywhere in the cable.</td>
</tr>
<tr>
<td>Alternate Mode</td>
<td>Operation defined by a vendor or standards organization that is associated with a SVID assigned by the USB-IF. Entry and exit into and from an Alternate Mode is controlled by the USB PD Structured VDM Enter Mode and Exit Mode commands.</td>
</tr>
<tr>
<td>Alternate Mode Adapter (AMA)</td>
<td>A USB PD Device which supports Alternate Modes and acts as a UFP.</td>
</tr>
<tr>
<td>Audio Adapter Accessory Mode</td>
<td>The Accessory Mode defined by the presence of Ra/Ra on CC1/CC2, respectively. See Appendix A.</td>
</tr>
<tr>
<td>BMC</td>
<td>Biphase Mark Coding used for USB PD communication over the CC wire.</td>
</tr>
<tr>
<td>Cable Port Partner</td>
<td>The USB Type-C DRP, Source, or Sink connected to the cable plug.</td>
</tr>
<tr>
<td>Captive cable</td>
<td>A cable that is terminated on one end with a USB Type-C plug and has a vendor-specific connect means (hardwired or custom detachable) on the opposite end.</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>CC</td>
<td>Configuration Channel (CC) used in the discovery, configuration and management of connections across a USB Type-C cable.</td>
</tr>
<tr>
<td>Charge-Through VPD (CTVPD)</td>
<td>A VCONN-Powered USB Device that has the mechanism to pass power and CC communication from one port to the other without any reregulation.</td>
</tr>
<tr>
<td>Configuration Lane</td>
<td>The USB 3.2 Configuration Lane is used to establish and manage dual-lane SuperSpeed USB operation. The Configuration Lane is specifically the SuperSpeed USB TX1/RX1 differential signal set in the cable/plug.</td>
</tr>
<tr>
<td>Debug Accessory Mode (DAM)</td>
<td>The Accessory Mode defined by the presence of Rd/Rd or Rp/Rp on CC1/CC2, respectively. See Appendix B.</td>
</tr>
<tr>
<td>Debug and Test System (DTS)</td>
<td>The combined hardware and software system that provides a system developer debug visibility and control when connected to a Target System in Debug Accessory Mode.</td>
</tr>
<tr>
<td>Default VBUS</td>
<td>VBUS voltage as defined by the USB 2.0 and USB 3.2 specifications. Note: where used, 5 V connotes the same meaning.</td>
</tr>
<tr>
<td>DFP</td>
<td>Downstream Facing Port, specifically associated with the flow of data in a USB connection. Typically the ports on a host or the ports on a hub to which devices are connected. In its initial state, the DFP sources VBUS and VCONN, and supports data. A charge-only DFP port only sources VBUS.</td>
</tr>
<tr>
<td>Direct connect device</td>
<td>A device with either a captive cable or just a USB Type-C plug (e.g., thumb drive).</td>
</tr>
<tr>
<td>DRD (Dual-Role-Data)</td>
<td>The acronym used in this specification to refer to a USB port that can operate as either a DFP (Host) or UFP (Device). The role that the port initially takes is determined by the port’s power role at attach. A Source port takes on the data role of a DFP and a Sink port takes on the data role of a UFP. The port’s data role may be changed dynamically using USB PD Data Role Swap.</td>
</tr>
<tr>
<td>DRP (Dual-Role-Power)</td>
<td>The acronym used in this specification to refer to a USB port that can operate as either a Source or a Sink. The role that the port offers may be fixed to either a Source or Sink or may alternate between the two port states. Initially when operating as a Source, the port will also take on the data role of a DFP and when operating as a Sink, the port will also take on the data role of a UFP. The port’s power role may be changed dynamically using USB PD Power Role Swap.</td>
</tr>
<tr>
<td>DR_Swap</td>
<td>USB PD Data Role Swap.</td>
</tr>
<tr>
<td>Dual-lane (x2)</td>
<td>USB 3.2 dual-lane operation is defined as simultaneously signaling on both sets of SuperSpeed USB transmit and receive differential pairs (TX1/RX1 and TX2/RX2 in the cable/plug).</td>
</tr>
<tr>
<td>Electronically Marked Cable</td>
<td>A USB Type-C cable that uses USB PD to provide the cable’s characteristics.</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>eMarker</td>
<td>The element in an Electronically Marked Cable that returns information about the cable in response to a USB PD Discover Identity command.</td>
</tr>
<tr>
<td>Initiator</td>
<td>The port initiating a Vendor Defined Message. It is independent of the port’s PD role (e.g., Provider, Consumer, Provider/Consumer, or Consumer/Provider). In most cases, the Initiator will be a host.</td>
</tr>
<tr>
<td>Internal Temperature</td>
<td>In reference to an active cable, the temperature measured inside a plug. It is not the skin temperature. There is a relationship between the plug’s internal temperature and the skin temperature, but that relationship is design dependent.</td>
</tr>
<tr>
<td>Local Plug</td>
<td>The cable plug being referred to.</td>
</tr>
<tr>
<td>Optically Isolated Active Cable (OIAC)</td>
<td>A cable with a USB Type-C Plug on each end with one Cable Plug supporting SOP' and the other supporting SOP". This cable is electrically isolated between the two plugs.</td>
</tr>
<tr>
<td>Passive cable</td>
<td>A cable that does not incorporate any electronics to condition the data path signals. A passive cable may or may not be electronically marked.</td>
</tr>
<tr>
<td>Port Partner</td>
<td>Refers to the port (device or host) a port is attached to.</td>
</tr>
<tr>
<td>Power Bank</td>
<td>A device with a battery whose primary function is to charge or otherwise extend the runtime of other USB Type-C devices.</td>
</tr>
<tr>
<td>Power Sinking Devices (PSD)</td>
<td>Sink which draws power but has no other USB or Alternate Mode communication function, e.g. a USB-powered light.</td>
</tr>
<tr>
<td>Powered cable</td>
<td>A cable with electronics in the plug that requires VCONN indicated by the presence of R_a between the VCONN pin and ground.</td>
</tr>
<tr>
<td>PR_Swap</td>
<td>USB PD Power Role Swap.</td>
</tr>
<tr>
<td>Re-driver</td>
<td>Re-driver refers to an analog component that operates on the signal without re-timing it. This may include equalization, amplification, and transmitter. The re-driver does not include a clock-data recovery (CDR) circuit. Re-drivers are beyond the scope of this document.</td>
</tr>
<tr>
<td>Remote Plug</td>
<td>A remote cable plug in the context of OIAC plugs is the plug at the other end of the Optically Isolated Active Cable.</td>
</tr>
<tr>
<td>Repeater</td>
<td>Repeater refers to any active component that acts on a signal in order to increase the physical lengths and/or interconnect loss over which the signal can be transmitted successfully. The category of repeaters includes both re-timers and re-drivers.</td>
</tr>
<tr>
<td>Responder</td>
<td>The port responding to the Initiator of a Vendor Defined Message (VDM). It is independent of the port’s PD role (e.g., Provider, Consumer, Provider/Consumer, or Consumer/Provider). In most cases, the Responder will be a device.</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Re-timer</td>
<td>Re-timer refers to a component that contains a clock-data recovery (CDR) circuit that “retimes” the signal. The re-timer latches the signal into a synchronous memory element before re-transmitting it. It is used to extend the physical length of the system without accumulating high frequency jitter by creating separate clock domains on either side of the re-timer. Re-timers are defined in USB 3.2 Appendix E and USB4.</td>
</tr>
<tr>
<td>SBU</td>
<td>Sideband Use.</td>
</tr>
<tr>
<td>Short Active Cable (SAC)</td>
<td>A cable with a USB Type-C Plug on each end at least one of which is a Cable Plug supporting SOP'. Cable length up to 5 meters.</td>
</tr>
<tr>
<td>SID</td>
<td>A Standard ID (SID) is a unique 16-bit value assigned by the USB-IF to identify an industry standard.</td>
</tr>
<tr>
<td>Single-lane (x1)</td>
<td>USB 3.2 single-lane operation is defined as signaling on only one set of SuperSpeed USB transmit and receive differential pairs (TX1/RX1 in the cable/plug).</td>
</tr>
<tr>
<td>Sink</td>
<td>Port asserting Rd on CC and when attached is consuming power from VBUS; most commonly a Device.</td>
</tr>
<tr>
<td>Skin Temperature</td>
<td>In reference to an active cable, the temperature of a plug’s over-mold.</td>
</tr>
<tr>
<td>Source</td>
<td>Port asserting Rp on CC and when attached is providing power over VBUS; most commonly a Host or Hub DFP.</td>
</tr>
<tr>
<td>SVID</td>
<td>General reference to either a SID or a VID. Used by USB PD Structured VDMs when requesting SIDs and VIDs from a device.</td>
</tr>
<tr>
<td>Target System (TS)</td>
<td>The system being debugged in Debug Accessory Mode.</td>
</tr>
<tr>
<td>Type-A</td>
<td>A general reference to all versions of USB “A” plugs and receptacles.</td>
</tr>
<tr>
<td>Type-B</td>
<td>A general reference to all versions of USB “B” plugs and receptacles.</td>
</tr>
<tr>
<td>Type-C Plug</td>
<td>A USB plug conforming to the mechanical and electrical requirements in this specification.</td>
</tr>
<tr>
<td>Type-C Port</td>
<td>The USB port associated to a USB Type-C receptacle. This includes the USB signaling, CC logic, multiplexers and other associated logic.</td>
</tr>
<tr>
<td>Type-C Receptacle</td>
<td>A USB receptacle conforming to the mechanical and electrical requirements of this specification.</td>
</tr>
<tr>
<td>UFP</td>
<td>Upstream Facing Port, specifically associated with the flow of data in a USB connection. The port on a device or a hub that connects to a host or the DFP of a hub. In its initial state, the UFP sinks VBUS and supports data.</td>
</tr>
<tr>
<td>USB 2.0 Type-C Cable</td>
<td>A USB Type-C to Type-C cable that only supports USB 2.0 data operation. This cable does not include USB 3.2 or SBU wires.</td>
</tr>
<tr>
<td>USB 2.0 Type-C Plug</td>
<td>A USB Type-C plug specifically designed to implement the USB 2.0 Type-C cable.</td>
</tr>
<tr>
<td>USB Full-Featured Type-C Cable</td>
<td>A USB Type-C to Type-C cable that supports USB 2.0, USB 3.2 and USB4 data operation. This cable includes SBU wires and is an Electronically Marked Cable.</td>
</tr>
</tbody>
</table>

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB Full-Featured Type-C Plug</td>
<td>A USB Type-C plug specifically designed to implement the USB Full-Featured Type-C cable.</td>
</tr>
<tr>
<td>USB4 Hub</td>
<td>A USB4 hub product is used for USB port expansion, includes only USB upstream and downstream ports, and does not include any additional capability that exposes other connector types or functions except as defined in Section 5.2.3 (Alternate Modes).</td>
</tr>
<tr>
<td>USB4-based Dock</td>
<td>A USB4-based dock product combines a USB4 hub (including at least one exposed USB Type-C downstream port) with additional capabilities that either exposes other connector types and/or includes other user-visible functions, e.g. storage, networking, etc. Examples of functions that are not considered user-visible include firmware update and device authentication.</td>
</tr>
<tr>
<td>USB Safe State</td>
<td>The USB Safe State as defined by the USB PD specification.</td>
</tr>
<tr>
<td>VCONN-Powered Accessory (VPA)</td>
<td>An accessory that is powered from VCONN to operate in an Alternate Mode. VPAs cannot implement the charge-through mechanism described for VPDs, and instead must intermediate by negotiating USB Power Delivery with both the connected host and source in order to enable similar functionality.</td>
</tr>
<tr>
<td>VCONN-Powered USB Device (VPD)</td>
<td>A USB direct-connect or captive-cable device that can be powered solely from either VCONN or VBUS. VPDs may optionally support the VPD charge-through capability.</td>
</tr>
<tr>
<td>VCONN_Swap</td>
<td>USB PD VCONN Swap.</td>
</tr>
<tr>
<td>VDM</td>
<td>Vendor Defined Message as defined by the USB PD specification.</td>
</tr>
<tr>
<td>VID</td>
<td>A Vendor ID (VID) is a unique 16-bit value assigned by the USB-IF to identify a vendor.</td>
</tr>
<tr>
<td>vSafe0V</td>
<td>VBUS “0 volts” as defined by the USB PD specification.</td>
</tr>
<tr>
<td>vSafe5V</td>
<td>VBUS “5 volts” as defined by the USB PD specification.</td>
</tr>
<tr>
<td>x1</td>
<td>See Single-lane.</td>
</tr>
<tr>
<td>x2</td>
<td>See Dual-lane.</td>
</tr>
</tbody>
</table>

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
2 Overview

2.1 Introduction

The USB Type-C® receptacle, plug and cable provide a smaller, thinner and more robust alternative to legacy USB interconnect (Standard and Micro USB cables and connectors). This solution targets use in very thin platforms, ranging from ultra-thin notebook PCs down to smart phones where existing Standard-A and Micro-AB receptacles are deemed too large, difficult to use, or inadequately robust. Some key specific enhancements include:

- The USB Type-C receptacle may be used in very thin platforms as its total system height for the mounted receptacle is under 3 mm
- The USB Type-C plug enhances ease of use by being plug-able in either upside-up or upside-down directions
- The USB Type-C cable enhances ease of use by being plug-able in either direction between host and devices

While the USB Type-C interconnect no longer physically differentiates plugs on a cable by being an A-type or B-type, the USB interface still maintains such a host-to-device logical relationship. Determination of this host-to-device relationship is accomplished through a Configuration Channel (CC) that is connected through the cable. In addition, the Configuration Channel is used to set up and manage power and Alternate/Accessory Modes.

Using the Configuration Channel, the USB Type-C interconnect defines a simplified 5 volt VBUS-based power delivery and charging solution that supplements what is already defined in the USB 3.2 Specification. More advanced power delivery and battery charging features over the USB Type-C interconnect are based on the USB Power Delivery Specification. As a product implementation improvement, the USB Type-C interconnect shifts the USB PD communication protocol from being communicated over VBUS to being delivered across the USB Type-C Configuration Channel.

The USB Type-C receptacle, plug and cable designs are intended to support future USB functional extensions. As such, consideration was given to frequency scaling performance, pin-out arrangement and the configuration mechanisms when developing this solution. The definition of future USB functional extensions is not in the scope of this specification but rather will be provided in future releases of the base USB Specification, i.e., beyond the existing USB4™ Specification.

Figure 2-1 illustrates the comprehensive functional signal plan for the USB Full-Featured Type-C receptacle, not all signals shown are required in all platforms or devices. As shown, the receptacle signal list functionally delivers both USB 2.0 (D+ and D−) and either USB 3.2 or USB4 (TX and RX pairs) data buses, USB power (VBUS) and ground (GND), Configuration Channel signals (CC1 and CC2), and two Sideband Use (SBU) signal pins. Multiple sets of USB data bus signal locations in this layout facilitate being able to functionally map the USB signals independent of plug orientation in the receptacle. For reference, the signal pins are labeled. For the USB 2.0 Type-C receptacle, neither the USB 3.2 nor USB4 signals are implemented.
Figure 2-2 illustrates the comprehensive functional signal plan for the USB Type-C plug. Only one CC pin is connected through the cable to establish signal orientation and the other CC pin is repurposed as VCONN for powering electronics in the USB Type-C plug. Also, only one set of USB 2.0 D+/D− wires are implemented in a USB Type-C cable. For USB Type-C cables that only intend to support USB 2.0 functionality, the TX/RX and SBU signals are not implemented. For the USB Type-C Power-Only plug (intended only for USB Type-C Sink applications), only nine contacts are implemented to support CC, VBUS, and GND.

Figure 2-2 USB Full-Featured Type-C Plug Interface (Front View)

<table>
<thead>
<tr>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
<th>A2</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>RX2+</td>
<td>RX2−</td>
<td>VBUS</td>
<td>SBU1</td>
<td>D−</td>
<td>D+</td>
<td>CC</td>
<td>VBUS</td>
<td>TX1−</td>
<td>TX1+</td>
<td>GND</td>
</tr>
<tr>
<td>GND</td>
<td>TX2+</td>
<td>TX2−</td>
<td>VBUS</td>
<td>VCONN</td>
<td>SBU2</td>
<td>VBUS</td>
<td>RX1−</td>
<td>RX1+</td>
<td>GND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>B2</td>
<td>B3</td>
<td>B4</td>
<td>B5</td>
<td>B6</td>
<td>B7</td>
<td>B8</td>
<td>B9</td>
<td>B10</td>
<td>B11</td>
<td>B12</td>
</tr>
</tbody>
</table>

2.2 USB Type-C Receptacles, Plugs and Cables

Cables and connectors, including USB Type-C to USB legacy cables and adapters, are explicitly defined within this specification. These are the only connectors and cables that are authorized by the licensing terms of this specification. All licensed cables and connectors are required to comply with the compliance and certification requirements that are developed and maintained by the USB-IF.

The following USB Type-C receptacles and plugs are defined.

- USB Full-Featured Type-C receptacle for USB 2.0, USB 3.2, USB4 and full-featured platforms and devices
- USB 2.0 Type-C receptacle for USB 2.0 platforms and devices
- USB Full-Featured Type-C plug
- USB 2.0 Type-C plug
- USB Type-C Power-Only plug

The following USB Type-C cables are defined.

- USB Full-Featured Type-C cable with a USB Full-Featured Type-C plug at both ends for USB 3.2, USB4 and full-featured applications
- USB 2.0 Type-C cable with a USB 2.0 Type-C plug at both ends for USB 2.0 applications
- Captive cable with either a USB Full-Featured Type-C plug or USB 2.0 Type-C plug at one end
- Active cables as defined in Chapter 6

All of the defined USB Type-C receptacles, plugs and cables (except OIAC) support USB charging applications, including support for the optional USB Type-C-specific implementation of the USB Power Delivery Specification (See Section 4.6.2.4).

All USB Full-Featured Type-C cables are electronically marked. USB 2.0 Type-C cables may be electronically marked. See Section 4.9 for the requirements of Electronically Marked Cables.
The following USB Type-C to USB legacy cables and adapters are defined.

- **USB 3.2** Type-C to Legacy Host cable with a USB Full-Featured Type-C plug at one end and a USB 3.1 Standard-A plug at the other end – *this cable supports use of a USB Type-C-based device with a legacy USB host*

- **USB 2.0** Type-C to Legacy Host cable with a USB Full-Featured Type-C plug at one end and a USB 2.0 Standard-A plug at the other end – *this cable supports use of a legacy USB Type-C-based device with a legacy USB 2.0 host* (primarily for mobile charging and sync applications)

- **USB 3.2** Type-C to Legacy Device cable with a USB Full-Featured Type-C plug at one end and a USB 3.1 Standard-B plug at the other end – *this cable supports use of legacy USB 3.1 hubs and devices with a USB Type-C-based host*

- **USB 2.0** Type-C to Legacy Device cable with a USB Full-Featured Type-C plug at one end and a USB 2.0 Standard-B plug at the other end – *this cable supports use of legacy USB 2.0 hubs and devices with a USB Type-C-based host*

- **USB 2.0** Type-C to Legacy Device cable with a USB Full-Featured Type-C plug at one end and a USB 2.0 Mini-B plug at the other end – *this cable supports use of legacy devices with a USB Type-C-based host*

- **USB 3.2** Type-C to Legacy Micro Device cable with a USB Full-Featured Type-C plug at one end and a USB 3.1 Micro-B plug at the other end – *this cable supports use of legacy USB 3.1 hubs and devices with a USB Type-C-based host*

- **USB 2.0** Type-C to Legacy Micro Device cable with a USB Full-Featured Type-C plug at one end and a USB 2.0 Micro-B plug at the other end – *this cable supports use of legacy USB 2.0 hubs and devices with a USB Type-C-based host*

- **USB 3.2** Type-C to Legacy Standard-A adapter with a USB Full-Featured Type-C plug at one end and a USB 3.1 Standard-A receptacle at the other end – *this adapter supports use of a legacy USB “thumb drive” style device or a legacy USB ThinCard device with a USB 3.2 Type-C-based host*

- **USB 2.0** Type-C to Legacy Micro-B adapter with a USB Full-Featured Type-C plug at one end and a USB 2.0 Micro-B receptacle at the other end – *this adapter supports charging a USB Type-C-based mobile device using a legacy USB Micro-B-based chargers, either captive cable-based or used in conjunction with a legacy USB 2.0 Standard-A to Micro-B cable*

USB Type-C receptacle to USB legacy adapters are explicitly not defined or allowed. Such adapters would allow many invalid and potentially unsafe cable connections to be constructed by users.

2.3 Configuration Process

The USB Type-C receptacle, plug and cable solution incorporates a configuration process to detect a downstream facing port to upstream facing port (Source-to-Sink) connection for VBUS management and host-to-device connected relationship determination.

The USB Type-C port configuration process is used for the following:

- Source-to-Sink attach/detach detection
- Plug orientation/cable twist detection
- Initial power (Source-to-Sink) detection and establishing the data (Host-to-Device) relationship
- Detect if cable requires VCONN
- USB Type-C VBUS current detection and usage
• **USB PD** communication
• Discovery and configuration of functional extensions

Two pins on the USB Type-C receptacle, CC1 and CC2, are used for this purpose. Within a standard USB Type-C cable, only a single CC pin position within each plug of the cable is connected through the cable.

2.3.1 Source-to-Sink Attach/Detach Detection

Initially, Source-to-Sink attach is detected by a host or hub port (Source) when one of the CC pins at its USB Type-C receptacle senses a specified resistance to GND. Subsequently, Source-to-Sink detach is detected when the CC pin that was terminated at its USB Type-C receptacle is no longer terminated to GND.

Power is not applied to the USB Type-C host or hub receptacle (VBUS or VCONN) until the Source detects the presence of an attached device (Sink) port. When a Source-to-Sink attach is detected, the Source is expected to enable power to the receptacle and proceed to normal USB operation with the attached device. When a Source-to-Sink detach is detected, the port sourcing VBUS removes power.

2.3.2 Plug Orientation/Cable Twist Detection

The USB Type-C plug can be inserted into a receptacle in either one of two orientations, therefore the CC pins enable a method for detecting plug orientation in order to determine the lane ordering of the SuperSpeed USB data signal pairs functionally connected through the cable and identify the Configuration Lane for dual-lane operation when supported. This allows for signal routing, if needed, within a host or device to be established for a successful connection.

2.3.3 Initial Power (Source-to-Sink) Detection and Establishing the Data (Host-to-Device) Relationship

Unlike existing USB Type-A and USB Type-B receptacles and plugs, the mechanical characteristics of the USB Type-C receptacle and plug do not inherently establish the relationship of USB host and device ports. The CC pins on the receptacle also serve to establish an initial power (Source-to-Sink) and data (Host-to-Device) relationships prior to the normal USB enumeration process.

For the purpose of defining how the CC pins are used to establish the initial power relationship, the following port power behavior modes are defined.

1. Source-only – for this mode, the port exclusively behaves as a Source
2. Sink-only – for this mode, the port exclusively behaves as a Sink
3. Dual-Role-Power (DRP) – for this mode, the port can behave either as a Source or Sink

Additionally, when a port supports USB data operation, a port’s data behavior modes are defined.

1. DFP-only – for this mode, the port exclusively behaves as a DFP
2. UFP-only – for this mode, the port exclusively behaves as a UFP
3. Dual-Role-Data (DRD) – for this mode, the port can behave either as a DFP or UFP

The DFP-only and UFP-only ports behaviorally map to traditional USB host ports and USB device ports, respectively but may not necessarily do USB data communication. When a host-only port is attached to a device-only port, the behavior from the user’s perspective
follows the traditional USB host-to-device port model. However, the USB Type-C connector solution does not physically prevent host-to-host or device-to-device connections. In this case, the resulting host-to-host or device-to-device connection results in a safe but non-functional situation.

Once initially established, the Source supplies \(V_{BUS} \) and behaves as a DFP, and the Sink consumes \(V_{BUS} \) and behaves as a UFP. USB PD, when supported by both ports, may then be used to independently swap both the power and data roles of the ports.

A port that supports dual-role operation by being able to shift to the appropriate connected mode when attached to either a Source-only or Sink-only port is a DRP. In the special case of a DRP being attached to another DRP, an initialization protocol across the CC pins is used to establish the initial host-to-device relationship. Given no role-swapping intervention, the determination of which is DFP or UFP is random from the user's perspective.

Two independent set of mechanisms are defined to allow a USB Type-C DRP to functionally swap power and data roles. When USB PD is supported, power and data role swapping is performed as a subsequent step following the initial connection process. For non-PD implementations, power/data role swapping can optionally be dealt with as part of the initial connection process. To improve the user's experience when connecting devices that are of categorically different types, products may be implemented to strongly prefer being a DFP or a UFP, such that the DFP/UFP determination becomes predictable when connecting two DRPs of differing categories. See Section 4.5.1.4 for more on available swapping mechanisms.

As an alternative to role swapping, a USB Type-C DRP may provide useful functionality by when operating as a host, exposing a CDC/network (preferably TCP/IP) stack or when operating as a device, exposing a CDC/network interface.

USB hubs have two types of ports, a UFP that is connected to a DFP (host or another hub) that initially functions as a Sink, and one or more DFPs for connecting other devices that initially function as Sources.

2.3.4 USB Type-C \(V_{BUS} \) Current Detection and Usage

With the USB Type-C connector solution, a Source (host or downstream hub port) may implement higher source current over \(V_{BUS} \) to enable faster charging of mobile devices or higher-power devices. All USB host and hub ports advertise via the CC pins the level of current that is presently available. The USB device port is required to manage its load to stay within the current level offered by the host or hub, including dynamically scaling back the load if the host or hub port changes its advertisement to a lower level as indicated over the CC pins.

Three current level advertisements at 5V \(V_{BUS} \) are defined by USB Type-C Current:

- Default is the as-configured for high-power operation current value as defined by a USB Specification (500 mA for USB 2.0 ports; 900 mA or 1,500 mA for USB 3.2 ports operating in single-lane or dual-lane, respectively)
- USB Type-C Current @ 1.5 A
- USB Type-C Current @ 3.0 A

There is a clear functional distinction between advertising Default versus the USB Type-C Current at either 1.5 A or 3.0 A.

- Default is intended for host operation in providing bus power to a connected device where the host manages the device's current consumption for the low-power, high-power and suspend states as defined in the USB base specifications.
• USB Type-C Current at either 1.5 A or 3.0 A is primarily intended for charging applications. The Sink can vary its current draw up to the advertised limit. Offering USB Type-C Current at either 1.5 A or 3.0 A is allowed for a host providing bus power to a device. The host needs to assume that the device will continuously draw up to the offered limit.

The higher USB Type-C Current levels that can be advertised allows hosts and devices that do not implement USB PD to take advantage of higher charging current.

2.3.5 USB PD Communication

USB Power Delivery is a feature on products (hosts, hubs and devices). USB PD communications is used to:

• Establish power contracts that allow voltage and current beyond existing USB data bus specifications.
• Change the port sourcing VBUS.
• Change the port sourcing VCONN.
• Swap DFP and UFP roles.
• Communicate with cables.

The USB PD Bi-phase Mark Coded (BMC) communications are carried on the CC wire of the USB Type-C cable.

2.3.6 Functional Extensions

Functional extensions (see Chapter E) are enabled via a communications channel across CC using methods defined by the USB Power Delivery Specification.

2.4 VBUS

VBUS provides a path to deliver power between a host and a device, and between a USB power charger and a host/device. A simplified high-current supply capability is defined for hosts and chargers that optionally support current levels beyond the USB 2.0, USB 3.2, and USB4 specifications. The USB Power Delivery Specification is supported.

Table 2-1 summarizes the power supply options available from the perspective of a device with the USB Type-C connector. Not all options will be available to the device from all host or hub ports – only the first two listed options are mandated by the base USB specifications and form the basis of USB Type-C Current at the Default USB Power level.
Table 2-1 Summary of power supply options

<table>
<thead>
<tr>
<th>Mode of Operation</th>
<th>Voltage</th>
<th>Current</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB 2.0</td>
<td>5 V</td>
<td>See USB 2.0</td>
<td></td>
</tr>
<tr>
<td>USB 3.2</td>
<td>5 V</td>
<td>See USB 3.2</td>
<td></td>
</tr>
<tr>
<td>USB4</td>
<td>5 V</td>
<td>1.5 A</td>
<td>See Section 5.3.</td>
</tr>
<tr>
<td>USB BC 1.2</td>
<td>5 V</td>
<td>1.5 A¹</td>
<td>Legacy charging</td>
</tr>
<tr>
<td>USB Type-C Current @ 1.5 A</td>
<td>5 V</td>
<td>1.5 A</td>
<td>Supports higher power devices</td>
</tr>
<tr>
<td>USB Type-C Current @ 3.0 A</td>
<td>5 V</td>
<td>3 A</td>
<td>Supports higher power devices</td>
</tr>
<tr>
<td>USB PD</td>
<td>Configurable up to 20 V</td>
<td>Configurable up to 5 A</td>
<td>Directional control and power level management</td>
</tr>
</tbody>
</table>

Notes:
1. Whereas **USB BC 1.2** specification permits a power provider to be designed to support a level of power between 0.5 A and 1.5 A, the USB Type-C specification requires that a Source port that supports **USB BC 1.2** be at a minimum capable of supplying 1.5 A and advertise **USB Type-C Current @ 1.5 A** in addition to supporting the **USB BC 1.2** power provider termination.

The USB Type-C receptacle is specified for current capability of 5 A whereas standard USB Type-C cable assemblies are rated for 3 A. The higher rating of the receptacle enables systems to deliver more power over directly attached docking solutions or using appropriately designed chargers with captive cables when implementing **USB PD**. Also, USB Type-C cable assemblies designed for **USB PD** and appropriately identified via electronic marking are allowed to support up to 5 A.

2.5 **VCONN**

Once the connection between host and device is established, the CC pin (CC1 or CC2) in the receptacle that is not connected via the CC wire through the standard cable is repurposed to source **VCONN** to power circuits in the plug needed to implement **Electronically Marked Cables** (see Section 4.9), **VCONN-Powered Accessories** and **VCONN-Powered USB Devices**. Initially, the source supplies **VCONN** and the source of **VCONN** may be swapped using **USB PD** **VCONN_Swap**.

Electronically marked cables may use **VBUS** instead of **VCONN** as **VBUS** is available across the cable. **VCONN** functionally differs from **VBUS** in that it is isolated from the other end of the cable. **VCONN** is independent of **VBUS** and, unlike **VBUS** which can use **USB PD** to support higher voltages, **VCONN** voltage stays within the range of 3.0 to 5.5 V (**vVCONNValid**).

2.6 **Hubs**

USB hubs implemented with USB Type-C receptacles are required to clearly identify the upstream facing port. This requirement is needed because a user can no longer know which port on a hub is the upstream facing port and which ports are the downstream facing ports by the type of receptacles that are exposed, i.e., USB Type-B is the upstream facing port and USB Type-A is a downstream facing port.
3 Mechanical

3.1 Overview

This chapter defines the USB Type-C® connectors and wired cable assemblies. Cables which include active elements in the data path are defined in Chapter 6 (Active Cables).

3.1.1 Compliant Connectors

The USB Type-C specification defines the following standard connectors:

- USB Full-Featured Type-C receptacle
- **USB 2.0** Type-C receptacle
- USB Full-Featured Type-C plug
- **USB 2.0** Type-C plug
- USB Type-C Power-Only plug

3.1.2 Compliant Cable Assemblies

Table 3-1 summarizes the USB Type-C standard cable assemblies along with the primary differentiating characteristics. All USB Full-Featured Type-C cables shall support simultaneous, independent signal transmission on both **USB 3.2** and **USB4™** (TX and RX pairs) data buses. The cable lengths listed in the table are informative and represents the practical length based on cable performance requirements. All cables that are either full-featured and/or are rated at more than 3 A current are **Electronically Marked Cables**.

<table>
<thead>
<tr>
<th>Cable Ref</th>
<th>Plug 1</th>
<th>Plug 2</th>
<th>USB Version</th>
<th>Cable Length</th>
<th>Current Rating</th>
<th>USB Power Delivery</th>
<th>USB Type-C Electronically Marked</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC2-3</td>
<td>C</td>
<td>C</td>
<td>USB 2.0</td>
<td>≤ 4 m</td>
<td>3 A</td>
<td>Supported</td>
<td>Optional</td>
</tr>
<tr>
<td>CC2-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 A</td>
<td></td>
<td>Required</td>
</tr>
<tr>
<td>CC3G1-3</td>
<td>C</td>
<td>C</td>
<td>USB 3.2 Gen1 and USB4 Gen2</td>
<td>≤ 2 m</td>
<td>3 A</td>
<td>Supported</td>
<td>Required</td>
</tr>
<tr>
<td>CC3G1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC3G2-3</td>
<td>C</td>
<td>C</td>
<td>USB 3.2 Gen2 and USB4 Gen2</td>
<td>≤ 1 m</td>
<td>3 A</td>
<td>Supported</td>
<td>Required</td>
</tr>
<tr>
<td>CC3G2-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC4G3-3</td>
<td>C</td>
<td>C</td>
<td>USB4 Gen3</td>
<td>≤ 0.8 m</td>
<td>3 A</td>
<td>Supported</td>
<td>Required</td>
</tr>
<tr>
<td>CC4G3-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

USB Type-C products are also allowed to have a captive cable. See Section 3.4.3.

3.1.3 Compliant USB Type-C to Legacy Cable Assemblies

Table 3-2 summarizes the USB Type-C legacy cable assemblies along with the primary differentiating characteristics. The cable lengths listed in the table are informative and represents the practical length based on cable performance requirements. **USB 3.2** Type-C legacy cables assemblies that only offer performance up to **USB 3.1 Gen1** are not allowed by this specification. All USB Type-C to legacy cable assemblies are only defined specific to **USB 2.0** and **USB 3.2** as there are no USB Type-C to legacy cables that are uniquely applicable to **USB4**.
For USB Type-C legacy cable assemblies that incorporate Rp termination, the value of this termination is required to be specified to the Default setting of **USB Type-C Current** even though the cable assemblies are rated for 3 A. The Rp termination in these cables is intended to represent the maximum current of a compliant legacy USB host port, not the current rating of the cable itself. The cable current rating is intentionally set to a higher level given that there are numerous non-standard power chargers that offer more than the Default levels established by the **USB 2.0** and **USB 3.1** specifications.

Table 3-2 USB Type-C Legacy Cable Assemblies

<table>
<thead>
<tr>
<th>Cable Ref</th>
<th>Plug 1</th>
<th>Plug 2</th>
<th>USB Version</th>
<th>Cable Length</th>
<th>Current Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC2-3</td>
<td>USB 2.0 Standard-A</td>
<td>USB 2.0 Type-C1</td>
<td>USB 2.0</td>
<td>≤ 4 m</td>
<td>3 A</td>
</tr>
<tr>
<td>AC3G2-3</td>
<td>USB 3.1 Standard-A</td>
<td>USB Full-Featured Type-C1</td>
<td>USB 3.1 Gen2</td>
<td>≤ 1 m</td>
<td>3 A</td>
</tr>
<tr>
<td>CB2-3</td>
<td>USB 2.0 Type-C2</td>
<td>USB 2.0 Standard-B</td>
<td>USB 2.0</td>
<td>≤ 4 m</td>
<td>3 A</td>
</tr>
<tr>
<td>CB3G2-3</td>
<td>USB Full-Featured Type-C2</td>
<td>USB 3.1 Standard-B</td>
<td>USB 3.1 Gen2</td>
<td>≤ 1 m</td>
<td>3 A</td>
</tr>
<tr>
<td>CmB2</td>
<td>USB 2.0 Type-C2</td>
<td>USB 2.0 Mini-B</td>
<td>USB 2.0</td>
<td>≤ 4 m</td>
<td>500 mA</td>
</tr>
<tr>
<td>CμB2-3</td>
<td>USB 2.0 Type-C2</td>
<td>USB 2.0 Micro-B</td>
<td>USB 2.0</td>
<td>≤ 2 m</td>
<td>3 A</td>
</tr>
<tr>
<td>CμB3G2-3</td>
<td>USB Full-Featured Type-C2</td>
<td>USB 3.1 Micro-B</td>
<td>USB 3.1 Gen2</td>
<td>≤ 1 m</td>
<td>3 A</td>
</tr>
</tbody>
</table>

Notes:
1. USB Type-C plugs associated with the “B” end of a legacy adapter cable are required to have Rp (56 kΩ ± 5%) termination incorporated into the plug assembly – see Section 4.5.3.2.2.
2. USB Type-C plugs associated with the “A” end of a legacy adapter cable are required to have Rd (5.1 kΩ ± 20%) termination incorporated into the plug assembly – see Section 4.5.3.2.1.
3. Refer to Section 3.7.5.3 for the mated resistance and temperature rise required for the legacy receptacles.

3.1.4 Compliant USB Type-C to Legacy Adapter Assemblies

Table 3-3 summarizes the USB Type-C legacy adapter assemblies along with the primary differentiating characteristics. The cable length is listed in the table are informative and represents the practical length based on cable performance requirements. All USB Type-C to legacy adapter assemblies are only defined specific to **USB 2.0** and **USB 3.2** as there are no USB Type-C to legacy adapters that are uniquely applicable to **USB4**.

Table 3-3 USB Type-C Legacy Adapter Assemblies

<table>
<thead>
<tr>
<th>Adapter Ref</th>
<th>Plug</th>
<th>Receptacle1</th>
<th>USB Version</th>
<th>Cable Length</th>
<th>Current Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>CμBR2-3</td>
<td>USB 2.0 Type-C1</td>
<td>USB 2.0 Micro-B</td>
<td>USB 2.0</td>
<td>≤ 0.15 m</td>
<td>3 A</td>
</tr>
<tr>
<td>CAR3G1-3</td>
<td>USB Full-Featured Type-C2</td>
<td>USB 3.1 Standard-A</td>
<td>USB 3.1 Gen1</td>
<td>≤ 0.15 m</td>
<td>3 A</td>
</tr>
</tbody>
</table>

Notes:
1. USB Type-C plugs associated with the “B” end of a legacy adapter are required to have Rp (56 kΩ ± 5%) termination incorporated into the plug assembly – see Section 4.5.3.2.2.
2. USB Type-C plugs associated with the “A” end of a legacy adapter are required to have Rd (5.1 kΩ ± 20%) termination incorporated into the plug assembly – see Section 4.5.3.2.1.
3. Refer to Section 3.7.6.3 for the mated resistance and temperature rise required for the legacy receptacles.
3.2 USB Type-C Connector Mating Interfaces

This section defines the connector mating interfaces, including the connector interface drawings, pin assignments, and descriptions. All dimensions in figures are in millimeters.

3.2.1 Interface Definition

Figure 3-1 and Figure 3-3 show, respectively, the USB Type-C receptacle and USB Full-Featured Type-C plug interface dimensions.

Figure 3-11 shows the USB 2.0 Type-C plug interface dimensions. The dimensions that govern the mating interoperability are specified. All the REF dimensions are provided for reference only, not hard requirements.

Key features, configuration options, and design areas that need attention:

1. Figure 3-1 shows a vertical-mount receptacle. Other PCB mounting types such as right-angle mount and mid-mount are allowed.

2. A mid-plate is required between the top and bottom signals inside the receptacle tongue to manage crosstalk in full-featured applications. The mid-plate shall be connected to the PCB ground with at least two grounding points. A reference design of the mid-plate is provided in Section 3.2.2.1.

3. Retention of the cable assembly in the receptacle is achieved by the side-latches in the plug and features on the sides of the receptacle tongue. Side latches are required for all plugs except plugs used for docking with no cable attached. Side latches shall be connected to ground inside the plug. A reference design of the side latches is provided in Section 3.2.2.2 along with its grounding scheme. Docking applications may not have side latches, requiring special consideration regarding EMC (Electromagnetic Compatibility).

4. The EMC shielding springs are required inside the cable plug. The shielding spring shall be connected to the plug shell. No EMC shielding spring finger tip of the USB Full-Featured Type-C plug or USB 2.0 Type-C plug shall be exposed in the plug housing opening of the unmated USB Type-C plug (see Figure 3-12). Section 3.2.2.3 shows reference designs of the EMC spring.

5. Shorting of any signal or power contact spring to the plug metal shell is not allowed. The spring in the deflected state should not touch the plug shell. An isolation layer (e.g., Kapton tape placed on the plug shell) is recommended to prevent accidental shorting due to plug shell deformation.

6. The USB Type-C receptacle shall provide an EMC ground return path through one of the following options:
 - a system of specific points of contact on the receptacle outer shell (e.g., spring fingers or spring fingers and formed solid bumps),
 - internal EMC pads, or
 - a combination of both points of contact on the receptacle outer shell and internal EMC pads.

If points of contacts are used on the receptacle, then the receptacle points of contact shall make connection with the mated plug within the contact zones defined in Figure 3-2. A minimum of four separate points of contact are required. Additional points of contact are allowed. See Section 3.2.2.4 for a reference design of receptacle outer shell. The reference design includes four spring fingers as points of contact. Alternate configurations may include spring fingers on the A contact side or B contact side and formed solid bumps (e.g., dimples) on the B contact side or A contact side, respectively. Spring fingers are required on a minimum of one side to provide a pressure fit on
opposing sides of the plug shell. Additional bumps may be used, but if bumps are on opposing sides of the receptacle shell, the minimum distance between the bumps shall be greater than the maximum plug shell defined dimension.

If internal EMC pads are present in the receptacle, then they shall comply with the requirements defined in Figure 3-1. The shielding pads shall be connected to the receptacle shell. If no receptacle shell is present, then the receptacle shall provide a means to connect the shielding pad to ground. See Section 3.2.2.3 for a reference design of the shielding pad and ground connection.

7. This specification defines the USB Type-C receptacle shell length of 6.20 mm as a reference dimension. The USB Type-C receptacle is designed to have shell length of 6.20 ± 0.20 mm to provide proper mechanical and electrical mating of the plug to the receptacle (e.g., full seating of the plug in the receptacle and protection of the receptacle tongue during insertion/withdrawal). The USB Type-C receptacle at the system level should be implemented such that the USB Type-C receptacle connector mounted in the associated system hardware has an effective shell length equal to 6.20 ± 0.20 mm.

8. The USB Type-C connector mating interface is defined so that the electrical connection may be established without the receptacle shell. To prevent excessive misalignment of the plug when it enters or exits the receptacle, the enclosure should have features to guide the plug for insertion and withdrawal when a modified receptacle shell is present. If the USB Type-C receptacle shell is modified from the specified dimension, then the recommended lead in from the receptacle tongue to the plug point of entry is 1.5 mm minimum when mounted in the system.

This specification allows receptacle configurations with a conductive shell, a non-conductive shell, or no shell. The following requirements apply to the receptacle contact dimensions shown in SECTION A-A and ALTERNATE SECTION A-A shown in Figure 3-1:

- If the receptacle shell is conductive, then the receptacle contact dimensions of SECTION A-A or ALTERNATE SECTION A-A shown in Figure 3-1 shall be used.
- If the receptacle shell is non-conductive, then the receptacle contact dimensions of ALTERNATE SECTION A-A shown in Figure 3-1 shall be used. The contact dimensions of SECTION A-A are not allowed.
- If there is no receptacle shell, then the receptacle contact dimensions of either SECTION A-A or ALTERNATE SECTION A-A shown in Figure 3-1 shall be used. If there is no receptacle shell and the receptacle is used in an implementation that does not effectively provide a conductive shell, then a receptacle with the contact dimensions of ALTERNATE SECTION A-A shown in Figure 3-1 should be used.

9. A paddle card (e.g., PCB) may be used in the USB Type-C plug to manage wire termination and electrical performance. Section 3.2.2.5 includes the guidelines and a design example for a paddle card.

10. This specification does not define standard footprints. Figure 3-4 shows an example SMT (surface mount) footprint for the vertical receptacle shown in Figure 3-1. Additional reference footprints and mounting configurations are shown in Figure 3-5, Figure 3-6, Figure 3-7, Figure 3-8, Figure 3-9 and Figure 3-10.

11. The receptacle shell shall be connected to the PCB ground plane.

12. All VBUS pins shall be connected together in the USB Type-C plug.

13. All Ground return pins shall be connected together in the USB Type-C plug.
14. All VBUS pins shall be connected together at the USB Type-C receptacle when it is in its mounted condition (e.g., all VBUS pins bussed together in the PCB).

15. All Ground return pins shall be connected together at the USB Type-C receptacle when it is in its mounted condition (e.g., all Ground return pins bussed together in the PCB).

16. The USB Type-C Power-Only plug is a depopulated version of the USB Full-Featured Type-C plug or the USB 2.0 Type-C plug. The interface dimensions shall conform to Figure 3-3 or Figure 3-11. Contacts for CC, VBUS, and GND (i.e., A1, A4, A5, A9, A12, B1, B4, B9, and B12) shall be present. Physical presence of contacts in the other 15 contact locations is optional. The USB Type-C Power-Only plug shall only be used on a non-charger captive cable application. Implementation of Rd or CC communication on pin A5 is required in the application.
Figure 3-1 USB Type-C Receptacle Interface Dimensions

REFERENCE LENGTH – SEE NOTE 7.
ALTERNATE SECTION A-A dimensions for use if the receptacle shell is non-conductive or there is no receptacle shell. This configuration is also allowed for receptacles with a conductive shell. See text for full requirements.

ALTERNATE SECTION A-A

SECTION B-B

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
Figure 3-1 USB Type-C Receptacle Interface Dimensions, cont.
Figure 3-2 Reference Design USB Type-C Plug External EMC Spring Contact Zones
Figure 3-3 USB Full-Featured Type-C Plug Interface Dimensions
Figure 3-3 USB Full-Featured Type-C Plug Interface Dimensions, cont.
Figure 3-3 USB Full-Featured Type-C Plug Interface Dimensions, cont.
Figure 3-4 Reference Footprint for a USB Type-C Vertical Mount Receptacle (Informative)
Figure 3-5 Reference Footprint for a USB Type-C Dual-Row SMT Right Angle Receptacle (Informative)
Figure 3-6 Reference Footprint for a USB Type-C Hybrid Right-Angle Receptacle (Informative)
Figure 3-7 Reference Footprint for a USB Type-C Mid-Mount Dual-Row SMT Receptacle (Informative)
Figure 3-8 Reference Footprint for a USB Type-C Mid-Mount Hybrid Receptacle
(Informative)
Figure 3-9 Reference Footprint for a USB 2.0 Type-C Through Hole Right Angle Receptacle (Informative)
Figure 3-10 Reference Footprint for a USB 2.0 Type-C Single Row Right Angle Receptacle (Informative)
This specification requires that all contacts be present in the mating interface of the USB Full-Featured Type-C receptacle connector and all contacts except the USB 3.2 or USB4 signals (i.e., A2, A3, A10, A11, B2, B3, B10, and B11) be present in the mating interface of the USB 2.0 Type-C receptacle connector, but allows the plug to include only the contacts required for USB PD and USB 2.0 functionality for applications that only support USB 2.0.

The USB 2.0 Type-C plug is shown in Figure 3-11. The following design simplifications may be made when only USB 2.0 is supported:

- Only the contacts necessary to support USB PD and USB 2.0 are required in the plug. All other pin locations may be unpopulated. See Table 3-5. All contacts are required to be present in the mating interface of the USB Type-C receptacle connector.

- Unlike the USB Full-Featured Type-C plug, the internal EMC springs may be formed from the same strip as the signal, power, and ground contacts. The internal EMC springs contact the inner surface of the plug shell and mate with the receptacle EMC pads when the plug is seated in the receptacle. Alternately, the USB 2.0 Type-C plug may use the same EMC spring configuration as defined for the USB Full-Featured Type-C plug. The USB 2.0 Type-C plug four EMC spring locations are defined in Figure 3-11. The alternate configuration using the six spring locations is defined in Figure 3-1. Also refer to the reference designs in 3.2.2.3 for further clarification.

- A paddle card inside the plug may not be necessary if wires are directly attached to the contact pins.
Figure 3-11 **USB 2.0** Type-C Plug Interface Dimensions
Figure 3-11 **USB 2.0** Type-C Plug Interface Dimensions, cont.
Figure 3-11 USB 2.0 Type-C Plug Interface Dimensions, cont.
Figure 3-12 USB Type-C Plug EMC Shielding Spring Tip Requirements
3.2.2 Reference Designs

This section provides reference designs for a few key features of the USB Type-C connector. The reference designs are provided as acceptable design examples. They are not normative.

3.2.2.1 Receptacle Mid-Plate (Informative)

The signals between the top and bottom of the receptacle tongue are isolated by a mid-plate inside the tongue. Figure 3-13 shows a reference design of the mid-plate. It is important to pay attention to the following features of the middle plate:

- The distance between the signal contacts and the mid-plate should be accurately controlled since the variation of this distance may significantly impact impedance of the connector.
- The mid-plate in this particular design protrudes slightly beyond the front surface of the tongue. This is to protect the tongue front surface from damage caused by miss-insertion of small objects into the receptacle.
- The mid-plate is required to be directly connected to the PCB ground with at least two grounding points.
- The sides of the mid-plate mate with the plug side latches, making ground connections to reduce EMC. Proper surface finishes are necessary in the areas where the side latches and mid-plate connections occur.

![Figure 3-13 Reference Design of Receptacle Mid-Plate](image)
3.2.2.2 Side Latch (informative)

The side latches (retention latches) are located in the plug. Figure 3-14 shows a reference design of a blanked side latch. The plug side latches should contact the receptacle mid-plate to provide an additional ground return path.

3.2.2.3 Internal EMC Springs and Pads (Informative)

Figure 3-16 is a reference design of the internal EMC spring located inside the USB Full-Featured Type-C plug. Figure 3-17 is a reference design of the internal EMC spring located inside the USB 2.0 Type-C plug.
Figure 3-16 Reference Design of the USB Full-Featured Type-C Plug Internal EMC Spring
Figure 3-17 Reference Design of the **USB 2.0** Type-C Plug Internal EMC Spring
It is critical that the internal EMC spring contacts the plug shell as close to the EMC spring mating interface as possible to minimize the length of the return path.

The internal EMC pad (i.e., ground plate) shown in Figure 3-18 is inside the receptacle. It mates with the EMC spring in the plug. To provide an effective ground return, the EMC pads should have multiple connections with the receptacle shell.

Figure 3-18 Reference Design of Internal EMC Pad
3.2.2.4 Optional External Receptacle EMC Springs (Informative)

Some applications may use receptacles with EMC springs that contact the outside of the plug shell. Figure 3-19 shows a reference receptacle design with external EMC springs. The EMC spring contact landing zones for the fully mated condition are normative and defined in Section 3.2.1.

Figure 3-19 Reference Design of a USB Type-C Receptacle with External EMC Springs
3.2.2.5 **USB Full-Featured Type-C Plug Paddle Card (Informative)**

The use of a paddle card is expected in the USB Full-Featured Type-C Plug. Figure 3-20 illustrates the paddle card pin assignment and contact spring connection location for a USB Full-Featured Type-C plug. The following guidelines are provided for the paddle card design:

- The paddle card should use high performance substrate material. The recommended paddle card thickness should have a tolerance less than or equal to ± 10%.
- The SuperSpeed USB traces should be as short as possible and have a nominal differential characteristic impedance of 85 Ω.
- The wire attach should have two high speed differential pairs on one side and two other high speed differential pairs on the other side, separated as far as practically allowed.
- It is recommended that a grounded coplanar waveguide (CPWG) system be selected as a transmission line method.
- Use of vias should be minimized.
- VBUS pins should be bussed together on the paddle card.
- GND pins should be bussed together on the paddle card.

Figure 3-20 Reference Design for a USB Full-Featured Type-C Plug Paddle Card
3.2.3 Pin Assignments and Descriptions

The usage and assignments of the 24 pins for the USB Type-C receptacle interface are defined in Table 3-4.

Table 3-4 USB Type-C Receptacle Interface Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Description</th>
<th>Mating Sequence</th>
<th>Pin</th>
<th>Signal Name</th>
<th>Description</th>
<th>Mating Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>GND</td>
<td>Ground return</td>
<td>First</td>
<td>B12</td>
<td>GND</td>
<td>Ground return</td>
<td>First</td>
</tr>
<tr>
<td>A2</td>
<td>TXp1</td>
<td>Positive half of first TX differential pair</td>
<td>Second</td>
<td>B11</td>
<td>RXp1</td>
<td>Positive half of first RX differential pair</td>
<td>Second</td>
</tr>
<tr>
<td>A3</td>
<td>TXn1</td>
<td>Negative half of first TX differential pair</td>
<td>Second</td>
<td>B10</td>
<td>RXn1</td>
<td>Negative half of first RX differential pair</td>
<td>Second</td>
</tr>
<tr>
<td>A4</td>
<td>Vbus</td>
<td>Bus Power</td>
<td>First</td>
<td>B9</td>
<td>Vbus</td>
<td>Bus Power</td>
<td>First</td>
</tr>
<tr>
<td>A5</td>
<td>CC1</td>
<td>Configuration Channel</td>
<td>Second</td>
<td>B8</td>
<td>SBU2</td>
<td>Sideband Use (SBU)</td>
<td>Second</td>
</tr>
<tr>
<td>A6</td>
<td>Dp1</td>
<td>Positive half of the USB 2.0 differential pair – Position 1</td>
<td>Second</td>
<td>B7</td>
<td>Dn2</td>
<td>Negative half of the USB 2.0 differential pair – Position 2</td>
<td>Second</td>
</tr>
<tr>
<td>A7</td>
<td>Dn1</td>
<td>Negative half of the USB 2.0 differential pair – Position 1</td>
<td>Second</td>
<td>B6</td>
<td>Dp2</td>
<td>Positive half of the USB 2.0 differential pair – Position 2</td>
<td>Second</td>
</tr>
<tr>
<td>A8</td>
<td>SBU1</td>
<td>Sideband Use (SBU)</td>
<td>Second</td>
<td>B5</td>
<td>CC2</td>
<td>Configuration Channel</td>
<td>Second</td>
</tr>
<tr>
<td>A9</td>
<td>Vbus</td>
<td>Bus Power</td>
<td>First</td>
<td>B4</td>
<td>Vbus</td>
<td>Bus Power</td>
<td>First</td>
</tr>
<tr>
<td>A10</td>
<td>RXn2</td>
<td>Negative half of second RX differential pair</td>
<td>Second</td>
<td>B3</td>
<td>TXn2</td>
<td>Negative half of second TX differential pair</td>
<td>Second</td>
</tr>
<tr>
<td>A11</td>
<td>RXp2</td>
<td>Positive half of second TX differential pair</td>
<td>Second</td>
<td>B2</td>
<td>TXp2</td>
<td>Positive half of second TX differential pair</td>
<td>Second</td>
</tr>
<tr>
<td>A12</td>
<td>GND</td>
<td>Ground return</td>
<td>First</td>
<td>B1</td>
<td>GND</td>
<td>Ground return</td>
<td>First</td>
</tr>
</tbody>
</table>

Notes:
1. Contacts B6 and B7 should not be present in the USB Type-C plug. The receptacle side shall support the USB 2.0 differential pair present on Dp1/Dn1 or Dp2/Dn2. The plug orientation determines which pair is active. In one implementation, Dp1 and Dp2 may be shorted on the host/device as close to the receptacle as possible to minimize stub length; Dn1 and Dn2 may also be shorted. The maximum shorting trace length should not exceed 3.5 mm.
2. All Vbus pins shall be connected together within the USB Type-C plug and shall be connected together at the USB Type-C receptacle connector when the receptacle is in its mounted condition (e.g., all Vbus pins bussed together on the PCB).
3. All Ground return pins shall be connected together within the USB Type-C plug and shall be connected together at the USB Type-C receptacle connector when the receptacle is in its mounted condition (e.g., all ground return pins bussed together on the PCB).
4. If the contact dimensions shown in Figure 3-1 ALTERNATE SECTION A-A are used, then the Vbus contacts (A4, A9, B4 and B9) mate second, and signal contacts (A2, A3, A5, A6, A7, A8, A10, A11, B2, B3, B5, B6, B7, B8, B10 and B11) mate third.

The usage and assignments of the signals necessary for the support of only USB 2.0 with the USB Type-C mating interface are defined in Table 3-5.
Table 3-5 USB Type-C Receptacle Interface Pin Assignments for USB 2.0-only Support

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Name</th>
<th>Description</th>
<th>Mating Sequence</th>
<th>Pin</th>
<th>Signal Name</th>
<th>Description</th>
<th>Mating Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>GND</td>
<td>Ground return</td>
<td>First</td>
<td>B12</td>
<td>GND</td>
<td>Ground return</td>
<td>First</td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td></td>
<td></td>
<td>B11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td></td>
<td></td>
<td>B10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>VBUS</td>
<td>Bus Power</td>
<td>First</td>
<td>B9</td>
<td>VBUS</td>
<td>Bus Power</td>
<td>First</td>
</tr>
<tr>
<td>A5</td>
<td>CC1</td>
<td>Configuration Channel</td>
<td>Second</td>
<td>B8</td>
<td>SBU2</td>
<td>Sideband Use (SBU)</td>
<td>Second</td>
</tr>
<tr>
<td>A6</td>
<td>Dp1</td>
<td>Positive half of the USB2.0 differential pair – Position 1</td>
<td>Second</td>
<td>B7</td>
<td>Dn2</td>
<td>Negative half of the USB2.0 differential pair – Position 2</td>
<td>Second</td>
</tr>
<tr>
<td>A7</td>
<td>Dn1</td>
<td>Negative half of the USB2.0 differential pair – Position 1</td>
<td>Second</td>
<td>B6</td>
<td>Dp2</td>
<td>Positive half of the USB2.0 differential pair – Position 2</td>
<td>Second</td>
</tr>
<tr>
<td>A8</td>
<td>SBU1</td>
<td>Sideband Use (SBU)</td>
<td>Second</td>
<td>B5</td>
<td>CC2</td>
<td>Configuration Channel</td>
<td>Second</td>
</tr>
<tr>
<td>A9</td>
<td>VBUS</td>
<td>Bus Power</td>
<td>First</td>
<td>B4</td>
<td>VBUS</td>
<td>Bus Power</td>
<td>First</td>
</tr>
<tr>
<td>A10</td>
<td></td>
<td></td>
<td></td>
<td>B3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td></td>
<td></td>
<td></td>
<td>B2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td>GND</td>
<td>Ground return</td>
<td>First</td>
<td>B1</td>
<td>GND</td>
<td>Ground return</td>
<td>First</td>
</tr>
</tbody>
</table>

Notes:
1. Unused contact locations shall be electrically isolated from power, ground or signaling (i.e., not connected).
2. Contacts B6 and B7 should not be present in the USB Type-C plug. The receptacle side shall support the USB 2.0 differential pair present on Dp1/Dn1 or Dp2/Dn2. The plug orientation determines which pair is active. In one implementation, Dp1 and Dp2 may be shorted on the host/device as close to the receptacle as possible to minimize stub length; Dn1 and Dn2 may also be shorted. The maximum shorting trace length should not exceed 3.5 mm.
3. Contacts A8 and B8 (SBU1 and SBU2) shall be not connected unless required for a specified purpose (e.g., Audio Adapter Accessory Mode).
4. All VBUS pins shall be connected together within the USB Type-C plug and shall be connected together at the USB Type-C receptacle connector when the receptacle is in its mounted condition (e.g., all VBUS pins bussed together on the PCB).
5. All Ground return pins shall be connected together within the USB Type-C plug and shall be connected together at the USB Type-C receptacle connector when the receptacle is in its mounted condition (e.g., all ground return pins bussed together on the PCB).
6. If the contact dimensions shown in Figure 3-1 ALTERNATE SECTION A-A are used then the VBUS contacts (A4, A9, B4 and B9) mate second, and signal contacts (A5, A6, A7, A8, B5, B6, B7 and B8) mate third.

3.3 Cable Construction and Wire Assignments

This section discusses the USB Type-C cables, including cable construction, wire assignments, and wire gauges.

3.3.1 Cable Construction (Informative)

Figure 3-21 illustrates an example of USB Full-Featured Type-C cable cross-section, using micro-coaxial wires for TX/RX pairs. There are four groups of wires: USB D+/D− (typically unshielded twisted pairs (UTP)), TX/RX signal pairs (coaxial wires, twin-axial or shielded twisted pairs), sideband signal wires, and power and ground wires. In this example, the optional VCONN wire is shown whereas in Figure 3-22 the example is shown with the VCONN.
wire removed – the inclusion of \textit{VCONN} or not relates to the implementation approach chosen for \textit{Electronically Marked Cables} (See Section 4.9).

\textbf{Figure 3-21} \textit{Illustration of a USB Full-Featured Type-C Cable Cross Section, a Coaxial Wire Example with VCONN}

![Figure 3-21 Illustration of a USB Full-Featured Type-C Cable Cross Section, a Coaxial Wire Example with VCONN](image1)

\textit{OD = 4.8mm}
\textit{Coax are TX/RX pairs – specific pairs not defined in cable}

\textbf{Figure 3-22} \textit{Illustration of a USB Full-Featured Type-C Cable Cross Section, a Coaxial Wire Example without VCONN}

![Figure 3-22 Illustration of a USB Full-Featured Type-C Cable Cross Section, a Coaxial Wire Example without VCONN](image2)

\textit{OD = 4.8mm}
\textit{Coax are TX/RX pairs – specific pairs not defined in cable}

The USB D+/D− signal pair is intended to transmit the \textit{USB 2.0} Low-Speed, Full-Speed and High-Speed signaling while the TX/RX signal pairs are used for either \textit{USB 3.2} or \textit{USB4} signaling. Shielding is needed for the TX/RX differential pairs for signal integrity and EMC performance.
3.3.2 Wire Assignments

Table 3-6 defines the full set of possible wires needed to produce all standard USB Type-C cables assemblies. For some cable assemblies, not all of these wires are used. For example, a USB Type-C cable that only provides USB 2.0 functionality will not include wires 6–15.

Table 3-6 USB Type-C Standard Cable Wire Assignments

<table>
<thead>
<tr>
<th>Wire Number</th>
<th>Signal Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND_PWRrt1</td>
<td>Ground for power return</td>
</tr>
<tr>
<td>2</td>
<td>PWR_VBUS1</td>
<td>VBUS power</td>
</tr>
<tr>
<td>3</td>
<td>CC</td>
<td>Configuration Channel</td>
</tr>
<tr>
<td>4</td>
<td>UTP_Dp</td>
<td>Unshielded twist pair, positive</td>
</tr>
<tr>
<td>5</td>
<td>UTP_Dn</td>
<td>Unshielded twist pair, negative</td>
</tr>
<tr>
<td>6</td>
<td>SDP_p1</td>
<td>Shielded differential pair #1, positive</td>
</tr>
<tr>
<td>7</td>
<td>SDP_n1</td>
<td>Shielded differential pair #1, negative</td>
</tr>
<tr>
<td>8</td>
<td>SDP_p2</td>
<td>Shielded differential pair #2, positive</td>
</tr>
<tr>
<td>9</td>
<td>SDP_n2</td>
<td>Shielded differential pair #2, negative</td>
</tr>
<tr>
<td>10</td>
<td>SDP_p3</td>
<td>Shielded differential pair #3, positive</td>
</tr>
<tr>
<td>11</td>
<td>SDP_n3</td>
<td>Shielded differential pair #3, negative</td>
</tr>
<tr>
<td>12</td>
<td>SDP_p4</td>
<td>Shielded differential pair #4, positive</td>
</tr>
<tr>
<td>13</td>
<td>SDP_n4</td>
<td>Shielded differential pair #4, negative</td>
</tr>
<tr>
<td>14</td>
<td>SBU_A</td>
<td>Sideband Use</td>
</tr>
<tr>
<td>15</td>
<td>SBU_B</td>
<td>Sideband Use</td>
</tr>
<tr>
<td>16</td>
<td>GND_PWRrt2</td>
<td>Ground for power return (optional)</td>
</tr>
<tr>
<td>17</td>
<td>PWR_VBUS2</td>
<td>VBUS power (optional)</td>
</tr>
<tr>
<td>18</td>
<td>PWR_CONN</td>
<td>VCONN power (optional, see Section 4.9)</td>
</tr>
<tr>
<td>Braid</td>
<td>Shield</td>
<td>Cable external braid</td>
</tr>
</tbody>
</table>

Note:

1. This table is based on the assumption that coaxial wire construction is used for all SDP’s and there are no drain wires. The signal ground return is through the shields of the coaxial wires. If shielded twisted or twin-axial pairs are used, then drain wires are needed.
Table 3-7 defines the full set of possible wires needed to produce USB Type-C to legacy cable assemblies. For some cable assemblies, not all of these wires are needed. For example, a USB Type-C to USB 2.0 Standard-B cable will not include wires 5–10.

Table 3-7 USB Type-C Cable Wire Assignments for Legacy Cables/Adapters

<table>
<thead>
<tr>
<th>Wire Number</th>
<th>Signal Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND_PWRrt1</td>
<td>Ground for power return</td>
</tr>
<tr>
<td>2</td>
<td>PWR_VBUS1</td>
<td>VBUS power</td>
</tr>
<tr>
<td>3</td>
<td>UTP_Dp</td>
<td>Unshielded twist pair, positive</td>
</tr>
<tr>
<td>4</td>
<td>UTP_Dn</td>
<td>Unshielded twist pair, negative</td>
</tr>
<tr>
<td>5</td>
<td>SDPp1</td>
<td>Shielded differential pair #1, positive</td>
</tr>
<tr>
<td>6</td>
<td>SDPn1</td>
<td>Shielded differential pair #1, negative</td>
</tr>
<tr>
<td>7</td>
<td>SDP1_Drain</td>
<td>Drain wire for SDPp1 and SDPn1</td>
</tr>
<tr>
<td>8</td>
<td>SDPp2</td>
<td>Shielded differential pair #2, positive</td>
</tr>
<tr>
<td>9</td>
<td>SDPn2</td>
<td>Shielded differential pair #2, negative</td>
</tr>
<tr>
<td>10</td>
<td>SDP2_Drain</td>
<td>Drain wire for SDPp2 and SDPn2</td>
</tr>
<tr>
<td>Braid</td>
<td>Shield</td>
<td>Cable external braid</td>
</tr>
</tbody>
</table>

Note:
- This table is based on the assumption that shielded twisted pair is used for all SDP’s and there are drain wires. If coaxial wire construction is used, then no drain wires are needed and the signal ground return is through the shields of the coaxial wires.

3.3.3 Wire Gauges and Cable Diameters (Informative)

This specification does not specify wire gauge. Table 3-8 and Table 3-9 list typical wire gauges for reference purposes only. A large gauge wire incurs less loss, but at the cost of cable diameter and flexibility. Multiple wires may be used for a single wire such as for VBUS or Ground. It is recommended to use the smallest possible wire gauges that meet the cable assembly electrical and mechanical requirements.

To maximize cable flexibility, all wires should be stranded and the cable outer diameter should be minimized as much as possible. A typical USB Full-Featured Type-C cable outer diameter may range from 4 mm to 6 mm while a typical USB 2.0 Type-C cable outer diameter may range from 2 mm to 4 mm. A typical USB Type-C to USB 3.1 legacy cable outer diameter may range from 3 mm to 5 mm.
Table 3-8 Reference Wire Gauges for standard USB Type-C Cable Assemblies

<table>
<thead>
<tr>
<th>Wire Number</th>
<th>Signal Name</th>
<th>Wire Gauge (AWG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND_PWRrt1</td>
<td>20-28</td>
</tr>
<tr>
<td>2</td>
<td>PWR_VBUS1</td>
<td>20-28</td>
</tr>
<tr>
<td>3</td>
<td>CC</td>
<td>32-34</td>
</tr>
<tr>
<td>4</td>
<td>UTP_Dp</td>
<td>28-34</td>
</tr>
<tr>
<td>5</td>
<td>UTP_Dn</td>
<td>28-34</td>
</tr>
<tr>
<td>6</td>
<td>SDPp1</td>
<td>26-34</td>
</tr>
<tr>
<td>7</td>
<td>SDPn1</td>
<td>26-34</td>
</tr>
<tr>
<td>8</td>
<td>SDPp2</td>
<td>26-34</td>
</tr>
<tr>
<td>9</td>
<td>SDPn2</td>
<td>26-34</td>
</tr>
<tr>
<td>10</td>
<td>SDPp3</td>
<td>26-34</td>
</tr>
<tr>
<td>11</td>
<td>SDPn3</td>
<td>26-34</td>
</tr>
<tr>
<td>12</td>
<td>SDPp4</td>
<td>26-34</td>
</tr>
<tr>
<td>13</td>
<td>SDPn4</td>
<td>26-34</td>
</tr>
<tr>
<td>14</td>
<td>SBU_A</td>
<td>32-34</td>
</tr>
<tr>
<td>15</td>
<td>SBU_B</td>
<td>32-34</td>
</tr>
<tr>
<td>16</td>
<td>GND_PWRrt2</td>
<td>20-28</td>
</tr>
<tr>
<td>17</td>
<td>PWR_VBUS2</td>
<td>20-28</td>
</tr>
<tr>
<td>18</td>
<td>PWR_VCONN</td>
<td>32-34</td>
</tr>
</tbody>
</table>

Table 3-9 Reference Wire Gauges for USB Type-C to Legacy Cable Assemblies

<table>
<thead>
<tr>
<th>Wire Number</th>
<th>Signal Name</th>
<th>Wire Gauge (AWG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND_PWRrt1</td>
<td>20-28</td>
</tr>
<tr>
<td>2</td>
<td>PWR_VBUS1</td>
<td>20-28</td>
</tr>
<tr>
<td>3</td>
<td>UTP_Dp</td>
<td>28-34</td>
</tr>
<tr>
<td>4</td>
<td>UTP_Dn</td>
<td>28-34</td>
</tr>
<tr>
<td>5</td>
<td>SDPp1</td>
<td>26-34</td>
</tr>
<tr>
<td>6</td>
<td>SDPn1</td>
<td>26-34</td>
</tr>
<tr>
<td>7</td>
<td>SDP1_Drain</td>
<td>28-34</td>
</tr>
<tr>
<td>8</td>
<td>SDPp2</td>
<td>26-34</td>
</tr>
<tr>
<td>9</td>
<td>SDPn2</td>
<td>26-34</td>
</tr>
<tr>
<td>10</td>
<td>SDP2_Drain</td>
<td>28-34</td>
</tr>
</tbody>
</table>
3.4 Standard USB Type-C Cable Assemblies

Two standard USB Type-C cable assemblies are defined and allowed by this specification. In addition, captive cables are allowed (see Section 3.4.3). Shielding (braid) is required to enclose all the wires in the USB Type-C cable. The shield shall be terminated to the plug metal shells. The shield should be physically connected to the plug metal shell as close to 360° as possible, to control EMC.

Note: Up until Release 1.4 of this specification, the TX and RX signals used in this specification were named SSTX and SSRX. With the introduction of USB4, these signals were renamed such that they generically can apply to both SuperSpeed USB and USB4 signaling. It is intended that the TX and RX signal names are synonymous with the original SSTX and SSRX names for implementations prior to Release 2.0 of this specification.

3.4.1 USB Full-Featured Type-C Cable Assembly

Figure 3-23 shows a USB Full-Featured Type-C standard cable assembly.

![USB Full-Featured Type-C Standard Cable Assembly](image)

Table 3-10 defines the wire connections for the USB Full-Featured Type-C standard cable assembly.
Table 3-10 USB Full-Featured Type-C Standard Cable Assembly Wiring

<table>
<thead>
<tr>
<th>USB Type-C Plug #1</th>
<th>Wire</th>
<th>Signal Name</th>
<th>USB Type-C Plug #2</th>
<th>Pin</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
<td>Signal Name</td>
<td>Wire Number</td>
<td>Pin</td>
<td>Signal Name</td>
<td></td>
</tr>
<tr>
<td>A1, B1, A12, B12</td>
<td>GND</td>
<td>1 [16] GND_PWRrt1 [GND_PWRrt2]</td>
<td>A1, B1, A12, B12</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>A4, B4, A9, B9</td>
<td>VBUS</td>
<td>2 [17] PWR_VBUS1 [PWR_VBUS2]</td>
<td>A4, B4, A9, B9</td>
<td>VBUS</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>CC</td>
<td>3</td>
<td>A5</td>
<td>CC</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>V_CONN</td>
<td>18</td>
<td>B5</td>
<td>V_CONN</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>Dp1</td>
<td>4</td>
<td>A6</td>
<td>Dp1</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>Dn1</td>
<td>5</td>
<td>A7</td>
<td>Dn1</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>TXp1</td>
<td>6</td>
<td>B11</td>
<td>RXp1</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>TXn1</td>
<td>7</td>
<td>B10</td>
<td>RXn1</td>
<td></td>
</tr>
<tr>
<td>B11</td>
<td>RXp1</td>
<td>8</td>
<td>A2</td>
<td>TXp1</td>
<td></td>
</tr>
<tr>
<td>B10</td>
<td>RXn1</td>
<td>9</td>
<td>A3</td>
<td>TXn1</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>TXp2</td>
<td>10</td>
<td>A11</td>
<td>RXp2</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>TXn2</td>
<td>11</td>
<td>A10</td>
<td>RXn2</td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>RXp2</td>
<td>12</td>
<td>B2</td>
<td>TXp2</td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>RXn2</td>
<td>13</td>
<td>B3</td>
<td>TXn2</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>SBU1</td>
<td>14</td>
<td>B8</td>
<td>SBU2</td>
<td></td>
</tr>
<tr>
<td>B8</td>
<td>SBU2</td>
<td>15</td>
<td>A8</td>
<td>SBU1</td>
<td></td>
</tr>
<tr>
<td>Shell</td>
<td>Shield</td>
<td>Outer shield</td>
<td>Shield</td>
<td>Shell</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. This table is based on the assumption that coaxial wire construction is used for all SDP’s and there are no drain wires. The shields of the coaxial wires are connected to the ground pins. If shielded twisted pair is used, then drain wires are needed and shall be connected to the GND pins.
2. Pin B5 (V_CONN) of the USB Type-C plug shall be used in electronically marked versions of this cable. See Section 4.9.
3. Contacts B6 and B7 should not be present in the USB Type-C plug.
4. All VBUS pins shall be connected together within the USB Type-C plug. A 10 nF bypass capacitor (minimum voltage rating of 30 V) is required for the VBUS pin in the full-featured cable at each end of the cable. The bypass capacitor should be placed as close as possible to the power supply pad.
5. All GND pins shall be connected together within the USB Type-C plug.
6. Shield and GND shall be connected within the USB Type-C plug on both ends of the cable assembly.

3.4.2 USB 2.0 Type-C Cable Assembly

A USB 2.0 Type-C standard cable assembly has the same form factor shown in Figure 3-23.

Table 3-11 defines the wire connections for the USB 2.0 Type-C standard cable assembly.
Table 3-11 **USB 2.0** Type-C Standard Cable Assembly Wiring

<table>
<thead>
<tr>
<th>USB Type-C Plug #1</th>
<th>Wire</th>
<th>USB Type-C Plug #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
<td>Signal Name</td>
<td>Wire Number</td>
</tr>
<tr>
<td>A1, B1, A12, B12</td>
<td>GND</td>
<td>1</td>
</tr>
<tr>
<td>A4, B4, A9, B9</td>
<td>VBUS</td>
<td>2</td>
</tr>
<tr>
<td>A5</td>
<td>CC</td>
<td>3</td>
</tr>
<tr>
<td>B5</td>
<td>VCONN</td>
<td>18</td>
</tr>
<tr>
<td>A6</td>
<td>Dp1</td>
<td>4</td>
</tr>
<tr>
<td>A7</td>
<td>Dn1</td>
<td>5</td>
</tr>
<tr>
<td>Shell</td>
<td>Shield</td>
<td>Outer shield</td>
</tr>
</tbody>
</table>

Notes:
1. Pin B5 (VCONN) of the USB Type-C plug shall be used in electronically marked versions of this cable. See Section 4.9.
2. Contacts B6 and B7 should not be present in the USB Type-C plug.
3. All VBUS pins shall be connected together within the USB Type-C plug. A bypass capacitor is not required for the VBUS pin in the **USB 2.0** Type-C cable.
4. All GND pins shall be connected together within the USB Type-C plug.
5. All USB Type-C plug pins that are not listed in this table shall be open (not connected).
6. Shield and GND grounds shall be connected within the USB Type-C plug on both ends of the cable assembly.

3.4.3 **USB Type-C** Captive Cable Assemblies

A captive cable assembly is a cable assembly that is terminated on one end with a USB Type-C plug and has a vendor-specific connect means (hardwired or custom detachable) on the opposite end. The cable assembly that is hardwired is not detachable from the device.

The assembly wiring for captive USB Type-C cables follow the same wiring assignments as the standard cable assemblies (see Table 3-10 and Table 3-11) with the exception that the hardwired attachment on the device side substitutes for the USB Type-C Plug #2 end.

The CC wire in a captive cable shall be terminated and behave as appropriate to the function of the product to which it is captive (e.g. host or device).

This specification does not define how the hardwired attachment is physically done on the device side.

3.5 **Legacy Cable Assemblies**

To enable interoperability between USB Type-C-based products and legacy USB products, the following standard legacy cable assemblies are defined. Only the cables defined within this specification are allowed.

Legacy cable assemblies that source power to a USB Type-C connector (e.g. a USB Type-C to USB Standard-A plug cable assembly and a USB Type-C plug to USB Micro-B receptacle adapter assembly) are required to use the Default USB Type-C Current Rp resistor (56 kΩ). The value of Rp is used to inform the Sink how much current the Source can provide. Since the legacy cable assembly does not comprehend the capability of the Source it is connected to, it is only allowed to advertise Default USB Type-C Current as defined by the **USB 2.0**, **USB**
3.1 and USB BC 1.2 specifications. No other Rp values are permitted because these may cause a USB Type-C Sink to overload a legacy power supply.

3.5.1 USB Type-C to USB 3.1 Standard-A Cable Assembly

Figure 3-24 shows a USB Type-C to USB 3.1 Standard-A cable assembly.

Table 3-12 defines the wire connections for the USB Type-C to USB 3.1 Standard-A cable assembly.

Table 3-12 USB Type-C to USB 3.1 Standard-A Cable Assembly Wiring

<table>
<thead>
<tr>
<th>USB Type-C Plug</th>
<th>Wire</th>
<th>USB 3.1 Standard-A plug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
<td>Signal Name</td>
<td>Wire Number</td>
</tr>
<tr>
<td>A1, B1, A12, B12</td>
<td>GND</td>
<td>1, 7, 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4, B4, A9, B9</td>
<td>VBUS</td>
<td>2</td>
</tr>
<tr>
<td>A5</td>
<td>CC</td>
<td>See Note 2</td>
</tr>
<tr>
<td>B5</td>
<td>VCONN</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>Dp1</td>
<td>3</td>
</tr>
<tr>
<td>A7</td>
<td>Dn1</td>
<td>4</td>
</tr>
<tr>
<td>A2</td>
<td>TXp1</td>
<td>5</td>
</tr>
<tr>
<td>A3</td>
<td>TXn1</td>
<td>6</td>
</tr>
<tr>
<td>B11</td>
<td>RXp1</td>
<td>8</td>
</tr>
<tr>
<td>B10</td>
<td>RXn1</td>
<td>9</td>
</tr>
<tr>
<td>Shell</td>
<td>Shield</td>
<td>Outer shield</td>
</tr>
</tbody>
</table>

Notes:

1. This table is based on the assumption that shielded twisted pair is used for all SDP’s and there are drain wires. If coaxial wire construction is used, then no drain wires are present and the shields of the coaxial wires are connected to the ground pins.
2. Pin A5 (CC) of the USB Type-C plug shall be connected to VBUS through a resistor Rp (56 kΩ ± 5%). See Section 4.5.3.2.2 and Table 4-24 for the functional description and value of Rp.
3. Contacts B6 and B7 should not be present in the USB Type-C plug.
4. All VBUS pins shall be connected together within the USB Type-C plug. A bypass capacitor is required between the VBUS and ground pins in the USB Type-C plug side of the cable. The bypass capacitor shall be 10 nF ± 20% in cables which incorporate a USB Standard-A plug. The bypass capacitor shall be placed as close as possible to the power supply pad.
5. All Ground return pins shall be connected together within the USB Type-C plug.
6. Shield and GND grounds shall be connected within the USB Type-C and USB 3.1 Standard-A plugs on both ends of the cable assembly.
7. All USB Type-C plug pins that are not listed in this table shall be open (not connected).
3.5.2 USB Type-C to USB 2.0 Standard-A Cable Assembly

Figure 3-25 shows a USB Type-C to USB 2.0 Standard-A cable assembly.

![USB Type-C to USB 2.0 Standard-A Cable Assembly](image)

Table 3-13 defines the wire connections for the USB Type-C to USB 2.0 Standard-A cable assembly.

<table>
<thead>
<tr>
<th>USB Type-C Plug</th>
<th>Wire</th>
<th>USB 2.0 Standard-A plug</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pin</td>
<td>Signal Name</td>
<td>Wire Number</td>
</tr>
<tr>
<td>A1, B1, A12, B12</td>
<td>GND</td>
<td>1</td>
</tr>
<tr>
<td>A4, B4, A9, B9</td>
<td>VBUS</td>
<td>2</td>
</tr>
<tr>
<td>A5</td>
<td>CC</td>
<td>See Note 1</td>
</tr>
<tr>
<td>B5</td>
<td>VCONN</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>Dp1</td>
<td>3</td>
</tr>
<tr>
<td>A7</td>
<td>Dn1</td>
<td>4</td>
</tr>
<tr>
<td>Shell</td>
<td>Shield</td>
<td>Outer shield</td>
</tr>
</tbody>
</table>

Notes:

1. Pin A5 (CC) of the USB Type-C plug shall be connected to VBUS through a resistor Rp (56 kΩ ± 5%). See Section 4.5.3.2.2 and Table 4-24 for the functional description and value of Rp.
2. Contacts B6 and B7 should not be present in the USB Type-C plug.
3. All VBUS pins shall be connected together within the USB Type-C plug. Bypass capacitors are not required for the VBUS pins in this cable.
4. All Ground return pins shall be connected together within the USB Type-C plug.
5. Shield and GND grounds shall be connected within the USB Type-C and USB 2.0 Standard-A plugs on both ends of the cable assembly.
6. All USB Type-C plug pins that are not listed in this table shall be open (not connected).
3.5.3 USB Type-C to USB 3.1 Standard-B Cable Assembly

Figure 3-26 shows a USB Type-C to USB 3.1 Standard-B cable assembly.

Figure 3-26 USB Type-C to USB 3.1 Standard-B Cable Assembly

Table 3-14 defines the wire connections for the USB Type-C to USB 3.1 Standard-B cable assembly.

Table 3-14 USB Type-C to USB 3.1 Standard-B Cable Assembly Wiring

<table>
<thead>
<tr>
<th>USB Type-C Plug</th>
<th>Wire</th>
<th>Signal Name</th>
<th>Wire Number</th>
<th>Signal Name</th>
<th>Pin</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1, B1, A12, B12</td>
<td>GND</td>
<td></td>
<td>1</td>
<td>GND_PWRrt1</td>
<td>4</td>
<td>GND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7, 10</td>
<td>SDP1_Drain, SDP2_Drain</td>
<td>7</td>
<td>GND_DRAIN</td>
</tr>
<tr>
<td>A4, B4, A9, B9</td>
<td>VBUS</td>
<td></td>
<td>2</td>
<td>PWR_Vbus1</td>
<td>1</td>
<td>VBUS</td>
</tr>
<tr>
<td>A5</td>
<td>CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See Note 1</td>
</tr>
<tr>
<td>B5</td>
<td>VCONN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>Dp1</td>
<td></td>
<td>3</td>
<td>UTP_Dp</td>
<td>3</td>
<td>D+</td>
</tr>
<tr>
<td>A7</td>
<td>Dn1</td>
<td></td>
<td>4</td>
<td>UTP_Dn</td>
<td>2</td>
<td>D−</td>
</tr>
<tr>
<td>A2</td>
<td>TXp1</td>
<td></td>
<td>5</td>
<td>SDPp1</td>
<td>9</td>
<td>StdB_SSXR+</td>
</tr>
<tr>
<td>A3</td>
<td>TXn1</td>
<td></td>
<td>6</td>
<td>SDPn1</td>
<td>8</td>
<td>StdB_SSTX−</td>
</tr>
<tr>
<td>B11</td>
<td>RXp1</td>
<td></td>
<td>8</td>
<td>SDPp2</td>
<td>6</td>
<td>StdB_SSTX+</td>
</tr>
<tr>
<td>B10</td>
<td>RXn1</td>
<td></td>
<td>9</td>
<td>SDPn2</td>
<td>5</td>
<td>StdB_SSTX−</td>
</tr>
<tr>
<td>Shell</td>
<td>Shield</td>
<td></td>
<td></td>
<td>Shell</td>
<td>Shell</td>
<td>Shield</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outer Shield</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shield</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Pin A5 (CC) of the USB Type-C plug shall be connected to GND through a resistor Rd (5.1 kΩ ± 20%). See Section 4.5.3.2.1 and Table 4-25 for the functional description and value of Rd.
2. This table is based on the assumption that shielded twisted pair is used for all SDP’s and there are drain wires. If coaxial wire construction is used, then no drain wires are present and the shields of the coaxial wires are connected to the ground pins.
3. Contacts B6 and B7 should not be present in the USB Type-C plug.
4. All Vbus pins shall be connected together within the USB Type-C plug. A bypass capacitor is required between the Vbus and ground pins in the USB Type-C plug side of the cable. The bypass capacitor shall be 10nF ± 20% in cables which incorporate a USB Standard-B plug. The bypass capacitor shall be placed as close as possible to the power supply pad.
5. All Ground return pins shall be connected together within the USB Type-C plug.
6. Shield and GND grounds shall be connected within the USB Type-C and USB 3.1 Standard-B plugs on both ends of the cable assembly.
7. All USB Type-C plug pins that are not listed in this table shall be open (not connected).
3.5.4 USB Type-C to USB 2.0 Standard-B Cable Assembly

Figure 3-27 shows a USB Type-C to USB 2.0 Standard-B cable assembly.

![USB Type-C to USB 2.0 Standard-B Cable Assembly](image)

Table 3-15 defines the wire connections for the USB Type-C to USB 2.0 Standard-B cable assembly.

<table>
<thead>
<tr>
<th>USB Type-C Plug</th>
<th>Wire</th>
<th>Signal Name</th>
<th>Wire Number</th>
<th>Signal Name</th>
<th>USB 2.0 Standard-B Plug</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1, B1, A12, B12</td>
<td>GND</td>
<td>1</td>
<td>GND_PWRrt1</td>
<td>4</td>
<td>GND</td>
</tr>
<tr>
<td>A4, B4, A9, B9</td>
<td>VBUS</td>
<td>2</td>
<td>PWR_VBUS1</td>
<td>1</td>
<td>VBUS</td>
</tr>
<tr>
<td>A5</td>
<td>CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>VCONN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>Dp1</td>
<td>3</td>
<td>UTP_Dp</td>
<td>3</td>
<td>D+</td>
</tr>
<tr>
<td>A7</td>
<td>Dn1</td>
<td>4</td>
<td>UTP_Dn</td>
<td>2</td>
<td>D−</td>
</tr>
<tr>
<td>Shell</td>
<td>Shield</td>
<td>Outer shield</td>
<td>Shell</td>
<td>Shield</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Pin A5 (CC) of the USB Type-C plug shall be connected to GND through a resistor Rd (5.1 kΩ ± 20%). See Section 4.5.3.2.1 and Table 4-25 for the functional description and value of Rd.
2. Contacts B6 and B7 should not be present in the USB Type-C plug.
3. All VBUS pins shall be connected together within the USB Type-C plug. Bypass capacitors are not required for the VBUS pins in this cable.
4. All Ground return pins shall be connected together within the USB Type-C plug.
5. Shield and GND grounds shall be connected within the USB Type-C and USB 2.0 Standard-B plugs on both ends of the cable assembly.
6. All USB Type-C plug pins that are not listed in this table shall be open (not connected).
3.5.5 **USB Type-C to USB 2.0 Mini-B Cable Assembly**

Figure 3-28 shows a USB Type-C to **USB 2.0** Mini-B cable assembly.

![Figure 3-28 USB Type-C to USB 2.0 Mini-B Cable Assembly](image)

Table 3-16 defines the wire connections for the USB Type-C to **USB 2.0** Mini-B cable assembly.

Table 3-16 USB Type-C to **USB 2.0** Mini-B Cable Assembly Wiring

<table>
<thead>
<tr>
<th>USB Type-C Plug</th>
<th>Wire</th>
<th>USB 2.0 Mini-B plug</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pin</td>
<td>Signal Name</td>
</tr>
<tr>
<td>A1, B1, A12, B12</td>
<td>GND</td>
<td>1</td>
</tr>
<tr>
<td>A4, B4, A9, B9</td>
<td>VBUS</td>
<td>2</td>
</tr>
<tr>
<td>A5</td>
<td>CC</td>
<td>See Note 1</td>
</tr>
<tr>
<td>A6</td>
<td>Dp1</td>
<td>3</td>
</tr>
<tr>
<td>A7</td>
<td>Dn1</td>
<td>4</td>
</tr>
<tr>
<td>Shell</td>
<td>Shield</td>
<td>Outer shield</td>
</tr>
</tbody>
</table>

Notes:

1. Pin A5 of the USB Type-C plug shall be connected to GND through a resistor Rd (5.1 kΩ ± 20%). See Section 4.5.3.2.1 and Table 4-25 for the functional description and value of Rd.
2. Contacts B6 and B7 should not be present in the USB Type-C plug.
3. All VBUS pins shall be connected together within the USB Type-C plug. Bypass capacitors are not required for the VBUS pins in this cable.
4. All Ground return pins shall be connected together within the USB Type-C plug.
5. Pin 4 (ID) of the **USB 2.0** Mini-B plug shall be terminated as defined in the applicable specification for the cable type.
6. Shield and GND grounds shall be connected within the USB Type-C and **USB 2.0** Mini-B plugs on both ends of the cable assembly.
7. All USB Type-C plug pins that are not listed in this table shall be open (not connected).
3.5.6 USB Type-C to USB 3.1 Micro-B Cable Assembly

Figure 3-29 shows a USB Type-C to USB 3.1 Micro-B cable assembly.

Figure 3-29 USB Type-C to USB 3.1 Micro-B Cable Assembly

Table 3-17 defines the wire connections for the USB Type-C to USB 3.1 Micro-B cable assembly.
Table 3-17 USB Type-C to **USB 3.1** Micro-B Cable Assembly Wiring

<table>
<thead>
<tr>
<th>USB Type-C Plug</th>
<th>Wire</th>
<th>USB 3.1 Micro-B plug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
<td>Signal Name</td>
<td>Wire Number</td>
</tr>
<tr>
<td>A1, B1, A12, B12</td>
<td>GND</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7, 10</td>
</tr>
<tr>
<td>A4, B4, A9, B9</td>
<td>VBUS</td>
<td>2</td>
</tr>
<tr>
<td>A5</td>
<td>CC</td>
<td>See Note 1</td>
</tr>
<tr>
<td>B5</td>
<td>VCONN</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>Dp1</td>
<td>3</td>
</tr>
<tr>
<td>A7</td>
<td>Dn1</td>
<td>4</td>
</tr>
<tr>
<td>A2</td>
<td>TXp1</td>
<td>5</td>
</tr>
<tr>
<td>A3</td>
<td>TXn1</td>
<td>6</td>
</tr>
<tr>
<td>B11</td>
<td>RXp1</td>
<td>8</td>
</tr>
<tr>
<td>B10</td>
<td>RXn1</td>
<td>9</td>
</tr>
<tr>
<td>Shell</td>
<td>Shield</td>
<td>Outer shield</td>
</tr>
</tbody>
</table>

Notes:

1. Pin A5 (CC) of the USB Type-C plug shall be connected to GND through a resistor Rd (5.1 kΩ ± 20%). See Section 4.5.3.2.1 and Table 4-25 for the functional description and value of Rd.
2. This table is based on the assumption that shielded twisted pair is used for all SDP’s and there are drain wires. If coaxial wire construction is used, then no drain wires are present and the shields of the coaxial wires are connected to the ground pins.
3. Contacts B6 and B7 should not be present in the USB Type-C plug.
4. All VBUS pins shall be connected together within the USB Type-C plug. A bypass capacitor is required between the VBUS and ground pins in the USB Type-C plug side of the cable. The bypass capacitor shall be 10nF ± 20% in cables which incorporate a USB Micro-B plug. The bypass capacitor should be placed as close as possible to the power supply pad.
5. All Ground return pins shall be connected together within the USB Type-C plug.
6. Pin 4 (ID) of the **USB 3.1** Micro-B plug shall be terminated as defined in the applicable specification for the cable type.
7. Shield and GND grounds shall be connected within the USB Type-C and **USB 3.1** Micro-B plugs on both ends of the cable assembly.
8. All USB Type-C plug pins that are not listed in this table shall be open (not connected).
3.5.7 USB Type-C to USB 2.0 Micro-B Cable Assembly

Figure 3-30 shows a USB Type-C to USB 2.0 Micro-B cable assembly.

![USB Type-C to USB 2.0 Micro-B Cable Assembly](image)

Table 3-18 defines the wire connections for the USB Type-C to USB 2.0 Micro-B cable assembly.

Table 3-18 USB Type-C to USB 2.0 Micro-B Cable Assembly Wiring

<table>
<thead>
<tr>
<th>USB Type-C Plug</th>
<th>Wire</th>
<th>USB 2.0 Micro-B plug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
<td>Signal Name</td>
<td>Wire Number</td>
</tr>
<tr>
<td>A1, B1, A12, B12</td>
<td>GND</td>
<td>1</td>
</tr>
<tr>
<td>A4, B4, A9, B9</td>
<td>VBUS</td>
<td>2</td>
</tr>
<tr>
<td>A5</td>
<td>CC</td>
<td>See Note 1</td>
</tr>
<tr>
<td>B5</td>
<td>VCONN</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>Dp1</td>
<td>3</td>
</tr>
<tr>
<td>A7</td>
<td>Dn1</td>
<td>4</td>
</tr>
<tr>
<td>Shell</td>
<td>Shield</td>
<td>Outer shield</td>
</tr>
</tbody>
</table>

Notes:

1. Pin A5 (CC) of the USB Type-C plug shall be connected to GND through a resistor Rd (5.1 kΩ ± 20%). See Section 4.5.3.2.1 and Table 4-25 for the functional description and value of Rd.
2. Contacts B6 and B7 should not be present in the USB Type-C plug.
3. All VBUS pins shall be connected together within the USB Type-C plug. Bypass capacitors are not required for the VBUS pins in this cable.
4. All Ground return pins shall be connected together within the USB Type-C plug.
5. Pin 4 (ID) of the USB 2.0 Micro-B plug shall be terminated as defined in the applicable specification for the cable type.
6. Shield and GND grounds shall be connected within the USB Type-C and USB 2.0 Micro-B plugs on both ends of the cable assembly.
7. All USB Type-C plug pins that are not listed in this table shall be open (not connected).
3.6 Legacy Adapter Assemblies

To enable interoperability between USB Type-C-based products and legacy USB products, the following standard legacy adapter assemblies are defined. Only the adapter assemblies defined in this specification are allowed.

3.6.1 USB Type-C to USB 3.1 Standard-A Receptacle Adapter Assembly

Figure 3-31 shows a USB Type-C to USB 3.1 Standard-A receptacle adapter assembly. This cable assembly is defined for direct connect to a USB device (e.g., a thumb drive). System functionality of using this adaptor assembly together with another USB cable assembly is not guaranteed.

Figure 3-31 USB Type-C to USB 3.1 Standard-A Receptacle Adapter Assembly

Table 3-19 defines the wire connections for the USB Type-C to USB 3.1 Standard-A receptacle adapter assembly.
Table 3-19 USB Type-C to USB 3.1 Standard-A Receptacle Adapter Assembly Wiring

<table>
<thead>
<tr>
<th>USB Type-C Plug</th>
<th>USB 3.1 Standard-A Receptacle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
<td>Signal Name</td>
</tr>
<tr>
<td>A1, B1, A12, B12</td>
<td>GND</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>A4, B4, A9, B9</td>
<td>VBUS</td>
</tr>
<tr>
<td>A5</td>
<td>CC</td>
</tr>
<tr>
<td>B5</td>
<td>VCONN</td>
</tr>
<tr>
<td>A6</td>
<td>Dp1</td>
</tr>
<tr>
<td>A7</td>
<td>Dn1</td>
</tr>
<tr>
<td>A2</td>
<td>TXp1</td>
</tr>
<tr>
<td>A3</td>
<td>TXn1</td>
</tr>
<tr>
<td>B11</td>
<td>RXp1</td>
</tr>
<tr>
<td>B10</td>
<td>RXn1</td>
</tr>
<tr>
<td>Shell</td>
<td>Shell</td>
</tr>
</tbody>
</table>

Notes:

1. Pin A5 (CC) of the USB Type-C plug shall be connected to GND through a resistor Rd (5.1 kΩ ± 20%). See Section 4.5.3.2.1 and Table 4-25 for the functional description and value of Rd.
2. This table is based on the assumption that shielded twisted pair is used for all SDP’s and there are drain wires. If coaxial wire construction is used, then no drain wires are present and the shields of the coaxial wires are connected to the ground pins.
3. Contacts B6 and B7 should not be present in the USB Type-C plug.
4. All VBUS pins shall be connected together within the USB Type-C plug. A 10 nF bypass capacitor is required for the VBUS pin in the USB Type-C plug end of the cable. The bypass capacitor should be placed as close as possible to the power supply pad. A bypass capacitor is not required for the VBUS pin in the Standard-A receptacle.
5. All Ground return pins shall be connected together within the USB Type-C plug.
6. All USB Type-C plug pins that are not listed in this table shall be open (not connected).
3.6.2 USB Type-C to USB 2.0 Micro-B Receptacle Adapter Assembly

Figure 3-31 shows a USB Type-C to USB 2.0 Micro-B receptacle adapter assembly.

Table 3-19 defines the wire connections for the USB Type-C to USB 2.0 Micro-B receptacle adapter assembly.

Table 3-20 USB Type-C to USB 2.0 Micro-B Receptacle Adapter Assembly Wiring

<table>
<thead>
<tr>
<th>USB Type-C Plug</th>
<th>USB 2.0 Micro receptacle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
<td>Signal Name</td>
</tr>
<tr>
<td>A1, B1, A12, B12</td>
<td>GND</td>
</tr>
<tr>
<td>A4, B4, A9, B9</td>
<td>VBUS</td>
</tr>
<tr>
<td>A5</td>
<td>CC</td>
</tr>
<tr>
<td>A6</td>
<td>Dp1</td>
</tr>
<tr>
<td>A7</td>
<td>Dn1</td>
</tr>
<tr>
<td>Shell</td>
<td>Shield</td>
</tr>
</tbody>
</table>

Notes:

1. Pin A5 (CC) of the USB Type-C plug shall be connected to VBUS through a resistor Rp (56 kΩ ± 5%). See Section 4.5.3.2.2 and Table 4-24 for the functional description and value of Rp.

2. Contacts B6 and B7 should not be present in the USB Type-C plug.

3. All VBUS pins shall be connected together within the USB Type-C plug. Bypass capacitors are not required for the VBUS pins at the Micro-B receptacle end of this cable.

4. All Ground return pins shall be connected together within the USB Type-C plug.

5. All USB Type-C plug pins that are not listed in this table shall be open (not connected).
3.7 Electrical Characteristics

This section defines the USB Type-C raw cable, connector, and cable assembly electrical requirements, including signal integrity, shielding effectiveness, and DC requirements. Chapter 4 defines additional requirements regarding functional signal definition, host/device discovery and configuration, and power delivery.

Unless otherwise specified, all measurements are made at a temperature of 15° to 35° C, a relative humidity of 25% to 85%, and an atmospheric pressure of 86 to 106 kPa and all S-parameters are normalized with an 85 Ω differential impedance.

3.7.1 Raw Cable (Informative)

Informative raw cable electrical performance targets are provided to help cable assembly manufacturers manage the procurement of raw cable. These targets are not part of the USB Type-C compliance requirements. The normative requirement is that the cable assembly meets the performance characteristics specified in Sections 3.7.2 and 3.7.5.3.

The differential characteristic impedance for shielded differential pairs is recommended to be 90 Ω ± 5 Ω. The single-ended characteristic impedance of coaxial wires is recommended to be 45 Ω ± 3 Ω. The impedance should be evaluated using a 200 ps (10%-90%) rise time; a faster rise time is not necessary for raw cable since it will make cable test fixture discontinuities more prominent.

3.7.1.1 Intra-Pair Skew (Informative)

The intra-pair skew for a differential pair is recommended to be less than 10 ps/m. It should be measured with a Time Domain Transmission (TDT) in a differential mode using a 200 ps (10%-90%) rise time with a crossing at 50% of the input voltage.

3.7.1.2 Differential Insertion Loss (Informative)

Cable loss depends on wire gauges, plating and dielectric materials. Table 3-21 and Table 3-22 show examples of differential insertion losses.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>34AWG</th>
<th>32AWG</th>
<th>30AWG</th>
<th>28AWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.625 GHz</td>
<td>-1.8 dB/m</td>
<td>-1.4 dB/m</td>
<td>-1.2 dB/m</td>
<td>-1.0 dB/m</td>
</tr>
<tr>
<td>1.25 GHz</td>
<td>-2.5 dB/m</td>
<td>-2.0 dB/m</td>
<td>-1.7 dB/m</td>
<td>-1.4 dB/m</td>
</tr>
<tr>
<td>2.50 GHz</td>
<td>-3.7 dB/m</td>
<td>-2.9 dB/m</td>
<td>-2.5 dB/m</td>
<td>-2.1 dB/m</td>
</tr>
<tr>
<td>5.00 GHz</td>
<td>-5.5 dB/m</td>
<td>-4.5 dB/m</td>
<td>-3.9 dB/m</td>
<td>-3.1 dB/m</td>
</tr>
<tr>
<td>7.50 GHz</td>
<td>-7.0 dB/m</td>
<td>-5.9 dB/m</td>
<td>-5.0 dB/m</td>
<td>-4.1 dB/m</td>
</tr>
<tr>
<td>10.00 GHz</td>
<td>-8.4 dB/m</td>
<td>-7.2 dB/m</td>
<td>-6.1 dB/m</td>
<td>-4.8 dB/m</td>
</tr>
<tr>
<td>12.50 GHz</td>
<td>-9.5 dB/m</td>
<td>-8.2 dB/m</td>
<td>-7.3 dB/m</td>
<td>-5.5 dB/m</td>
</tr>
<tr>
<td>15.00 GHz</td>
<td>-11.0 dB/m</td>
<td>-9.5 dB/m</td>
<td>-8.7 dB/m</td>
<td>-6.5 dB/m</td>
</tr>
</tbody>
</table>
Table 3-22 Differential Insertion Loss Examples for USB TX/RX with Coaxial Construction

<table>
<thead>
<tr>
<th>Frequency</th>
<th>34AWG</th>
<th>32AWG</th>
<th>30AWG</th>
<th>28AWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.625 GHz</td>
<td>-1.8 dB/m</td>
<td>-1.5 dB/m</td>
<td>-1.2 dB/m</td>
<td>-1.0 dB/m</td>
</tr>
<tr>
<td>1.25 GHz</td>
<td>-2.8 dB/m</td>
<td>-2.2 dB/m</td>
<td>-1.8 dB/m</td>
<td>-1.3 dB/m</td>
</tr>
<tr>
<td>2.50 GHz</td>
<td>-4.2 dB/m</td>
<td>-3.4 dB/m</td>
<td>-2.7 dB/m</td>
<td>-1.9 dB/m</td>
</tr>
<tr>
<td>5.00 GHz</td>
<td>-6.1 dB/m</td>
<td>-4.9 dB/m</td>
<td>-4.0 dB/m</td>
<td>-3.1 dB/m</td>
</tr>
<tr>
<td>7.50 GHz</td>
<td>-7.6 dB/m</td>
<td>-6.5 dB/m</td>
<td>-5.2 dB/m</td>
<td>-4.2 dB/m</td>
</tr>
<tr>
<td>10.0 GHz</td>
<td>-8.8 dB/m</td>
<td>-7.6 dB/m</td>
<td>-6.1 dB/m</td>
<td>-4.9 dB/m</td>
</tr>
<tr>
<td>12.5 GHz</td>
<td>-9.9 dB/m</td>
<td>-8.6 dB/m</td>
<td>-7.1 dB/m</td>
<td>-5.7 dB/m</td>
</tr>
<tr>
<td>15.0 GHz</td>
<td>-12.1 dB/m</td>
<td>-10.9 dB/m</td>
<td>-9.0 dB/m</td>
<td>-6.5 dB/m</td>
</tr>
</tbody>
</table>

3.7.2 USB Type-C to Type-C Passive Cable Assemblies (Normative)

A USB Type-C to Type-C cable assembly shall be tested using a test fixture with the receptacle tongue fabricated in the test fixture. This is illustrated in Figure 3-33. The USB Type-C receptacles are not present in the test fixture. Hosts and devices should account for the additional signal degradation the receptacle introduces.

The requirements are for the entire signal path of the cable assembly mated with the fixture PCB tongues, not including lead-in PCB traces. As illustrated in Figure 3-33, the measurement is between TP1 (test point 1) and TP2 (test point 2). Refer to documentation located at Cables and Connectors page on the USB-IF website for a detailed description of a standardized test fixture.

![Figure 3-33 Illustration of Test Points for a Mated Cable Assembly](image)

The cable assembly requirements are divided into informative and normative requirements. The informative requirements are provided as design targets for cable assembly manufacturers. The normative requirements are the pass/failure criteria for cable assembly compliance.

3.7.2.1 Recommended TX/RX Passive Cable Assembly Characteristics (USB 3.2 Gen2 and USB4 Gen2)

The recommended electrical characteristics defined in this section are informative design guidelines. Cable assemblies that do not meet these recommended electrical characteristics may still pass USB certification testing. Similarly, cable assemblies that meet these recommended electrical characteristics may or may not pass USB certification testing.
3.7.2.1.1 Differential Insertion Loss (Informative – USB 3.2 Gen2 and USB4 Gen2)

Figure 3-34 shows the differential insertion loss limit for a **USB 3.2 Gen2** or a **USB4 Gen2** Type-C cable assembly, which is defined by the following vertices: (100 MHz, −2 dB), (2.5 GHz, −4 dB), (5.0 GHz, −6 dB), (10 GHz, −11 dB) and (15 GHz, −20 dB).

Figure 3-34 Recommended Differential Insertion Loss Requirement (USB 3.2 Gen2 and USB4 Gen2)

3.7.2.1.2 Differential Return Loss (Informative – USB 3.2 Gen2 and USB4 Gen2)

Figure 3-35 shows the differential return loss limit, which is defined by the following equation:

\[
RL_{mask} = \begin{cases}
-18 \text{ dB, } f < 5 \text{ GHz} \\
-18 + 45.43 \times \log_{10} \left(\frac{f}{5} \right) \text{ dB, } 5 \text{ GHz} < f \leq 7.5 \text{ GHz} \\
-15 + \frac{2}{3} \times f \text{ dB, } 7.5 \text{ GHz} < f \leq 15 \text{ GHz}
\end{cases}
\]
3.7.2.1.3 Differential Near-End and Far-End Crosstalk between TX/RX Pairs (Informative – USB 3.2 Gen2 and USB4 Gen2)

Both the near-end crosstalk (DDNEXT) and far-end crosstalk (DDFEXT) are specified, as shown in Figure 3-36. The DDNEXT/DDFEXT limits are defined by the following vertices: (100 MHz, −40 dB), (5 GHz, −40 dB), (10 GHz, −35 dB), and (15 GHz, −32 dB).

3.7.2.1.4 Differential Crosstalk between USB D+/D– and TX/RX Pairs (Informative – USB 3.2 Gen2 and USB4 Gen2)

The differential near-end and far-end crosstalk between the USB D+/D– pair and the TX/RX pairs should be managed not to exceed the limits shown in Figure 3-37. The USB D+/D– pair and the TX/RX pairs should be considered in the context of both an aggressor and a victim. It should also be considered that the D+/D– pair maximum frequency for similar tests is
1.2 GHz (see Table 3-31), but in this case the crosstalk on the D+/D− pair is extended to 7.5 GHz. The limits are defined by the following points: (100 MHz, −35 dB), (5 GHz, −35 dB), and (7.5 GHz, −30 dB).

Figure 3-37 Recommended Differential Near-End and Far-End Crosstalk Requirement between USB D+/D− Pair and TX/RX Pair

![Figure 3-37](image)

3.7.2.2 Recommended TX/RX Passive Cable Assembly Characteristics (USB4 Gen3)

3.7.2.2.1 Differential Insertion Loss (Informative – USB4 Gen3)

Figure 3-38 shows the recommended differential insertion loss limit for a USB4 Gen3 Type-C cable assembly, which is defined by the following vertices: (100 MHz, −1 dB), (2.5 GHz, −4.2 dB), (5.0 GHz, −6 dB), (10 GHz, −7.5 dB), (12 GHz, −9.3 dB), and (15 GHz, −11 dB).

Figure 3-38 Recommended Differential Insertion Loss Requirement (USB4 Gen3)

![Figure 3-38](image)
3.7.2.2.2 Differential Return Loss (Informative – USB4 Gen3)
The informative differential return loss mask is identical in Section 3.7.2.1.2.

3.7.2.2.3 Differential Near-End and Far-End Crosstalk between TX/RX Pairs (Informative – USB4 Gen3)
The recommended near-end crosstalk (DDNEXT) and far-end crosstalk (DDFEXT) are defined in Section 3.7.2.1.3. To minimize crosstalk, it is important to optimize the paddle card and wire termination designs inside the cable plug.

3.7.2.2.4 Differential Crosstalk between USB D+/D− and TX/RX Pairs (Informative – USB4 Gen3)
The informative near-end and far-end crosstalk between the USB D+/D− pair and the TX/RX pairs are the same as in Section 3.7.2.1.4.

3.7.2.3 Normative TX/RX Passive Cable Assembly Requirements (USB 3.2 Gen2 and USB4 Gen2)
The integrated parameters are used for cable assembly compliance (except for insertion loss and differential-to-common-mode conversion) to avoid potential rejection of a functioning cable assembly that may fail the traditional S-parameters spec at a few frequencies.

3.7.2.3.1 Insertion Loss Fit at Nyquist Frequencies (Normative – USB 3.2 Gen2 and USB4 Gen2)
The insertion loss fit at Nyquist frequency measures the attenuation of the cable assembly. To obtain the insertion loss fit at Nyquist frequency, the measured cable assembly differential insertion loss is fitted with a smooth function. A standard fitting algorithm and tool shall be used to extract the insertion loss fit at Nyquist frequencies. The fitting equation is defined by the following equation:

\[IL_{\text{fit}} = a + b \sqrt{f} + c \sqrt{f^2} + d \sqrt{f^3} \]

where \(f \) is the frequency and \(a, b, c, \) and \(d \) are the fitting coefficients.

Figure 3-39 illustrates an example of a measured cable assembly insertion loss fitted with a smooth function; the insertion loss fit at the Nyquist frequency of SuperSpeed USB Gen2 (5.0 GHz) is −5.8 dB.
The insertion loss fit at Nyquist frequency (IL_{fitNq}) shall meet the following requirements:

- $\geq -4 \text{ dB}$ at 2.5 GHz,
- $\geq -6 \text{ dB}$ at 5 GHz, and
- $\geq -11 \text{ dB}$ at 10 GHz.

2.5 GHz, 5.0 GHz and 10 GHz are the Nyquist frequencies for SuperSpeed USB Gen1, SuperSpeed USB Gen2, and USB4 Gen3 data rate, respectively.

The SuperSpeed USB Gen1-only Type-C to Type-C cable assembly is allowed by this specification and shall comply with the following insertion loss fit at Nyquist frequency requirements:

- $\geq -7.0 \text{ dB}$ at 2.5 GHz, and
- $>-12 \text{ dB}$ at 5 GHz.

This insertion fit at Nyquist frequency allows the SuperSpeed USB Gen1-only Type-C to Type-C cable assembly to achieve an overall length of approximately 2 meters.

3.7.2.3.2 Integrated Multi-reflection (Normative – USB 3.2 Gen2 and USB4 Gen2)

The insertion loss deviation, ILD, is defined as

$$ILD(f) = IL(f) - IL_{fit}(f)$$

It measures the ripple of the insertion loss, caused by multiple reflections inside the cable assembly (mated with the fixture). The integration of $ILD(f)$ is called the integrated multi-reflection (IMR):

$$IMR = dB \left(\sqrt{\int_0^{f_{max}} |ILD(f)|^2 |Vin(f)|^2 df} / \int_0^{f_{max}} |Vin(f)|^2 df \right)$$
where \(f_{\text{max}} \) = 12.5 GHz and \(\text{Vin}(f) \) is the input trapezoidal pulse spectrum, defined in Figure 3-40.

Figure 3-40 Input Pulse Spectrum

\[|\text{Vin}(f)| = \left| \frac{\sin(\pi f T_r)}{\pi f T_r} \cdot \frac{\sin(\pi f T_b)}{\pi f T_b} \right| \]

\(T_b \) = Unit interval = 100 ps

\(T_r \) = 0 to 100% rise time = 0.4\(T_b \)

IMR has dependency on \(\text{ILfitatNq} \). More IMR may be tolerated when \(\text{ILfitatNq} \) decreases. The IMR limit is specified as a function of \(\text{ILfitatNq} \):

\[\text{IMR} \leq 0.126 \cdot \text{ILfitatNq}^2 + 3.024 \cdot \text{ILfitatNq} - 23.392. \]

This is plotted in Figure 3-41.

Figure 3-41 IMR Limit as Function of ILfitatNq

3.7.2.3.3 Integrated Crosstalk between TX/RX Pairs (Normative – USB 3.2 Gen2 and USB4 Gen2)

The integrated crosstalk between all TX/RX pairs is calculated with the following equations:

\[
\text{INEXT} = dB \left(\frac{\int_0^{f_{\text{max}}} |\text{Vin}(f)|^2 (|\text{NEXT}(f)|^2 + 0.125^2 \cdot |C2D(f)|^2 + |Vdd(f)|^2 |\text{NEXTd}(f)|^2) df}{\int_0^{f_{\text{max}}} |\text{Vin}(f)|^2 df} \right)
\]

\[
\text{IFEXT} = dB \left(\frac{\int_0^{f_{\text{max}}} |\text{Vin}(f)|^2 (|\text{FEXT}(f)|^2 + 0.125^2 \cdot |C2D(f)|^2 + |Vdd(f)|^2 |\text{FEXTd}(f)|^2) df}{\int_0^{f_{\text{max}}} |\text{Vin}(f)|^2 df} \right)
\]
where \(\text{NEXT}(f) \), \(\text{FEXT}(f) \), and \(2\text{D}(f) \) are the measured near-end and far-end crosstalk between TX/RX pairs, and the common-mode-to-differential conversion, respectively. The factor of 0.125^2 accounts for the assumption that the common mode amplitude is 12.5% of the differential amplitude. \(\text{NEXTd}(f) \) and \(\text{FEXTd}(f) \) are, respectively, the near-end and far-end crosstalk from the \(\text{D+}/\text{D−} \) pair to TX/RX pairs. \(V_{dd}(f) \) is the input pulse spectrum evaluated using the equation in Figure 3-40 with \(T_b=2.08 \) ns.

The integration shall be done for each NEXT and FEXT between all differential pairs. The largest values of \(\text{INEXT} \) and \(\text{IFEXT} \) shall meet the following requirements:

- \(\text{INEXT} \leq -40 \text{ dB} \) to 12.5GHz, for \(\text{TX1 to RX1, TX2 to RX2, TX1 to RX2, TX2 to RX1, TX1 to TX2, and RX1 to RX2} \),
- \(\text{IFEXT} \leq -40 \text{ dB} \) to 12.5GHz, for \(\text{TX1 to RX1, TX2 to RX2, TX1 to RX2, TX2 to RX1, TX1 to TX2, and RX1 to RX2} \).

The port-to-port crosstalk (TX1 to RX2, TX2 to RX1, TX1 to TX2, and RX1 to RX2) is specified to support the usages in which all the four SuperSpeed pairs transmit or receive signals simultaneously, for example in SuperSpeed USB dual-lane operation.

3.7.2.3.4 Integrated Crosstalk between TX/RX Pairs to USB 2.0 D+/D− (Normative – USB 3.2 Gen2 and USB4 Gen2)

Crosstalk from the TX/RX pairs to USB 2.0 D+/D− shall be controlled to ensure the robustness of the USB 2.0 link. Since USB Type-C to Type-C Full-Featured cable assemblies may support the usage of USB 3.2, USB4 or an Alternate Mode (e.g., DisplayPort™), the crosstalk from the four high speed differential pairs to D+/D− may be from near-end crosstalk, far-end crosstalk, or a combination of the two. The integrated crosstalk to D+/D− is calculated with the following equations:

\[
\text{IDDXT}_{1\text{NEXT}} + \text{FEXT} = \left(\frac{\int_{0}^{f_{\text{max}}} |\text{Vin}(f)|^2 (|\text{NEXT1}(f)|^2 + |\text{FEXT}(f)|^2) df}{\int_{0}^{f_{\text{max}}} |\text{Vin}(f)|^2 df} \right)
\]

where:

- \(\text{NEXT} = \text{Near-end crosstalk from TX pair to D+/D−} \)
- \(\text{FEXT} = \text{Far-end crosstalk from RX pair to D+/D−} \)
- \(f_{\text{max}} = 1.2 \text{ GHz} \)

\[
\text{IDDXT}_{2\text{NEXT}} = \left(\frac{\int_{0}^{f_{\text{max}}} |\text{Vin}(f)|^2 (|\text{NEXT2}(f)|^2 + \text{NEXT1}(f)|^2} {\int_{0}^{f_{\text{max}}} |\text{Vin}(f)|^2 df} \right)
\]

where:

- \(\text{NEXT1} = \text{Near-end crosstalk from TX pair to D+/D−} \)
- \(\text{NEXT2} = \text{Near-end crosstalk from RX (the RX functioning in TX mode) pair to D+/D−} \)
- \(f_{\text{max}} = 1.2 \text{ GHz} \)

The integration shall be done for NEXT + FEXT and 2NEXT on D+/D− from the two differential pairs located at A2, A3, B10 and B11 (see Figure 2-2) and for NEXT + FEXT and 2NEXT on D+/D− from the two differential pairs located at B2, B3 A10 and A11 (see Figure 2-2). Measurements are made in two sets to minimize the number of ports required for each measurement. The integrated differential crosstalk on D+/D− shall meet the following requirements:

- \(\text{IDDXT}_{1\text{NEXT}} + \text{FEXT} \leq -34.5 \text{ dB} \),
• IDDXT_2NEXT ≤ −33 dB.

3.7.2.3.5 Integrated Return Loss (Normative – USB 3.2 Gen2 and USB4 Gen2)

The integrated return loss (IRL) manages the reflection between the cable assembly and the rest of the system (host and device). It is defined as:

\[
IRL = \text{dB}\left(\frac{\int_{0}^{f_{\text{max}}} |\text{Vin}(f)|^2 |SDD21(f)|^2 (|SDD11(f)|^2 + |SDD22(f)|^2) df}{\int_{0}^{f_{\text{max}}} |\text{Vin}(f)|^2 df}\right)
\]

where \(SDD21(f)\) is the measured cable assembly differential insertion loss, \(SDD11(f)\) and \(SDD22(f)\) are the measured cable assembly return losses on the left and right sides, respectively, of a differential pair.

The IRL also has a strong dependency on ILfitatNq, and its limit is specified as a function of ILfitatNq:

\[
IRL \leq 0.046 \cdot ILfitatNq^2 + 1.812 \cdot ILfitatNq - 10.784.
\]

It is shown in Figure 3-42.

Figure 3-42 IRL Limit as Function of ILfitatNq

3.7.2.3.6 Differential-to-Common-Mode Conversion (Normative – USB 3.2 Gen2 and USB4 Gen2)

The differential-to-common-mode conversion is specified to control the injection of common mode noise from the cable assembly into the host or device. Figure 3-43 illustrates the differential-to-common mode conversion (SCD12/SCD21) requirement. A mated cable assembly passes if its SCD12/SCD21 is less than or equal to −20 dB from 100 MHz to 10 GHz.
3.7.2.4 Normative TX/RX Passive Cable Assembly Requirements (USB4 Gen3)

The integrated S-parameter requirements for USB4 Gen3 follow the same methodology as defined in Section 3.7.2.3. There are parameter adjustments made to suit the USB4 Gen3 data rate. Unless otherwise specified, the following parameters shall be used to calculate insertion loss fit and integrated parameters:

- T_b, the unit interval, is set to 50 ps, reflecting the USB4 Gen3 data rate.
- T_r, the rise time, remains at $0.4 \times T_b$.
- f_{max}, the maximum frequency over which the integration or fitting is performed is increased to 20 GHz.
- An f-square term is added to the insertion loss fit equation to improve fitting quality:

$$IL_{\text{fit}} = a + b \sqrt{f} + c \sqrt{f^2} + d \sqrt{f^3} + e \sqrt{f^4}$$

USB4 Gen3 introduces a system-level COM (Channel Operating Margin) specification for the cable assembly. The details are defined in Section 3.7.2.4.7.

3.7.2.4.1 Insertion Loss Fit at Nyquist Frequencies (Normative – USB4 Gen3)

The insertion loss fit at Nyquist frequency (IL_{fitatNq}) shall meet the following requirements:

- ≥ -1 dB at 100 MHz,
- ≥ -4.2 dB at 2.5 GHz,
- ≥ -6 dB at 5 GHz,
- ≥ -7.5 dB at 10 GHz,
- ≥ -9.3 dB at 12.5 GHz, and
- ≥ -11 dB at 15 GHz.

3.7.2.4.2 Integrated Multi-Reflection (Informative – USB4 Gen3)

The IMR limit is plotted in Figure 3-44.

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
3.7.2.4.3 Integrated Crosstalk between TX/RX Pairs (Normative – USB4 Gen3)

The integrated crosstalk within a port for TX1 to RX1 and TX2 to RX2 is recommended to meet the following informative requirements:

- $\text{INEXT} \leq -43\ dB$ and
- $\text{IFEXT} \leq -43\ dB$.

The recommended informative requirement for the integrated port-to-port crosstalk for TX1 to RX2, TX2 to RX1, TX1 to TX2, and RX1 to RX2) are defined as:

- $\text{INEXT}_{p2p} \leq -50\ dB$ and
- $\text{IFEXT}_{p2p} \leq -50\ dB$.

The total crosstalk is defined for both the DP Alternate Mode and USB4 operation. In DP Alternate Mode, all crosstalk is FEXT, while in USB4 operation both FEXT and NEXT exist. The total crosstalk is defined in the equation below:

$$\text{IXTi}_{\text{DP}} \text{ or } \text{IXTi}_{\text{USB}} = \left(\frac{\int_{f_0}^{f_{\text{max}}} |\text{Vin}(f)|^2 \sum_i |SDD_{ij}|^2 df}{\int_{f_0}^{f_{\text{max}}} |\text{Vin}(f)|^2 df}\right)$$

where the victims $i = 1$ to 8 and the aggressors j are defined in Figure 3-45.

Figure 3-45 Definition of Port, Victim, and Aggressor
The total crosstalk for the DP Alternate Mode and USB4 operation shall be controlled. Its normative limit is defined in Figure 3-46.

Figure 3-46 IXT_DP and IXT_USB Limit as Function of ILfit at 10 GHz (USB4 Gen3)

3.7.2.4.4 Integrated Crosstalk from TX/RX Pairs to USB 2.0 D+/D− (Normative – USB4 Gen3)

The requirements for the integrated crosstalk from the TX/RX pairs to USB 2.0 D+/D− are defined in Section 3.7.2.3.4.

3.7.2.4.5 Integrated Return Loss (Normative – USB4 Gen3)

The IRL limit is shown in Figure 3-47.

Figure 3-47 IRL Limit as Function of ILfit at Nq (USB4 Gen3)
3.7.2.4.6 Differential-to-Common-Mode Conversion (Normative – USB4 Gen3)

Figure 3-48 illustrates the differential-to-common mode conversion (SCD12/SCD21) requirement. A mated cable assembly passes if its SCD12/SCD21 is less than or equal to −17 dB from 100 MHz to 10 GHz. Note that −17 dB is the worst-case limit; no USB4 Gen3 Type-C cable is allowed to exceed it.

![Figure 3-48 Differential-to-Common-Mode Conversion Requirement (USB4 Gen3)](image)

3.7.2.4.7 COM Requirement (Normative – USB4 Gen3)

Channel Operating Margin (COM) is a figure of merit to measure the channel electrical quality. The technical detail of COM may be found in IEEE Std 802.3bj™-2014 Clause 93a.

COM is essentially the channel signal-to-noise ratio:

\[
COM = 20 \log_{10} \left(\frac{A}{N} \right)
\]

where A is the signal amplitude and N is the combined noise at BER (bit-error-ratio), which includes the noise sources from ISI (inter-symbol-interference), crosstalk, transmitter jitter, etc.

To calculate COM, reference hosts/devices, which represent the worst-case hosts/devices, shall be defined and the reference TX and RX shall be used. As illustrated in Figure 3-49, the measured cable assembly S-parameters are cascaded with the reference host and reference device models to form the complete channel; the TX and RX die-loading and equalizers are then applied to the channel to calculate COM.

![Figure 3-49 Cable Assembly in System](image)
Table defines the key parameters in the COM configuration file. It uses the standard COM notations. Note that all the TX and RX equalization settings follow the USB4 specification.

Table 3-23 Key Parameters in COM Configuration File

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Unit</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_b</td>
<td>20</td>
<td>GBd</td>
<td>USB4 Gen 3 data rate</td>
</tr>
<tr>
<td>C_d</td>
<td>[0 0]</td>
<td>nF</td>
<td>TX and RX capacitive loading. It is set to zeros as the die-loading is treated as part of the channel</td>
</tr>
<tr>
<td>R_d</td>
<td>[42.5 42.5]</td>
<td>Ohm</td>
<td>TX and RX termination resistance</td>
</tr>
<tr>
<td>ffe_{preset}</td>
<td>Table 3-4 of USB4 Specification</td>
<td></td>
<td>TX equalization presets</td>
</tr>
<tr>
<td>g_{DC}</td>
<td>[-9:1:0]</td>
<td>dB</td>
<td>CTLE DC gain</td>
</tr>
<tr>
<td>f_{p1}</td>
<td>5</td>
<td>GHz</td>
<td>CTLE pole 1</td>
</tr>
<tr>
<td>f_{p2}</td>
<td>10</td>
<td>GHz</td>
<td>CTLE pole 2</td>
</tr>
<tr>
<td>f_z</td>
<td>3.55</td>
<td>GHz</td>
<td>CTLE zero</td>
</tr>
<tr>
<td>A_v</td>
<td>0.4</td>
<td>V</td>
<td>Signal swing</td>
</tr>
<tr>
<td>A_{fe}</td>
<td>0.4</td>
<td>V</td>
<td>FEXT aggressor swing</td>
</tr>
<tr>
<td>A_{ne}</td>
<td>0.6</td>
<td>V</td>
<td>NEXT aggressor swing</td>
</tr>
<tr>
<td>N_b</td>
<td>1</td>
<td></td>
<td>Number of DFE tap</td>
</tr>
<tr>
<td>$b_{max(1)}$</td>
<td>0.7</td>
<td>UI</td>
<td>DFE bound, ratio to cursor</td>
</tr>
<tr>
<td>$Sigma_{RJ}$</td>
<td>0.01</td>
<td>UI</td>
<td>TX random jitter, rms.</td>
</tr>
<tr>
<td>A_{DD}</td>
<td>0.085</td>
<td>UI</td>
<td>TX deterministic jitter, mean-to-peak</td>
</tr>
<tr>
<td>DER_0</td>
<td>1e-12</td>
<td></td>
<td>Target raw bit-error-rate</td>
</tr>
<tr>
<td>eta_0</td>
<td>3.3e-8</td>
<td>V^2/GHz</td>
<td>One sided noise spectral density</td>
</tr>
<tr>
<td>SNR_{TX}</td>
<td>40</td>
<td>dB</td>
<td>TX signal to noise ratio</td>
</tr>
<tr>
<td>COM Threshold</td>
<td>3</td>
<td>dB</td>
<td>Pass/fail criterion</td>
</tr>
</tbody>
</table>

To support the calculation of the cable assembly COM, the following collaterals is provided and may be obtained from USB-IF website:

- Reference host/device S-parameter models
- Reference TX and RX die-loading S-parameter models
- COM configuration file
- Tool to compute COM

3.7.2.5 Low-Speed Signal Requirements (Normative)

This section specifies the electrical requirements for CC and SBU wires and the coupling among CC, USB D+/D−, VBUS and SBU.

The CC and SBU wires may be unshielded or shielded, and shall have the properties specified in Table 3-24.
Table 3-24 Electrical Requirements for CC and SBU wires

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>zCable_CC</td>
<td>Cable characteristic impedance on the CC wire</td>
<td>32</td>
<td>93</td>
<td>Ω</td>
</tr>
<tr>
<td>rCable_CC</td>
<td>Cable DC resistance on the CC wire</td>
<td>15</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>tCableDelay_CC</td>
<td>Cable propagation delay on the CC wire</td>
<td>26</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>cCablePlug_CC</td>
<td>Capacitance for each cable plug on the CC wire</td>
<td>25</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>zCable_SBU</td>
<td>Cable characteristic impedance on the SBU wires</td>
<td>32</td>
<td>53</td>
<td>Ω</td>
</tr>
<tr>
<td>tCableDelay_SBU</td>
<td>Cable propagation delay on the SBU wires</td>
<td>26</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>rCable_SBU</td>
<td>DC resistance of SBU wires in the cable</td>
<td>5</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>SBU SE Insertion Loss</td>
<td>Cable SBU single-ended insertion loss</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coupling or crosstalk, both near-end and far-end, among the low speed signals shall be controlled. Table 3-25 shows the matrix of couplings specified.

Table 3-25 Coupling Matrix for Low Speed Signals

<table>
<thead>
<tr>
<th>Coupling Matrix</th>
<th>D− (SE)</th>
<th>D+/D− (DF)</th>
<th>VBUS</th>
<th>SBU_B/SBU_A (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>FF, CT</td>
<td>FF, CT</td>
<td>FF, CT, CTVPD</td>
<td>FF</td>
</tr>
<tr>
<td>D+/D− (DF)</td>
<td>N/A</td>
<td>N/A</td>
<td>FF, CT</td>
<td>FF</td>
</tr>
<tr>
<td>SBU_A/SBU_B</td>
<td>N/A</td>
<td>FF</td>
<td>FF</td>
<td>FF</td>
</tr>
</tbody>
</table>

DF: Differential; FF: Full-featured cable; CT: Charge-through cable (including USB 2.0 function); CTVPD: Charge-Through VCONN-Powered USB Device.

3.7.2.5.1 CC to USB D+/D− (Normative)

The differential coupling between the CC and D+/D− shall be below the limit shown in Figure 3-50. The limit is defined with the vertices of (0.3 MHz, −60.5 dB), (1 MHz, −50 dB), (10 MHz, −30 dB), (16 MHz, −26 dB) and (100 MHz, −26 dB).
For USB 2.0 Type-C cables, the singled-ended coupling between the CC and D− shall be below the limit shown in Figure 3-51. The limit is defined with the vertices of (0.3 MHz, −48.5 dB), (1 MHz, −38 dB), (10 MHz, −18 dB) and (100 MHz, −18 dB).

Figure 3-51 Requirement for Single-Ended Coupling between CC and D− in USB 2.0 Type-C Cables

For USB Full-Featured Type-C cables, the singled-ended coupling between the CC and D− shall be below the limit shown in Figure 3-52. The limit is defined with the vertices of (0.3 MHz, −8 dB), (10 MHz, −27.5 dB), (11.8 MHz, −26 dB) and (100 MHz, −26 dB).

Figure 3-52 Requirement for Single-Ended Coupling between CC and D− in USB Full-Featured Type-C Cables
Figure 3-52 Requirement for Single-Ended Coupling between CC and D− in USB Full-Featured Type-C Cables

3.7.2.5.2 VBUS Coupling to SBU_A/SBU_B, CC, and USB D+/D− (Normative)

The differential coupling between VBUS and USB D+/D− shall be less than the limit shown in Figure 3-53. The limit is defined by the following vertices: (0.3 MHz, −40 dB), (1 MHz, −40 dB), (30 MHz, −40 dB), and (100 MHz, −30 dB).

Figure 3-53 Requirement for Differential Coupling between VBUS and D+/D−

The maximum VBUS loop inductance shall be 900 nH and the maximum mutual inductance (M) between VBUS and low speed signal lines (CC, SBU_A, SBU_B, D+, D−) shall be as specified in Table 3-26 to limit VBUS inductive noise coupling on low speed signal lines. For full-
featured cables, the range of VBUS bypass capacitance shall be 8nF up to 500nF as any of the values in the range is equally effective for high-speed return-path bypassing.

Table 3-26 Maximum Mutual Inductance (M) between VBUS and Low Speed Signal Lines

<table>
<thead>
<tr>
<th>Low Speed Wire</th>
<th>Max Mutual Inductance (nH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>350</td>
</tr>
<tr>
<td>SBU_A, SBU_B</td>
<td>330</td>
</tr>
<tr>
<td>D+, D−</td>
<td>330</td>
</tr>
</tbody>
</table>

3.7.2.5.3 Coupling between SBU_A and SBU_B (Normative)

The single-ended coupling between SBU_A and SBU_B shall be less than the limit shown in Figure 3-54. The limit is defined with the vertices of (0.3 MHz, −56.5 dB), (1 MHz, −46 dB), (10 MHz, −26 dB), (11.2 MHz, −25 dB), and (100 MHz, −25 dB).

![Figure 3-54 Requirement for Single-Ended Coupling between SBU_A and SBU_B](image)

3.7.2.5.4 Coupling between SBU_A/SBU_B and CC (Normative)

The single-ended coupling between SBU_A and CC, and between SBU_B and CC shall be less than the limit shown in Figure 3-55. The limit is defined with the vertices of (0.3 MHz, −65 dB), (1 MHz, −55 dB), (18 MHz, −30 dB), and (100 MHz, −30 dB).
3.7.2.5.5 Coupling between SBU_A/SBU_B and USB D+/D− (Normative)

The coupling between SBU_A and differential D+/D−, and between SBU_B and differential D+/D− shall be less than the limit shown in Figure 3-56. The limit is defined with the vertices of (0.3 MHz, −80 dB), (30 MHz, −40 dB), and (100 MHz, −40 dB).

Figure 3-56 Requirement for Coupling between SBU_A and differential D+/D−, and SBU_B and differential D+/D−

3.7.2.6 USB D+/D− Signal Requirements (Normative)

The USB D+/D− lines of the USB Type-C to USB Type-C passive cable assembly shall meet the requirements defined in Table 3-27.
Table 3-27 USB D+/D− Signal Integrity Requirements for USB Type-C to USB Type-C Passive Cable Assemblies

<table>
<thead>
<tr>
<th>Items</th>
<th>Descriptions and Procedures</th>
<th>Requirements</th>
</tr>
</thead>
</table>
| Differential Impedance | EIA 364-108 This test ensures that the D+/D− lines of the cable assembly have the proper impedance. For the entire cable assembly. | 75 ohms min and 105 ohms max.
| | | 400 ps rise time (20%-80%). |
| Propagation Delay | EIA 364-103 The purpose of the test is to verify the end-to-end propagation of the D+/D− lines of the cable assembly. | 26 ns max.
| | | 400 ps rise time (20%-80%). |
| Intra-pair Skew | EIA 364 – 103 This test ensures that the signal on both the D+ and D− lines of cable assembly arrive at the receiver at the same time. | 100 ps max.
| | | 400 ps rise time (20%-80%). |
| D+/D− Pair Attenuation | EIA 364 – 101 This test ensures the D+/D− pair of a cable assembly is able to provide adequate signal strength to the receiver in order to maintain a low error rate. | $\geq -1.02 \text{ dB @ } 50 \text{ MHz}$
| | | $\geq -1.43 \text{ dB @ } 100 \text{ MHz}$
| | | $\geq -2.40 \text{ dB @ } 200 \text{ MHz}$
| | | $\geq -4.35 \text{ dB @ } 400 \text{ MHz}$ |
| D+ or D− DC Resistance | | 3.5 ohms max. |

3.7.2.7 **Vbus DC Voltage Tolerance (Normative)**

A USB Type-C to USB Type-C cable assembly shall tolerate a Vbus voltage of 21 V DC at the cable rated current (i.e. 3 A or 5 A) applied for one hour as a pre-condition of the testing of the electrical aspects of the cable assembly.

3.7.3 **Mated Connector (Informative – USB 3.2 Gen2 and USB4 Gen2)**

The mated connector as defined in this specification for USB Type-C consists of a receptacle mounted on a PCB, representing how the receptacle is used in a product, and a test plug also mounted on a PCB (paddle card) without cable. This is illustrated in Figure 3-57. Note that the test plug is used in host/device TX/RX testing also.

Figure 3-57 Illustration of USB Type-C Mated Connector
3.7.3.1 Differential Impedance (Informative)

The mated connector impedance target is specified to minimize reflection from the connector. The differential impedance of a mated connector should be within $85 \, \Omega \pm 9 \, \Omega$, as seen from a 40 ps (20% – 80%) rise time. The impedance profile of a mated connector should fall within the limits shown in Figure 3-58.

Figure 3-58 Recommended Impedance Limits of a USB Type-C Mated Connector

The PCB stack up, lead geometry, and solder pad geometry should be modeled in 3D field-solver to optimize electrical performance. Example ground voids under signal pads are shown in Figure 3-59 based on pad geometry, mounting type, and PCB stack-up shown.
Figure 3-59 Recommended Ground Void Dimensions for USB Type-C Receptacle

![Figure 3-59](image)

3.7.3.2 Mated Connector Recommended Differential S-Parameter and Signal Integrity Characteristics (Informative)

The recommended signal integrity characteristics of USB Type-C mated connector pair are listed in Table 3-28.

Table 3-28 USB Type-C Mated Connector Recommended Signal Integrity Characteristics (Informative)

<table>
<thead>
<tr>
<th>Items</th>
<th>Descriptions and Procedures</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Insertion Loss Fit at Nyquist Frequencies (ILfitatNq)</td>
<td>ILfitatNq is evaluated at the TX/RX Gen1, Gen2 and Gen3 generation Nyquist frequencies.</td>
<td>≥ −0.6 dB @ 2.5 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ −0.8 dB @ 5.0 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ −1.0 dB @ 10 GHz</td>
</tr>
<tr>
<td>Integrated Differential Multi-reflection (IMR)</td>
<td>dB \left(\frac{\int_{f_0}^{f_{\text{max}}}</td>
<td>I_{LD}(f)</td>
</tr>
<tr>
<td>Items</td>
<td>Descriptions and Procedures</td>
<td>Requirements</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Integrated Differential Near-end Crosstalk on TX/RX (INEXT)</td>
<td>[dB\left(\int_{0}^{f_{\text{max}}} V_{\text{in}}(f)^2</td>
<td>\text{INEXT}(f)</td>
</tr>
<tr>
<td>Integrated Differential Far-end Crosstalk on TX/RX (IFEXT)</td>
<td>[dB\left(\int_{0}^{f_{\text{max}}} V_{\text{in}}(f)^2</td>
<td>\text{IFEXT}(f)</td>
</tr>
<tr>
<td>Differential Crosstalk of TX/RX on D+/D−</td>
<td>The differential near-end and far-end crosstalk of the TX/RX pairs on the D+/D− pair in mated connectors.</td>
<td>See Figure 3-60</td>
</tr>
<tr>
<td>Differential Crosstalk of D+/D− on TX/RX</td>
<td>The differential near-end and far-end crosstalk of the D+/D− pair on the TX/RX pairs in mated connectors.</td>
<td>See Figure 3-60</td>
</tr>
<tr>
<td>Integrated Return Loss (IRL)</td>
<td>[dB\left(\int_{0}^{f_{\text{max}}} V_{\text{in}}(f)^2</td>
<td>\text{SDD21}(f)</td>
</tr>
<tr>
<td>Differential to Common Mode Conversion (SCD12 and SCD21)</td>
<td>The differential to common mode conversion is specified to control the injection of common mode noise from the cable assembly into the host or device. Frequency range: 100 MHz ~ 10.0 GHz</td>
<td>See Figure 3-61</td>
</tr>
</tbody>
</table>

Note: \(f_{\text{max}} = 12.5\ \text{GHz}\) (unless otherwise specified); \(V_{\text{in}}(f)\) is defined in Figure 3-40 with \(T_b (\text{UI}) = 100\ \text{ps}\); \(V_{\text{dd}}(f)\) is also defined in Figure 3-40 with \(T_b (\text{UI}) = 2.08\ \text{ns}\). \(C2D(f)\) is measured near-end and far-end crosstalk between TX/RX pairs, and the common-mode-to-differential conversion, respectively. The factor of 0.125\(^2\) accounts for the assumption that the common mode amplitude is 12.5% of the differential amplitude.
3.7.4 Mated Connector (Normative – USB4 Gen3)

The mated connector requirements for USB4 Gen3 is normative and listed in Table 3-29. Unless otherwise specified, the items to be specified are identical to what defined in Section 3.7.3 and the parameters used to calculate the integrated parameters are the same as defined in Section 3.7.2.4 for the USB4 Gen3 cable assembly.
Table 3-29 USB Type-C Mated Connector Signal Integrity Characteristics for USB4 Gen3 (Normative)

<table>
<thead>
<tr>
<th>Items</th>
<th>Descriptions and Procedures</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Insertion Loss Fit at Nyquist Frequencies (ILfitatNq)</td>
<td>ILfitatNq is evaluated at a few different frequencies.</td>
<td>≥ −0.6 dB @ 2.5 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ −0.8 dB @ 5.0 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ −1.0 dB @ 10 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ −1.25 dB @ 12.5 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ −1.5 dB @ 15 GHz</td>
</tr>
<tr>
<td>Integrated Differential Multi-reflection (IMR)</td>
<td>$dB \left(\frac{\int_{0}^{f_{\text{max}}}</td>
<td>ILD(f)</td>
</tr>
<tr>
<td>Integrated Differential Near-end Crosstalk on TX/RX (INEXT)</td>
<td>$dB \left(\frac{\int_{0}^{f_{\text{max}}}</td>
<td>Vin(f)</td>
</tr>
<tr>
<td></td>
<td>where: $NEXT = NEXT$ between TX1 and RX1, and TX2 and RX2.</td>
<td></td>
</tr>
<tr>
<td>Integrated Differential Far-end Crosstalk on TX/RX (IFEXT)</td>
<td>$dB \left(\frac{\int_{0}^{f_{\text{max}}}</td>
<td>Vin(f)</td>
</tr>
<tr>
<td></td>
<td>where: $FEXT = FEXT$ between TX1 and RX1, and TX2 and RX2.</td>
<td></td>
</tr>
<tr>
<td>Differential Crosstalk of TX/RX on D+/D−</td>
<td>The differential near-end and far-end crosstalk of the TX/RX pairs on the D+/D− pair in mated connectors, and the differential near-end and far-end crosstalk of the D+/D− pair on the TX/RX pairs in mated connectors.</td>
<td>≤ −50 dB</td>
</tr>
<tr>
<td>Differential Crosstalk of D+/D− on TX/RX</td>
<td>$dB \left(\frac{\int_{0}^{f_{\text{max}}}</td>
<td>Vin(f)</td>
</tr>
<tr>
<td></td>
<td>where: $FEXT = $Far-end crosstalk between TX/RX and D+/D− pairs $NEXT = $Near-end crosstalk between TX/RX and D+/D− pairs $f_{\text{max}} = 1.2$ GHz</td>
<td></td>
</tr>
<tr>
<td>Integrated Return Loss (IRL)</td>
<td>$dB \left(\frac{\int_{0}^{f_{\text{max}}}</td>
<td>Vin(f)</td>
</tr>
<tr>
<td>Differential to Common Mode Conversion (SCD12 and SCD21)</td>
<td>The differential to common mode conversion is specified to control the injection of common mode noise from the cable assembly into the host or device. Frequency range: 100 MHz ~ 10.0 GHz</td>
<td>≤ −20 dB</td>
</tr>
</tbody>
</table>

Note: $f_{\text{max}} = 20$ GHz (unless otherwise specified); $Vin(f)$ is defined with $Tb (UI) = 50$ ps.

3.7.5 USB Type-C to Legacy Cable Assemblies (Normative)

The USB Type-C to legacy cable assemblies may support **USB 2.0** only, **USB 3.2** Gen2, **USB 3.2** Gen1-only Type-C to legacy cable assemblies are not allowed.

3.7.5.1 USB 2.0-only Cable Assemblies (Normative)

The **USB 2.0**-only Type-C to legacy USB cable assemblies include:

- USB Type-C plug to **USB 2.0** Standard-A plug
- USB Type-C plug to USB 2.0 Standard-B plug
- USB Type-C plug to USB 2.0 Micro-B plug
- USB Type-C plug to USB 2.0 Mini-B plug

The USB D+/D− signal integrity requirements are specified in Table 3-30.

Table 3-30 USB D+/D− Signal Integrity Requirements for USB Type-C to Legacy USB Cable Assemblies

<table>
<thead>
<tr>
<th>Items</th>
<th>Descriptions and Procedures</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Impedance</td>
<td>EIA 364-108 This test ensures that the D+/D− lines of the cable assembly have the proper impedance. For the entire cable assembly.</td>
<td>75 ohms min and 105 ohms max. 400 ps rise time (20%-80%).</td>
</tr>
<tr>
<td>Propagation Delay</td>
<td>EIA 364-103 The purpose of the test is to verify the end-to-end propagation of the D+/D− lines of the cable assembly.</td>
<td>10 ns max for USB Type-C to Micro-B cable assembly; 20 ns max for all other USB Type-C to legacy USB cable assemblies. 400 ps rise time (20%-80%).</td>
</tr>
<tr>
<td>Intra-pair Skew</td>
<td>EIA 364-103 This test ensures that the signal on both the D+ and D− lines of cable assembly arrive at the receiver at the same time.</td>
<td>100 ps max. 400 ps rise time (20%-80%).</td>
</tr>
<tr>
<td>D+/D− Pair Attenuation</td>
<td>EIA 364 - 101 This test ensures the D+/D− pair of a cable assembly is able to provide adequate signal strength to the receiver in order to maintain a low error rate.</td>
<td>≥ −1.02 dB @ 50 MHz ≥ −1.43 dB @ 100 MHz ≥ −2.40 dB @ 200 MHz ≥ −4.35 dB @ 400 MHz</td>
</tr>
<tr>
<td>D+ or D− DC Resistance</td>
<td></td>
<td>3.5 ohms max.</td>
</tr>
</tbody>
</table>

3.7.5.2 USB 3.1 Gen2 Cable Assemblies (Normative)

The USB Type-C to USB 3.1 Gen2 legacy cable assemblies include:

- USB Type-C plug to USB 3.1 Standard-A plug
- USB Type-C plug to USB 3.1 Standard-B plug
- USB Type-C plug to USB 3.1 Micro-B plug

The informative design targets for these cables are provided in Table 3-31.
Table 3-31 Design Targets for USB Type-C to USB 3.1 Gen2 Legacy Cable Assemblies (Informative)

<table>
<thead>
<tr>
<th>Items</th>
<th>Design Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Impedance</td>
<td>76 ohms min and 96 ohms max. 40 ps rise time (20%-80%).</td>
</tr>
</tbody>
</table>
| Differential Insertion Loss | ≥ −2 dB @ 100 MHz
| | ≥ −4 dB @ 2.5 GHz, except for the USB Type-C plug to USB 3.1 Standard-A plug cable assembly which is ≥ −3.5 dB @ 2.5 GHz
| | ≤ −6.0 dB max @ 5.0 GHz |
| Differential NEXT between SuperSpeed Pairs | ≤ −34 dB to 5 GHz |
| Differential NEXT and FEXT between D+/D− and SuperSpeed Pairs | ≤ −30 dB to 5 GHz |

The normative requirements include the USB D+/D− signaling as specified in Table 3-30, and the SuperSpeed USB parameters specified in Table 3-32.

Table 3-32 USB Type-C to USB 3.1 Gen2 Legacy Cable Assembly Signal Integrity Requirements (Normative)

<table>
<thead>
<tr>
<th>Items</th>
<th>Descriptions and Procedures</th>
<th>Requirements</th>
</tr>
</thead>
</table>
| Differential Insertion Loss Fit at Nyquist Frequencies (ILfitatNq) | ILfitatNq is evaluated at both the SuperSpeed Gen1 and Gen2 Nyquist frequencies. | ≥ −4 dB @ 2.5 GHz, except for the USB Type-C plug to USB 3.1 Standard-A plug cable assembly which is ≥ −3.5 dB @ 2.5 GHz
| | | ≤ −6.0 dB at 5.0 GHz |
| Integrated Differential Multi-reflection (IMR) | \[dB \left(\frac{\int_{f_0}^{f_{max}} |V_{in}(f)|^2 |ILD(f)|^2 |V_{in}(f)|^2 df}{\int_{f_0}^{f_{max}} |V_{in}(f)|^2 df} \right) \] | ≤ 0.126 \cdot ILfitatNq^2
| | | + 3.024 \cdot ILfitatNq
| | | − 21.392
| | | See Figure 3-62. |
| Integrated Differential Crosstalk on SuperSpeed (ISSXT) | \[dB \left(\frac{\int_{f_0}^{f_{max}} |V_{in}(f)|^2 |NEXTs(f)|^2 + |V_{dd}(f)|^2 |NEXTd(f)|^2 df}{\int_{f_0}^{f_{max}} |V_{in}(f)|^2 df} \right) \] where:
| | | NEXTs = NEXT between SuperSpeed pairs
| | | NEXTd = NEXT between D+/D− and SuperSpeed pairs
| | | V_{dd}(f) = Input pulse spectrum on D+/D− pair, evaluated using equation shown in Figure 3-40 with Tb (UI) = 2.08 ns. | ≤ −38 dB |
| Integrated Differential Crosstalk on D+/D− (IDDXT) | \[dB \left(\frac{\int_{f_0}^{f_{max}} |V_{in}(f)|^2 |NEXT(f)|^2 + |FEXT(f)|^2 df}{\int_{f_0}^{f_{max}} |V_{in}(f)|^2 df} \right) \] where:
| | | NEXT = Near-end crosstalk from SuperSpeed to D+/D−
| | | FEXT = Far-end crosstalk from SuperSpeed to D+/D−
| | | f_{max} = 1.2 GHz | ≤ −28.5 dB |
Descriptions and Procedures

- **Integrated Return Loss (IRL)**

\[
\text{dB} \left(\int_{0}^{f_{\text{max}}} |V_{\text{in}}(f)|^2 |SDD21(f)|^2 (|SDD11(f)|^2 + |SDD22(f)|^2) df \right) \int_{0}^{f_{\text{max}}} |V_{\text{in}}(f)|^2 df \leq 0.046 \cdot ILfitatNq^2 + 1.812 \cdot IlfitatNq - 9.784
\]

- **Differential to Common Mode Conversion (SCD12 and SCD21)**

The differential to common mode conversion is specified to control the injection of common mode noise from the cable assembly into the host or device.

Frequency range: 100 MHz ~ 10.0 GHz

\[\text{Requirements} \leq -20 \text{ dB}\]

Figure 3-62 IMR Limit as Function of ILfitatNq for USB Type-C to Legacy Cable Assembly

![IMR Limit as Function of ILfitatNq](image1)

Figure 3-63 IRL Limit as Function of ILfitatNq for USB Type-C to Legacy Cable Assembly

![IRL Limit as Function of ILfitatNq](image2)

Note: \(f_{\text{max}} = 10 \text{ GHz} \) (unless otherwise specified); \(V_{\text{in}}(f) \) is defined in Figure 3-40 with \(T_b (\text{UI}) = 100 \text{ ps} \); and \(V_{\text{dd}}(f) \) is also defined in Figure 3-40 with \(T_b (\text{UI}) = 2.08 \text{ ns} \).
3.7.5.3 Compliant USB Legacy Plugs used in USB Type-C to Legacy Cable Assemblies

The following requirements are incremental to the existing requirements for legacy connectors when used in compliant USB Type-C to legacy cable assemblies.

3.7.5.3.1 Contact Material Requirements for USB Type-C to USB Micro-B Assemblies

For USB Type-C to USB Micro-B assemblies, change the contact material in the USB Micro-B connector to achieve the following Low Level Contact Resistance (EIA 364-23B):

- 20 milliohms (Max) initial for VBUS and GND contacts,
- Maximum change (delta) of +10 milliohms after environmental stresses.

3.7.5.3.2 Contact Current Ratings for USB Standard-A, USB Standard-B and USB Micro-B Connector Mated Pairs (EIA 364-70, Method 2)

When a current of 3 A is applied to the VBUS pin and its corresponding GND pin (i.e., pins 1 and 4 in a USB Standard-A or USB Standard-B connector or pins 1 and 5 in a USB Micro-B connector), the delta temperature shall not exceed +30 °C at any point on the connectors under test, when measured at an ambient temperature of 25 °C.

3.7.6 USB Type-C to USB Legacy Adapter Assemblies (Normative)

Only the following standard legacy adapter assemblies are defined:

- **USB 2.0** Type-C plug to **USB 2.0** Micro-B receptacle
- USB Full-Featured Type-C plug to **USB 3.1** Standard-A receptacle

3.7.6.1 USB 2.0 Type-C Plug to **USB 2.0** Micro-B Receptacle Adapter Assembly (Normative)

This adapter assembly supports only the **USB 2.0** signaling. It shall not exceed 150 mm total length, measured from end to end. Table 3-33 defines the electrical requirements.

Table 3-33 USB D+/D– Signal Integrity Requirements for USB Type-C to Legacy USB Adapter Assemblies (Normative)

<table>
<thead>
<tr>
<th>Items</th>
<th>Descriptions and Procedures</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Impedance</td>
<td>EIA 364–108
This test ensures that the D+/D– lines of the adapter assembly have the proper impedance. For the entire adaptor assembly.</td>
<td>75 ohms min and 105 ohms max. 400 ps rise time (20%-80%).</td>
</tr>
<tr>
<td>Intra-pair Skew</td>
<td>EIA 364 – 103
This test ensures that the signal on both the D+ and D– lines of adapter assembly arrive at the receiver at the same time.</td>
<td>20 ps max. 400 ps rise time (20%-80%).</td>
</tr>
<tr>
<td>Differential Insertion Loss</td>
<td>EIA 364 – 101
This test ensures the D+/D– pair of an adapter assembly can provide adequate signal strength to the receiver.</td>
<td>−0.7 dB max @ 400 MHz</td>
</tr>
<tr>
<td>D+ or D– DC Resistance</td>
<td>This test ensures the D+/D– has the proper DC resistance range in order to predict the EOP level and set the USB 2.0 disconnect level.</td>
<td>2.5 ohms max.</td>
</tr>
</tbody>
</table>
3.7.6.2 USB Full-Featured Type-C Plug to USB 3.1 Standard-A Receptacle Adapter Assembly (Normative)

The USB Full-Featured Type-C plug to USB 3.1 Standard-A receptacle adapter assembly is intended to be used with a direct-attach device (e.g., USB thumb drive). A system is not guaranteed to function when using an adapter assembly together with a Standard USB cable assembly.

To minimize the impact of the adapter assembly to system signal integrity, the adapter assembly should meet the informative design targets in Table 3-34.

<table>
<thead>
<tr>
<th>Items</th>
<th>Design Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Return Loss</td>
<td>≤ −15 dB to 5 GHz</td>
</tr>
<tr>
<td></td>
<td>Normalized with 85 ohms.</td>
</tr>
<tr>
<td>Differential Insertion Loss</td>
<td>≥ −2.4 dB to 2.5 GHz, ≥ −3.5 dB to 5 GHz</td>
</tr>
<tr>
<td>Differential NEXT between SuperSpeed Pairs</td>
<td>≤ −40 dB to 2.5 GHz</td>
</tr>
<tr>
<td></td>
<td>≤ −34 dB at 5 GHz</td>
</tr>
<tr>
<td>Differential NEXT and FEXT between D+/D− and SuperSpeed Pairs</td>
<td>≤ −30 dB to 2.5 GHz</td>
</tr>
</tbody>
</table>

The normative requirements for the adapter assembly are defined in Table 3-33 and Table 3-35. The adapter assembly total length is limited to 150 mm max.
Table 3-35 USB Type-C to **USB 3.1** Standard-A Receptacle Adapter Assembly Signal Integrity Requirements (Normative)

<table>
<thead>
<tr>
<th>Items</th>
</tr>
</thead>
</table>
| Differential Insertion Loss Fit at Nyquist Frequency (ILDxt)
| ILDxt at Nyquist frequency is evaluated at the SuperSpeed Gen1 Nyquist frequency. |
| Requirements |
| ≥ -2.4 dB at 2.5 GHz |
| ≥ -3.5 dB at 5 GHz |

| Integrated Differential Multi-reflection (IMR) |
| \(dB \left(\frac{\int_{f_{max}}^{f_{min}} |V_{in}(f)|^2 |V_{out}(f)|^2 df}{\int_{f_{max}}^{f_{min}} |V_{in}(f)|^2 df} \) |
| ≤ -38 dB, \(T_b = 200 \) ps |
| ≤ -27 dB, \(T_b = 100 \) ps |

| Integrated Differential Crosstalk on SuperSpeed (ISSXT) |
| \(dB \left(\frac{\int_{f_{max}}^{f_{min}} |V_{in}(f)|^2 |NEXT(s)(f)|^2 + |V_{dd}(f)|^2 |NEXT(d)(f)|^2 df}{\int_{f_{max}}^{f_{min}} |V_{in}(f)|^2 df} \) |
| ≤ -37 dB |

| Integrated Differential Crosstalk on D+/D- (IDDXT) |
| \(dB \left(\frac{\int_{f_{max}}^{f_{min}} |V_{in}(f)|^2 (|NEXT(f)|^2 + |FExt(f)|^2) df}{\int_{f_{max}}^{f_{min}} |V_{in}(f)|^2 df} \) |
| ≤ -30 dB |

| Integrated Return Loss (IRL) |
| \(dB \left(\frac{\int_{f_{max}}^{f_{min}} |V_{in}(f)|^2 |SDD21(f)(f)|^2 + |SDD12(f)|^2 + |SDD22(f)|^2 df}{\int_{f_{max}}^{f_{min}} |V_{in}(f)|^2 df} \) |
| ≤ -14.5 dB, \(T_b = 200 \) ps |
| ≤ -12.0 dB, \(T_b = 100 \) ps |

Note: \(f_{max} = 7.5 \) GHz; \(V_{in}(f) \) is defined in Figure 3-40 with \(T_b (UI) = 200 \) ps; and \(V_{dd}(f) \) is also specified in Figure 3-40 with \(T_b (UI) = 2.08 \) ns.

3.7.6.3.1 Compliant USB Legacy Receptacles used in USB Type-C to Legacy Adapter Assemblies

3.7.6.3.1 Contact Material Requirements

Refer to Section 3.7.5.3.1 for contact material requirements as these apply to legacy USB Standard-A and USB Micro-B receptacles used in USB Type-C to Legacy Adapter Assemblies.

3.7.6.3.2 Contact Current Ratings

Refer to Section 3.7.5.3.2 for contact current rating requirements as these apply to legacy USB Standard-A and USB Micro-B receptacles used in USB Type-C to Legacy Adapter Assemblies.

3.7.7 Shielding Effectiveness Requirements (Normative)

The cable assembly shielding effectiveness (SE) test measures the EMI and RFI levels from the cable assembly. To perform the measurement, the cable assembly shall be installed in the cable SE test fixture as shown in Figure 3-64. The coupling factors from the cable to the fixture are characterized with a VNA.
All USB Type-C cable assemblies shall pass the shielding effectiveness test for compliance. Figure 3-65 shows the pass/fail criteria for (a) USB Type-C to USB Type-C cable assemblies, (b) USB Type-C to legacy USB cable assemblies, and (c) the USB Type-C to USB 3.1 Standard-A Receptacle Adapter assembly. Note that the shielding effectiveness for the frequency band from 4 GHz to 5 GHz is not specified since there is no antenna operating in this frequency range.
Figure 3-65 Shielding Effectiveness Pass/Fail Criteria

(a) For USB Type-C to USB Type-C Cable Assemblies

(b) For USB Type-C to legacy USB Cable Assemblies

(c) For USB Type-C to USB3.1 Standard-A Receptacle Adapter Assembly
3.7.8 DC Electrical Requirements (Normative)

Unless otherwise stated, the tests in this section are performed on mated connector pairs.

3.7.8.1 Low Level Contact Resistance (EIA 364-23B)

The low level contact resistance (LLCR) measurement is made across the plug and receptacle mated contacts and does not include any internal paddle cards or substrates of the plug or receptacle. See Figure 3-66. The following apply to the power and signal contacts:

- 40 mΩ (Max) initial for VBUS, GND and all other contacts.
- 50 mΩ (Max) after environmental stresses.
- Measure at 20 mV (Max) open circuit at 100 mA.

Refer to Section 3.8 for environmental requirements and test sequences.

Figure 3-66 LLCR Measurement Diagram

3.7.8.2 Dielectric Strength (EIA 364-20)

No breakdown shall occur when 100 Volts AC (RMS) is applied between adjacent contacts of unmated and mated connectors.

3.7.8.3 Insulation Resistance (EIA 364-21)

A minimum of 100 MΩ insulation resistance is required between adjacent contacts of unmated and mated connectors.

3.7.8.4 Contact Current Rating

The current rating testing for the USB Type-C connector (plug and receptacle) shall be conducted per the following set up and procedures:

- A current of 5 A shall be applied collectively to VBUS pins (i.e., pins A4, A9, B4, and B9) and 1.25 A shall be applied to the VCONN pin (i.e., B5) as applicable, terminated through the corresponding GND pins (i.e., pins A1, A12, B1, and B12). A minimum current of 0.25 A shall also be applied individually to all the other contacts, as applicable. When current is applied to the contacts, the temperature of the connector pair shall be allowed to stabilize. The temperature rise of the outside
shell surface of the mated pair above the VBUS and GND contacts shall not exceed 30 °C above the ambient temperature. Figure 3-67 provides an illustration of the measurement location.

- The measurement shall be done in still air.
- The connectors shall be oriented such that the accessible outer shell surface is on top and horizontal to the ground.
- The plug and receptacle may require modification to access solder tails or cable attachment points.
- Either thermocouple or thermo-imaging (preferred) method may be used for temperature measurement.
- For certification, the connector manufacturer shall provide the receptacle and plug samples under test mounted on a current rating test PCB with no copper planes. A cable plug may use short wires to attach the cable attachment points together rather than using a current rating test PCB.
 - The current rating test PCBs shall be of a 2-layer construction. If 2-layer construction is not possible due to the solder tail configuration, VBUS and ground traces shall be located on the outer layers with the inner layers reserved for signal traces, as required; VCONN traces may be routed either on internal or external layers. Table 3-36 defines the requirements for the test PCB thickness and traces. The trace length applies to each PCB (receptacle PCB and plug PCB) and is from the contact terminal to the current source tie point. Figure 3-68 provides an informative partial trace illustration of the current rating test PCB.
 - If short wires are used instead of a current rating test PCB, the wire length shall not exceed 70 mm, measured from the plug contact solder point to the other end of the wire. There shall be no paddle card or overmold included in the test set-up. Each plug solder tail shall be attached with a wire with the wire gauge of AWG 36 for signals, AWG 32 for power (VBUS and VCONN), and AWG 30 for ground.
Figure 3-67 Temperature Measurement Point

Table 3-36 Current Rating Test PCB

<table>
<thead>
<tr>
<th>Item</th>
<th>Trace width (mm)</th>
<th>Trace length (mm) on each PCB</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal trace</td>
<td>0.25 max.</td>
<td>13 max.</td>
<td>35 μm (1 oz. copper)</td>
</tr>
<tr>
<td>Ground trace</td>
<td>1.57 max.</td>
<td>38 max.</td>
<td>35 μm (1 oz. copper)</td>
</tr>
<tr>
<td>VBUS and VCONN</td>
<td>1.25 max.</td>
<td>30 max.</td>
<td>35 μm (1 oz. copper)</td>
</tr>
<tr>
<td>PCB</td>
<td>N/A</td>
<td>N/A</td>
<td>0.80 – 1.20 mm</td>
</tr>
</tbody>
</table>

Measurement Point: Receptacle shell top when a receptacle with a conductive shell is used.

Measurement Point: Plug shell top when receptacles with a non-conductive shell or no shell is used.
3.7.8.5 DC Resistance of D+ and D–

The DC Resistance of the D+ and D– in USB 2.0 High-Speed capable USB Type-C devices and USB 2.0 High-Speed capable USB Type-C Captive devices shall be equal or less than the maximum value specified in Table 3-37. The D+ and D– DC Resistance is the series combination of any resistance in switches, multiplexers, and the USB PHY.

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Maximum DC Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB Type-C Device (USB 2.0 High-speed capable)</td>
<td>19 Ω</td>
</tr>
<tr>
<td>USB Type-C Captive Device (USB 2.0 High-speed capable)</td>
<td>25 Ω</td>
</tr>
</tbody>
</table>

A USB Type-C Host operating in USB 2.0 High-Speed mode shall implement a disconnect threshold voltage (V_{HSDC}) level as defined in the USB 2.0 DCR ECN.

3.8 Mechanical and Environmental Requirements (Normative)

The requirements in this section apply to all USB Type-C connectors and/or cable assemblies unless otherwise specified. For USB Type-C plug connectors and cable assemblies, the test methods are based on an assumption that the cable exits the overmold in line with mating direction to a USB Type-C receptacle (i.e., straight out the back of the overmold). For USB Type-C plug connectors and cable assemblies with the cable exiting the overmold in a different direction than straight out the back (e.g., right angle to the mating direction), test fixtures and procedures shall be modified as required to accomplish the measurement.
3.8.1 Mechanical Requirements

3.8.1.1 Insertion Force (EIA 364-13)

The initial connector insertion force shall be within the range from 5 N to 20 N at a maximum rate of 12.5 mm (0.492") per minute. This requirement does not apply when the connectors are used in a docking application.

It is recommended to use a non-silicone based lubricant on the latching mechanism to reduce wear. The effects of lubricants should be restricted to insertion and extraction characteristics and should not increase the resistance of the mated connection.

3.8.1.2 Extraction Force (EIA 364-13)

The initial connector extraction force shall be within the range of 8 N to 20 N, measured after a preconditioning of five insertion/extraction cycles (i.e., the sixth extraction). After an additional twenty-five insertion/extraction cycles, the extraction force shall be measured again (i.e., the thirty-second extraction) and the extraction force shall be:

a. within 33% of the initial reading, and
b. within the range of 8 N to 20 N.

The extraction force shall be within the range of 6 N to 20 N after 10,000 insertion/extraction cycles. The extraction force measurement shall be performed at a maximum speed of 12.5 mm (0.492") per minute. The extraction force requirement does not apply when the connectors are used in a mechanical docking application.

It is recommended to use a non-silicone based lubricant on the latching mechanism to reduce wear. The effects of lubricants should be restricted to insertion and extraction characteristics and should not increase the resistance of the mated connection.

3.8.1.3 Durability or Insertion/Extraction Cycles (EIA 364-09)

The durability rating shall be 10,000 cycles minimum for the USB Type-C connector family. The durability test shall be done at a rate of 500 ± 50 cycles per hour and no physical damage to any part of the connector and cable assembly shall occur.

3.8.1.4 Cable Flexing (EIA 364-41, Condition 1)

No physical damage or discontinuity over 1 ms during flexing shall occur to the cable assembly with Dimension X = 3.7 times the cable diameter and 100 cycles in each of two planes.

3.8.1.5 Cable Pull-Out (EIA 364-38, Method A)

No physical damage to the cable assembly shall occur when it is subjected to a 40 N axial load for a minimum of 1 minute while clamping one end of the cable plug.
3.8.1.6 4-Axis Continuity Test

The USB Type-C connector family shall be tested for continuity under stress using a test fixture shown in Figure 3-69 or equivalent.

Figure 3-69 Example of 4-Axis Continuity Test Fixture
Plugs shall be supplied with a representative overmold or mounted on a 2 layer printed circuit board (PCB) between 0.8 mm and 1.0 mm thickness as applicable. A USB Type-C receptacle shall be mounted on a 2 layer PCB between 0.8 mm and 1.0 mm thickness. The PCB shall be clamped on three sides of the receptacle no further than 5 mm away from the receptacle outline. The receptacle PCB shall initially be placed in a horizontal plane, and a perpendicular moment shall be applied to the plug with a 5 mm ball tipped probe for a period of at least 10 seconds at a distance of 15 mm from the mating edge of the receptacle shell in a downward direction, perpendicular to the axis of insertion. See Table 3-38 for the force and moment to be applied. Any configuration of non-conductive shell receptacles shall be tested at the values specified for the vertical receptacle configuration.

<table>
<thead>
<tr>
<th>Receptacle configuration with respect to mounting surface</th>
<th>Force at 15 mm from receptacle shell mating edge (N)</th>
<th>Moment with respect to receptacle shell mating edge (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right angle</td>
<td>20</td>
<td>0.30</td>
</tr>
<tr>
<td>Vertical¹</td>
<td>8</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Notes:
1. Any configuration of non-conductive shell receptacles shall be tested at the values specified for the vertical receptacle configuration.

The continuity across each contact shall be measured throughout the application of the tensile force. Each non-ground contact shall also be tested to confirm that it does not short to the shell during the stresses. The PCB shall then be rotated 90 degrees such that the cable is still inserted horizontally and the tensile force in Table 3-38 shall be applied again in the downward direction and continuity measured as before. This test is repeated for 180 degree and 270 degree rotations. Passing parts shall not exhibit any discontinuities or shorting to the shell greater than 1 μs duration in any of the four orientations.
One method for measuring the continuity through the contacts is to short all the wires at the end of the cable pigtail and apply a voltage through a pull-up to each of V_{BUS}, USB D+, USB D−, SBU, CC, and TX/RX pins, with the GND pins connected to ground.

Alternate methods are allowed to verify continuity through all pins.

3.8.1.7 Wrenching Strength

USB Type-C plugs on cable assemblies and fixture plugs without overmold (including PCB-mount USB Type-C plugs) shall be tested using the mechanical wrenching test fixture defined in the Universal Serial Bus Type-C Connectors and Cable Assemblies Compliance Document. For plug without overmold, the supplier shall provide a plug test fixture that conforms to the specified plug overmold dimensions for the USB Type-C plug (see Figure 3-70). The fixture may be metal or other suitable material. Perpendicular moments are applied to the plug with a 5 mm ball tipped probe for a period of at least 10 seconds when inserted in the test fixture to achieve the defined moments in four directions of up or down (i.e., perpendicular to the long axis of the plug opening) and left or right (i.e., in the plane of the plug opening). Compliant connectors shall meet the following force thresholds:

- A moment of 0-0.75 Nm (e.g., 50 N at 15 mm from the edge of the receptacle) is applied to a plug inserted in the test fixture in each of the four directions. A single plug shall be used for this test. Some mechanical deformation may occur. The plug shall be mated with the continuity test fixture after the test forces have been applied to verify no damage has occurred that causes discontinuity or shorting. The continuity test fixture shall provide a planar surface on the mating side located 6.20 ± 0.20 mm from the receptacle Datum A, perpendicular to the direction of insertion. No moment forces are applied to the plug during this continuity test. Figure 3-71 illustrates an example continuity test fixture to perform the continuity test. The Dielectric Withstanding Voltage test shall be conducted after the continuity test to verify plug compliance.

![Figure 3-70 Example Wrenching Strength Test Fixture for Plugs without Overmold](image_url)
The plug shall disengage from the test fixture or demonstrate mechanical failure (i.e., the force applied during the test procedure peaks and drops off) when a moment of 2.0 Nm is applied to the plug in the up and down directions and a moment 3.5 Nm is applied to the plug in the left and right directions. A new plug is required for each of the four test directions. An example of the mechanical failure point and an illustration of the wrenching test fixture are shown in Figure 3-72 and Figure 3-73, respectively.

Figure 3-72 Example of Wrenching Strength Test Mechanical Failure Point
3.8.1.8 Restriction of Hazardous Substances

It is recommended that components be RoHS compliant.

3.8.2 Environmental Requirements

The connector interface environmental tests shall follow EIA 364-1000.01, Environmental Test Methodology for Assessing the Performance of Electrical Connectors and Sockets Used in Business Office Applications.

Since the connector defined has more than 0.127 mm wipe length, Test Group 6 in EIA 364-1000.01 is not required. The temperature life test duration and the mixed flowing gas test duration values are derived from EIA 364-1000.01 based on the field temperature per the following.

<table>
<thead>
<tr>
<th>Test Condition</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Life test temperature and duration</td>
<td>105 °C for 120 hours</td>
</tr>
<tr>
<td>Temperature Life test temperature and duration for preconditioning</td>
<td>105 °C for 72 hours</td>
</tr>
<tr>
<td>Mixed flowing gas test duration</td>
<td>7 days</td>
</tr>
</tbody>
</table>

The pass/fail criterion for the low level contact resistance (LLCR) is as defined in Section 3.7.8.1. The durability ratings are defined in Section 3.8.1.3.

3.8.2.1 Reference Materials (Informative)

This specification does not specify materials for connectors and cables. Connector and cable manufacturers should select appropriate materials based on performance requirements. The information below is provided for reference only.

Note: Connector and cable manufacturers should comply with contact plating requirements per the following options:

Option I

Receptacle

Contact area: (Min) 0.05 μm Au + (Min) 0.75 μm Ni-Pd on top of (Min) 2.0 μm Ni

Plug

Contact area: (Min) 0.05 μm Au + (Min) 0.75 μm Ni-Pd on top of (Min) 2.0 μm Ni

Option II
Receptacle
Contact area: (Min) 0.75 μm Au on top of (Min) 2.0 μm Ni

Plug
Contact area: (Min) 0.75 μm Au on top of (Min) 2.0 μm Ni

Other reference materials that connector and cable manufacturers select based on performance parameters listed in Table 3-40 are for reference only.

Table 3-40 Reference Materials

<table>
<thead>
<tr>
<th>Component</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable</td>
<td>Conductor: copper with tin or silver plating</td>
</tr>
<tr>
<td></td>
<td>SDP Shield: AL foil or AL/mylar foil</td>
</tr>
<tr>
<td></td>
<td>Coaxial shield: copper strand</td>
</tr>
<tr>
<td></td>
<td>Braid: Tin plated copper or aluminum</td>
</tr>
<tr>
<td></td>
<td>Jacket: PVC or halogen free substitute material</td>
</tr>
<tr>
<td>Cable Overmold</td>
<td>Thermoset or thermoplastic</td>
</tr>
<tr>
<td>Connector Shells</td>
<td>Stainless steel or phosphor bronze</td>
</tr>
<tr>
<td>Plug Side Latches</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Receptacle Mid-Plate</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Plug Internal EMC Spring</td>
<td>Stainless steel or high yield strength copper alloy</td>
</tr>
<tr>
<td>Receptacle EMC Pad</td>
<td>Stainless steel or phosphor bronze</td>
</tr>
<tr>
<td>Receptacle Shell</td>
<td>Stainless steel or phosphor bronze</td>
</tr>
<tr>
<td>Receptacle Tongue</td>
<td>Glass-filled nylon</td>
</tr>
<tr>
<td>Housing</td>
<td>Thermoplastics capable of withstanding lead-free soldering temperature</td>
</tr>
</tbody>
</table>

Note: Halogen-free materials should be considered for all plastics

3.9 Docking Applications (Informative)

In this specification, docking refers to plugging a device directly into a dock without using a cable assembly. The USB Type-C connector is defined to support such applications.

The connector is only part of a docking solution. A complete docking solution at the system level may also include retention or locking mechanisms, alignment mechanisms, docking plug mounting solutions, and protocols supported through the connector. This specification does not attempt to standardize system docking solutions, therefore there is no interoperability requirement for docking solutions.

The following list includes the requirements and guidelines when using the USB Type-C connector for docking:

1. The USB Type-C plug used for docking shall work with compliant USB Type-C receptacle. It shall comply with all dimensional, electrical and mechanical requirements.

2. If the plug on the dock does not include the side latches, then the dock should provide a retention or locking mechanism to secure the device to the plug. The retention latches also serve as one of the ground return paths for EMC. The docking
design should ensure adequate EMC performance without the side latches if they are not present.

3. The internal EMC fingers are not required for the docking plug as long as the receptacle and plug shells have adequate electrical connection.

4. Alignment is critical for docking. Depending on system design, standard USB Type-C connectors alone may not provide adequate alignment for mating. System level alignment is highly recommended. Alignment solutions are implementation-specific.

5. Fine alignment is provided by the connector. The receptacle front face may have lead-in features for fine alignment. Figure 3-74 shows an example of a USB Type-C receptacle with a lead-in flange compared to a receptacle without the flange.

Figure 3-74 USB Type-C Cable Receptacle Flange Example

3.10 Implementation Notes and Design Guides

This section discusses a few implementation notes and design guides to help users design and use the USB Type-C connectors and cables.

3.10.1 EMC Management (Informative)

Connector and cable assembly designers, as well as system implementers should pay attention to receptacle and cable assembly shielding to ensure a low-impedance grounding path. The following are guidelines for EMC management:

- The quality of raw cables should be ensured. The intra-pair skew or the differential to common mode conversion of the TX/RX pairs has a significant impact on cable EMC and should be controlled within the limits of this specification.

- The cable external braid should be physically connected to the plug metal shell as close to 360° as possible to control EMC. Without appropriate shielding termination, even a perfect cable with zero intra-pair skew may not meet EMC requirements. Copper tape may be needed to shield off the braid termination area.

- The wire termination contributes to common-mode noise. The breakout distance for the wire termination should be kept as small as possible to optimize EMC and signal...
integrity performance. If possible, symmetry should be maintained for the two lines within a differential pair.

- Besides the mechanical function, the side latches on the plug and the mid-plate in the receptacle also play a role for EMC. This is illustrated in Figure 3-75:
 1. The side latch should have electrical connection to the receptacle mid-plate (a docking plug may not have side latches).
 2. The side latches should be terminated to the paddle card GND plane inside the plug.
 3. The mid-plate should be directly connected to system PCB GND plane with three or more solder leads/tails.

Figure 3-75 EMC Guidelines for Side Latch and Mid-plate

- The internal RFI finger inside the plug should have adequate connection points to the inner surface of the plug shell. Four or more connection points are recommended as illustrated in Figure 3-76.

Figure 3-76 EMC Finger Connections to Plug Shell
The EMC fingers inside the plug mates with the EMC pad in the receptacle. It is important for the EMC pad to have adequate connections to the receptacle shell. As illustrated in Figure 3-77, there are multiple laser welding points between the EMC pads and the receptacle shell, top and bottom.

The receptacle shell should have sufficient connection points to the system PCB GND plane with apertures as small as possible. Figure 3-77 illustrates an example with multiple solder tails to connect the receptacle shell to system PCB GND.

Figure 3-77 EMC Pad Connections to Receptacle Shell

Apertures in the receptacle and plug shells should be minimized. If apertures are unavoidable, a maximum aperture size of 1.5 mm is recommended. See Figure 3-78 for aperture illustrations. Copper tape may be applied to seal the apertures inside the cable plug.

Figure 3-78 Examples of Connector Apertures

The receptacle connectors should be connected to metal chassis or enclosures through grounding fingers, screws, or any other way to manage EMC.
3.10.2 Stacked and Side-by-Side Connector Physical Spacing (Informative)

Stacked and side-by-side USB connectors are commonly used in PC systems. Figure 3-79 illustrates the recommended spacing between connectors for stacked and side-by-side configurations.

Figure 3-79 Recommended Minimum Spacing between Connectors

3.10.3 Cable Mating Considerations (Informative)

The receptacle mounting location, exterior product surfaces, cable overmold, and plug mating length need to be considered to ensure the USB Type-C plug is allowed to fully engage the USB Type-C receptacle. Figure 3-80 illustrates the recommended minimum plug overmold clearance to allow the cable plug to fully seat in the product receptacle.

Figure 3-80 Recommended Minimum Plug Overmold Clearance

Figure 3-81 illustrates special considerations required when external walls are angled. For such applications, the USB Type-C receptacle shell may not provide as much mechanical alignment protection to the receptacle tongue as in the full shell design. Design options to allow the receptacle to pass mechanical test requirements include relief in the exterior wall surface to allow use of a full shell receptacle or use of a receptacle specifically designed for the application.
Figure 3-81 Cable Plug Overmold and an Angled Surface
4 Functional

This chapter covers the functional requirements for the signaling across the USB Type-C® cables and connectors. This includes functional signal definition, discovery and configuration processes, and power delivery.

4.1 Signal Summary

Table 4-1 summarizes the list of signals used on the USB Type-C connectors.

<table>
<thead>
<tr>
<th>Signal Group</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB 3.2 / USB4™</td>
<td>TXp1, TXn1, RXp1, RXn1</td>
<td>Both the USB 3.2 SuperSpeed USB and USB4 serial data interfaces defines 1 differential transmit pair and 1 differential receive pair per lane. On a USB Type-C receptacle, two sets of signal pins are defined to support dual-lane operation and enable plug flipping feature.</td>
</tr>
<tr>
<td></td>
<td>TXp2, TXn2, RXp2, RXn2</td>
<td></td>
</tr>
<tr>
<td>USB 2.0</td>
<td>Dp1, Dn1, Dp2, Dn2</td>
<td>USB 2.0 serial data interface defines a differential pair. On a USB Type-C receptacle, two set of USB 2.0 signal pins are defined to enable plug flipping feature.</td>
</tr>
<tr>
<td>Configuration</td>
<td>CC1, CC2 (receptacle)</td>
<td>CC channel in the plug used for connection detect, interface configuration and VCONN.</td>
</tr>
<tr>
<td></td>
<td>CC (plug)</td>
<td></td>
</tr>
<tr>
<td>Auxiliary signals</td>
<td>SBU1, SBU2</td>
<td>Sideband Use. For USB4, these signals are used for SBTX and SBRX.</td>
</tr>
<tr>
<td>Power</td>
<td>VBUS</td>
<td>USB cable bus power</td>
</tr>
<tr>
<td></td>
<td>VCONN (plug)</td>
<td>USB plug power</td>
</tr>
<tr>
<td></td>
<td>GND</td>
<td>USB cable return current path</td>
</tr>
</tbody>
</table>

4.2 Signal Pin Descriptions

4.2.1 SuperSpeed USB Pins

TXp1, TXn1, TXp2, TXn2

These pins are required to implement the system’s transmit path of either a USB 3.2 SuperSpeed or USB4 TX/RX interface. The transmitter differential pair in a port are routed to the receiver differential pair in the port at the opposite end of the path. Depending on the established connection, the USB 3.2 Specification or USB4 Specification defines all electrical characteristics, enumeration, protocol, and management features for this interface.

Two pairs of pins are defined to enable dual-lane operation – see Section 4.5.1.1 for further definition.

RXp1, RXn1, RXp2, RXn2

These pins are required to implement the system’s receive path of a USB 3.2 SuperSpeed or USB4 TX/RX interface. The receiver differential pair in a port are routed to the transmitter differential pair in the port at the opposite end of the path. Depending on the established connection, the USB 3.2 Specification or USB4 Specification defines all electrical characteristics, enumeration, protocol, and management features for this interface.

Two pairs of pins are defined to enable dual-lane operation – see Section 4.5.1.1 for further definition.
4.2.2 USB 2.0 Pins

Dp1, Dn1 (Dp2, Dn2) These pins are required to implement USB 2.0 functionality. USB 2.0 in all three modes (LS, FS, and HS) is supported. The USB 2.0 Specification defines all electrical characteristics, enumeration, and bus protocol and bus management features for this interface.

Two pairs of pins are defined to enable the plug flipping feature – see Section 4.5.1.1 for further definition.

4.2.3 Auxiliary Signal Pins

SBU1, SBU2 These pins are assigned to sideband use. For USB4, these signals are used for SBTX and SBRX. Refer to Section 4.3 for the functional requirements.

4.2.4 Power and Ground Pins

VBUS These pins are for USB cable bus power as defined by the USB specifications. VBUS is only present when a Source-to-Sink connection across the CC channel is present – see Section 4.5.1.2.1. Refer to Section 4.4.2 for the functional requirements for VBUS.

VCONN VCONN is applied to the unused CC pin to supply power to the local plug. Refer to Section 4.4.3 for the functional requirements for VCONN.

GND Return current path.

4.2.5 Configuration Pins

CC1, CC2, CC These pins are used to detect connections and configure the interface across the USB Type-C cables and connectors. Refer to Section 4.5 for the functional definition. Once a connection is established, CC1 or CC2 will be reassigned for providing power over the VCONN pin of the plug – see Section 4.5.1.2.1.

4.3 Sideband Use (SBU)

The Sideband Use pins (SBU1 and SBU2) are limited to the uses as defined by this specification and additional functionality defined in the USB4 Specification. See Appendix E and Appendix A for use of the SBU pins in Alternate Modes and Audio Adapter Accessory Mode.

The SBU pins on a port shall either be open circuit or have a weak pull-down to ground no stronger than zSBUTermination.

These pins are pre-wired in the standard USB Full-Featured Type-C cable as individual single-ended wires (SBU_A and SBU_B). Note that SBU1 and SBU2 are cross-connected in the cable.

When operating in USB4, these pins are used as the USB4 Sideband Channel with SBU1 mapping to SBTX and SBU2 mapping to SBRX. SBTX and SBRX functional requirements are as defined in the USB4 Specification. When a port determines that the locally-inserted plug is flipped (i.e. CC1 is open, CC2 is terminated), the USB4 Specification (reference Sideband Channel Lane Reversal) dictates that the port flip the SBTX and SBRX mappings to SBU1 and SBU2 in order to assure proper sideband transmit-to-receive end-to-end operation.
4.4 Power and Ground

4.4.1 IR Drop

The maximum allowable cable IR drop for ground (including ground on a captive cable) shall be 250 mV and for VBUS shall be 500 mV through the cable to the cable’s maximum rated VBUS current capacity. When VCONN is being sourced, the IR drop for the ground shall still be met considering any additional VCONN return current.

Figure 4-1 illustrates what parameters contribute to the IR drop and where it shall be measured. The IR drop includes the contact resistance of the mated plug and receptacles at each end.

![Figure 4-1 Cable IR Drop](image1)

Figure 4-2 illustrates what parameters contribute to the IR drop for a powered cable and where it shall be measured. Note that the powered cable includes isolation elements (Iso) and loads (L1 and L2) for the functions in the powered cable such as USB PD controllers. The IR drop shall remain below 250 mV in all cases.

![Figure 4-2 Cable IR Drop for powered cables](image2)
4.4.2 VBUS

The allowable default range for VBUS as measured at the Source receptacle shall be as defined by the USB 2.0 Specification and USB 3.2 Specification. For USB4, the USB 3.2 Specification is used for this requirement. NOTE that due to higher currents allowed, legacy devices may experience a higher voltage (up to 5.5V maximum) at light loads.

The Source's USB Type-C receptacle VBUS pin shall remain unpowered and shall limit the capacitance between VBUS and GND as specified in Table 4-2 until a Sink is attached. The VBUS pin shall return to the unpowered state when the Sink is detached. See Table 4-29 for VBUS timing values. Legacy hosts/chargers that by default source VBUS when connected using any legacy USB connector (Standard-A, Micro-B, etc.) to USB Type-C cable or adapter are exempted from these two requirements.

A DRP or Source (or device with Accessory Support) implementing an Rp pull-up as its method of connection detection shall provide an impedance between VBUS and GND on its receptacle pins as specified in Table 4-2 when not sourcing power on VBUS (i.e., when in states Unattached.SRC or Unattached.Accessory).

Table 4-2 VBUS Source Characteristics

<table>
<thead>
<tr>
<th>VBUS Leakage Impedance</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>72.4 kΩ</td>
<td></td>
<td>Leakage between VBUS pins and GND pins on receptacle when VBUS is not being sourced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VBUS Capacitance</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBUS</td>
<td>3000 μF</td>
<td></td>
<td>Capacitance for source-only ports between VBUS and GND pins on receptacle when VBUS is not being sourced.</td>
</tr>
<tr>
<td></td>
<td>10 μF</td>
<td></td>
<td>Capacitance for DRP ports between VBUS and GND pins on receptacle when VBUS is not being sourced.</td>
</tr>
</tbody>
</table>

Table 4-3 specifies VBUS Sink characteristics with regard to disconnect behavior based on monitoring VBUS. Sinks may monitor the CC pin for the removal of Rp by the Source as an additional indication of disconnect.
Table 4-3 VBUS Sink Characteristics

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Maximum</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>tSinkDisconnect</td>
<td>40 ms</td>
<td>Time limit for transition from Attached.SNK to Unattached.SNK</td>
</tr>
<tr>
<td>vSinkDisconnect1</td>
<td>0.8V</td>
<td>Threshold used for transition from Attached.SNK to Unattached.SNK when VBUS is 5 V. This also applies for USB PD contracts at 5 V. For USB PD contracts at 5 V, the Sink shall take IR drop and margin into account when selecting this threshold.</td>
</tr>
<tr>
<td>vSinkPD$_{\text{min}}$1</td>
<td>$v_{\text{New}} - 750 \text{ mV } + v_{\text{Valid}}$</td>
<td>Minimum valid VBUS voltage seen by sink when negotiated through USB PD. $v_{\text{New}} = v_{\text{SrcNew}} (\text{min})$ or $v_{\text{PpsNew}} (\text{min})$ as defined in USB PD. 750 mV = 500 mV + 250 mV (maximum IR drop) $v_{\text{Valid}} = v_{\text{SrcValid}} (\text{min})$ or $v_{\text{PpsValid}} (\text{min})$ as defined in USB PD.</td>
</tr>
<tr>
<td>vSinkDisconnectPD1</td>
<td>90% of vSinkPD$_{\text{min}}$</td>
<td>VBUS disconnect threshold when VBUS voltage was negotiated through USB PD to a value above 5 V. This applies for USB PD PPS contracts for RDO Output Voltage above 5 V. This also applies for USB PD PPS contracts operating in the Constant Voltage mode.</td>
</tr>
<tr>
<td>VBUS Capacitance</td>
<td>10 μF</td>
<td>Capacitance between VBUS and GND pins on receptacle when not in Attached.SNK.</td>
</tr>
</tbody>
</table>

Note 1: See Section 4.5.2.2.5.2 with regard to applicability of this requirement.
4.4.3 VCONN

VCONN is provided by the Source to power cables with electronics in the plug. VCONN is provided over the CC pin that is determined not to be connected to the CC wire of the cable.

Initially, VCONN shall be sourced on all Source USB Type-C receptacles that utilize the TX and RX pins during specific connection states as described in Section 4.5.2.2. Subsequently, if VCONN is not explicitly required by the cable or device as indicated in its eMarker, VCONN may be removed as described in Table 4-4. VCONN may also be sourced by USB Type-C receptacles that do not utilize the TX and RX pins as described in Section 4.5.2.2. USB PD VCONN_Swap command also provides the Source a means to request that the attached Sink source VCONN.

<table>
<thead>
<tr>
<th>D+/D−</th>
<th>TX/RX, VPD</th>
<th>> 3 A</th>
<th>VCONN Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Not required to source VCONN</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Not required to source VCONN</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Required to source 1 W for x1 implementations and 1.5 W for x2 implementations. If not otherwise required, VCONN power may be removed after the source has read the cable’s eMarker and has determined that it is not an active cable nor a VPD.</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Required to source 100 mW. If not otherwise required, VCONN power may be removed after the source has read the cable’s eMarker and has determined the cable’s current carrying capacity.</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Required to source 100 mW. If not otherwise required, VCONN power may be removed after the source has read the cable’s eMarker and has determined the cable’s current carrying capacity.</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Required to source 1 W for x1 implementations and 1.5 W for x2 implementations. If not otherwise required, VCONN power may be removed after the source has read the cable’s eMarker and has determined the cable’s current carrying capacity and that it is not an active cable nor a VPD.</td>
</tr>
</tbody>
</table>

Table 4-5 provides the voltage and power requirements that shall be met for VCONN. See Section 4.9 for more details about Electronically Marked Cables. See Appendix E regarding optional support for an increased VCONN power range in Alternate Modes.
Table 4-5 VCONN Source Characteristics

<table>
<thead>
<tr>
<th>Feature</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>vVCONNValid</td>
<td>3.0 V</td>
<td>5.5 V</td>
<td>The voltage range over which VCONN is considered valid.</td>
</tr>
<tr>
<td>Power for Sources with TX/RX Signals</td>
<td>x1 1 W</td>
<td></td>
<td>Source may latch-off VCONN if excessive power is drawn beyond the specified inrush and mode wattage.</td>
</tr>
<tr>
<td></td>
<td>x2 1.5 W</td>
<td></td>
<td>Source may disable VCONN per Table 4-4.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate modes may require higher power.</td>
</tr>
<tr>
<td>Power for Sources with VPD support</td>
<td>1 W</td>
<td></td>
<td>Source may latch-off VCONN if excessive power is drawn beyond the specified inrush and mode wattage.</td>
</tr>
<tr>
<td>Power for Sources in USB Suspend or without TX/RX Signals</td>
<td>100 mW</td>
<td></td>
<td>Minimum power Source must provide in USB Suspend or without TX/RX signals. Source may disable VCONN per Table 4-4.</td>
</tr>
<tr>
<td>Rdch</td>
<td>30 Ω</td>
<td>6120 Ω</td>
<td>Discharge resistance applied in UnattachedWait.SRC between the CC pin being discharged and GND.</td>
</tr>
</tbody>
</table>

To aid in reducing the power associated with supplying VCONN, a Source is allowed to either not source VCONN or turn off VCONN under any of the following conditions:

- **Ra** is not detected on the CC pin after \(t_{CCDebounce} \) when the other CC pin is in the SRC.Rd state, or
- if there is no GoodCRC response to **USB PD** Discover Identity messages sent to SOP'.

If the power source used to supply VCONN power is a shared power source for other USB VCONN and VBUS outputs, it must be bypassed with capacitance identical to the VBUS capacitance requirements of **USB 3.2** Section 11.4.4 – Dynamic Attach and Detach. Any VCONN power source bypass capacitance must be isolated from the CC pins when VCONN is not being provided.

Table 4-6 provides the requirements that shall be met for cables that consume VCONN power.
Table 4-6 Cable VCONN Sink Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>3.0</td>
<td>5.5V</td>
<td>Voltage range (vVCONNValid) over which this table applies</td>
</tr>
<tr>
<td>Inrush Capacitance</td>
<td></td>
<td>10 μF</td>
<td>A cable shall not present more than the equivalent inrush capacitance to the VCONN source. The active cable is responsible for discharging its capacitance.</td>
</tr>
<tr>
<td>Power for Electronically Marked Passive Cables</td>
<td></td>
<td>20mW</td>
<td>See Section 4.9. Measured with no USB PD traffic at least 500ms after VCONN applied. Note: 75mW max allowed for the first 500ms after VCONN applied.</td>
</tr>
<tr>
<td>USB 3.2 Power for Active Cables in U-states</td>
<td>See Table 6-19</td>
<td>U0, U1, U2, U3, Rx.Detect, and eSS.Disabled.</td>
<td></td>
</tr>
<tr>
<td>tVCONNDischarge</td>
<td>230ms</td>
<td></td>
<td>Time from cable disconnect to vVCONNDischarge met.</td>
</tr>
<tr>
<td>vVCONNDischarge</td>
<td>800mV</td>
<td></td>
<td>VCONN voltage after tVCONNDischarge</td>
</tr>
<tr>
<td>vRaReconnect</td>
<td>800mV</td>
<td></td>
<td>Voltage at which the cable shall reapply Ra on the falling edge of VCONN.</td>
</tr>
</tbody>
</table>

The cable shall remove or weaken Ra when VCONN is in the valid voltage range (vVCONNValid). The cable shall reapply Ra when VCONN falls below vRaReconnect as defined in Table 4-6. The cable shall discharge VCONN to below vVCONNDischarge on a cable disconnect. The cable shall take into account the VCONN capacitance present in the cable when discharging VCONN.

Implementation Note: Increasing Ra to 20KΩ will meet both the power dissipation for electronically marked passive cables and discharge 10μF to less than vVCONNDischarge in tVCONNDischarge.
Table 4-7 \textbf{VCONN-Powered Accessory} (VPA) Sink Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>3.0 V</td>
<td>5.5 V</td>
<td>Voltage range (\texttt{vVCONNValid}) over which this table applies</td>
</tr>
<tr>
<td>Inrush Capacitance</td>
<td>10 μF</td>
<td></td>
<td>An accessory shall not present more than the equivalent inrush capacitance to the \texttt{VCONN} source. The accessory is responsible for discharging its capacitance when detached from a port.</td>
</tr>
<tr>
<td>Power before Alternate Mode Entry</td>
<td>35 mW</td>
<td></td>
<td>Maximum power in USB suspend Note: Power shall be reduced 5 seconds after \texttt{VCONN} is applied if no \texttt{Alternate Mode} Entry has occurred. A \texttt{VCONN} power cycle may be required to re-enable USB-PD communication.</td>
</tr>
<tr>
<td>\texttt{tVCONNDischarge}</td>
<td>230 ms</td>
<td></td>
<td>Time from VPA disconnect to \texttt{vVCONNDischarge} met.</td>
</tr>
<tr>
<td>\texttt{vVCONNDischarge}</td>
<td>800 mV</td>
<td></td>
<td>\texttt{VCONN} voltage after \texttt{tVCONNDischarge}</td>
</tr>
<tr>
<td>\texttt{vRaReconnect}</td>
<td>800 mV</td>
<td></td>
<td>Voltage at which the VPA shall reapply \texttt{Ra} on the falling edge of \texttt{VCONN}.</td>
</tr>
<tr>
<td>\texttt{vVCONNDisconnect}</td>
<td>800 mV</td>
<td>2.4 V</td>
<td>Threshold used to detect \texttt{VCONN} disconnect.</td>
</tr>
</tbody>
</table>

The \texttt{VCONN} powered accessory shall remove or weaken \texttt{Ra} when \texttt{VCONN} is in the valid voltage range (\texttt{vVCONNValid}). The \texttt{VCONN} powered accessory shall reapply \texttt{Ra} when \texttt{VCONN} falls below \texttt{vRaReconnect} as defined in Table 4-7. The \texttt{VCONN} powered accessory shall take into account the \texttt{VCONN} capacitance present in the accessory when discharging \texttt{VCONN}.

The maximum power consumption while in an \texttt{Alternate Mode} is defined by the specification specific to the \texttt{Alternate Mode} being used.
Table 4-8 VCONN-Powered USB Device (VPD) Sink Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>3.0 V</td>
<td>5.5 V</td>
<td>Voltage range (vVCONNValid) over which this table applies</td>
</tr>
<tr>
<td>Inrush Capacitance</td>
<td>10 μF</td>
<td></td>
<td>A VPD shall not present more than the equivalent inrush capacitance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to the VCONN source. The VPD is responsible for discharging its</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>capacitance when detached from a port.</td>
</tr>
<tr>
<td>Power before USB</td>
<td>35 mW</td>
<td></td>
<td>Maximum power in USB suspend</td>
</tr>
<tr>
<td>enumeration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power when active</td>
<td>500 mW</td>
<td>750 mW</td>
<td>A VPD shall only expose a low-power interface over USB.</td>
</tr>
<tr>
<td></td>
<td>(USB 2.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500 mW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(USB 3.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tVCONNDischarge</td>
<td></td>
<td>230 ms</td>
<td>Time from VPD disconnect to vVCONNDischarge met.</td>
</tr>
<tr>
<td>vVCONNDischarge</td>
<td></td>
<td>800 mV</td>
<td>VCONN voltage after tVCONNDischarge</td>
</tr>
<tr>
<td>vRaReconnect</td>
<td>800 mV</td>
<td></td>
<td>Voltage at which the VPD shall reapply Ra on the falling edge of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VCONN.</td>
</tr>
<tr>
<td>vVCONNDisconnect</td>
<td>800 mV</td>
<td>2.4 V</td>
<td>Threshold used to detect VCONN disconnect.</td>
</tr>
</tbody>
</table>

The VPD shall remove or weaken Ra when VCONN is in the valid voltage range (vVCONNValid).

The VPD shall reapply Ra when VCONN falls below vRaReconnect as defined in Table 4-8. The VPD shall take into account the VCONN capacitance present in the device when discharging VCONN.

4.5 Configuration Channel (CC)

4.5.1 Architectural Overview

For the USB Type-C solution, two pins on the connector, CC1 and CC2, are used to establish and manage the Source-to-Sink connection. When the device is connected through a hub, the connection between a Sink (UFP) on the hub and the Source (host port) and the connection between the Sink (device port) and a Source (DFP on the hub), are treated as separate connections. Functionally, the configuration channel is used to serve the following purposes.

- Detect attach of USB ports, e.g. a Source to a Sink
- Resolve cable orientation and twist connections to establish USB data bus routing
- Establish data roles between two attached ports
- Discover and configure VBUS: USB Type-C Current modes or USB Power Delivery
• Configure VCONN
• Discover and configure optional Alternate and Accessory modes

4.5.1.1 USB Data Bus Interface and USB Type-C Plug Flip-ability

Since the USB Type-C plug can be inserted in either right-side-up or upside-down position, the hosts and devices that support USB data bus functionality must operate on the signal pins that are actually connected end-to-end. In the case of USB 2.0, this is done by shorting together the two D+ signal pins and the two D− signal pins in the host and device receptacles. In the case of USB 3.2 SuperSpeed USB or USB4 TX/RX signals in a single-lane implementation, it requires the functional equivalent of a switch in both the host and device to appropriately route the TX and RX signal pairs to the connected path through the cable. For a USB 3.2 SuperSpeed USB or USB4 dual-lane implementation, the host and/or device resolves the lane ordering.

Figure 4-3 illustrates the logical data bus model for a USB Type-C-based Host connected to a USB Type-C-based Device that is only capable of SuperSpeed USB single-lane operation. The USB cable that sits between a host and device can be in one of four possible connected states when viewed by the host:

• Un-flipped straight through – Position ① ⇔ Position ①
• Un-flipped twisted through – Position ① ⇔ Position ②
• Flipped straight through – Position ② ⇔ Position ②
• Flipped twisted through – Position ② ⇔ Position ①

To establish the proper routing of the active USB data bus from host to device, the standard USB Type-C cable is wired such that a single CC wire is position aligned with the first TX/RX signal pairs (TXp1/TXn1 and RXp1/RXn1) – in this way, the CC wire and TX/RX data bus wires that are used for single-lane operational signaling within the cable track with regard to the orientation and twist of the cable. By being able to detect which of the CC pins (CC1 or CC2) at the receptacle is terminated by the device, the host is able to determine which TX/RX signals are to be used for the single-lane connection and the host can use this to control the functional switch for routing the TX/RX signal pairs. Similarly in the device, detecting which of the CC pins at the receptacle is terminated by the host allows the device to control the functional switch that routes its TX/RX signal pairs.

For a dual-lane implementation, the TX/RX signal pairs in the cable/plug aligned with the CC wire/pin is Lane 0 and in reference to USB 3.2, shall be identified as the Configuration Lane. The second TX/RX signal pairs (TXp2/TXn2 and RXp2/RXn2) in the cable/plug is Lane 1 of a dual-lane configuration.
Figure 4-3 Logical Model for Single-Lane Data Bus Routing across USB Type-C-based Ports

While Figure 4-3 illustrates the functional model as a host connected to a device, this model equally applies to a USB hub’s downstream ports as well.

Figure 4-4 illustrates the logical data bus model for a single-lane USB Type-C-based Device (implemented with a USB Type-C plug either physically incorporated into the device or permanently attached as a captive cable) connected directly to a USB Type-C-based Host. For the device, the location of the TX/RX data bus, USB 2.0 data bus, CC and VCONN pins are fixed by design. Given that the device pin locations are fixed, only two possible connected states exist when viewed by the host.

Figure 4-4 Logical Model for USB Type-C-based Ports for a Single-Lane Direct Connect Device

The functional requirements for implementing TX/RX data bus routing for the USB Type-C receptacle are not included in the scope of this specification. There are multiple host, device and hub architectures that can be used to accomplish this which could include either discrete or integrated switching, and could include merging this functionality with other USB 3.2 or USB4 design elements, e.g. a bus repeater.
The functional requirements for addressing SBU1 and SBU2 routing is not included in the scope of this specification. For USB4, where SBTX and SBRX are mapped to SBU1 and SBU2, the adjustment to the mapping of these signals based on the connection state (flipped and/or twisted) of the cable is defined by the USB4 Specification (reference Sideband Channel Lane Reversal).

4.5.1.2 Connecting Sources and Sinks

Given that the USB Type-C receptacle and plug no longer differentiate host and device roles based on connector shape, e.g., as was the case with USB Type-A and Type-B connectors, any two ports that have USB Type-C receptacles can be connected together with a standard USB Type-C cable. Table 4-9 summarizes the expected results when interconnecting Source, Sink and DRP ports.

<table>
<thead>
<tr>
<th>Source-only</th>
<th>Sink-only</th>
<th>DRP (Dual-Role-Power)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source-only</td>
<td>Non-functional</td>
<td>Functional</td>
</tr>
<tr>
<td>Sink-only</td>
<td>Functional</td>
<td>Non-functional</td>
</tr>
<tr>
<td>DRP (Dual-Role-Power)</td>
<td>Functional</td>
<td>Functional*</td>
</tr>
</tbody>
</table>

* Resolution of roles may be automatic or manually driven

In the cases where no function results, neither port shall be harmed by this connection. The user has to independently realize the invalid combination and take appropriate action to resolve. While these two invalid combinations mimic traditional USB where host-to-host and device-to-device connections are not intended to work, the non-keyed USB Type-C solution does not prevent the user from attempting such interconnects. VBUS and VCONN shall not be applied by a Source (host) in these cases.

The typical flow for the configuration of the interface in the general USB case of a Source (Host) to a Sink (Device) is as follows:

1. Detect a valid connection between the ports (including determining cable orientation, Source/Sink and DFP/UFP relationship)
2. Optionally discover the cable’s capabilities
3. Optionally establish alternatives to traditional USB power (See Section 4.6.2)
 a. USB PD communication over CC for advanced power delivery negotiation
 b. USB Type-C Current modes
 c. USB BC 1.2
4. USB Device Enumeration

For cases of Dual-Role-Power (DRP) ports connecting to either Source-only, Sink-only or another DRP, the process is essentially the same except that during the detecting a valid connection step, the DRP alternates between operating as a Source for detecting an attached Sink and presenting as a Sink to be detected by an attached Source. Ultimately this results in a Source-to-Sink connection.
4.5.1.2.1 Detecting a Valid Source-to-Sink Connection

The general concept for setting up a valid connection between a Source and Sink is based on being able to detect terminations residing in the product being attached.

To aid in defining the functional behavior of CC, a pull-up (Rp) and pull-down (Rd) termination model is used – actual implementation in hosts and devices may vary, for example, the pull-up termination could be replaced by a current source. Figure 4-5 and Figure 4-6 illustrates two models, the first based on a pull-up resistor in the Source and the second replacing this with a current source.

Figure 4-5 Pull-Up/Pull-Down CC Model

```
Source monitors for connection

Cable

Source monitors for connection

Sink monitors for orientation

+ Rp Rp

CC

Ra

Ra

Sink monitors for orientation

Sink monitors for orientation

Rd

Rd

Source monitors for connection
```

Figure 4-6 Current Source/Pull-Down CC Model

```
Source monitors for connection

Cable

Source monitors for connection

Sink monitors for orientation

Ip Ip

CC

Ra

Ra

Sink monitors for orientation

Sink monitors for orientation

Rd

Rd
```

Initially, a Source exposes independent Rp terminations on its CC1 and CC2 pins, and a Sink exposes independent Rd terminations on its CC1 and CC2 pins, the Source-to-Sink combination of this circuit configuration represents a valid connection. To detect this, the Source monitors CC1 and CC2 for a voltage lower than its unterminated voltage – the choice of Rp is a function of the pull-up termination voltage and the Source’s detection circuit. This indicates that either a Sink, a powered cable, or a Sink connected via a powered cable has been attached.

Prior to application of VCONN, a powered cable exposes Ra on its VCONN pin. Ra represents the load on VCONN plus any resistive elements to ground. In some cable plugs it might be a pure resistance and in others it may be simply the load.
The Source has to be able to differentiate between the presence of \textit{Rd} and \textit{Ra} to know whether there is a Sink attached and where to apply V\textit{CONN}. The Source is not required to source V\textit{CONN} unless \textit{Ra} is detected.

Two special termination combinations on the CC pins as seen by a Source are defined for directly attached Accessory Modes: \textit{Ra/Ra} for Audio Adapter Accessory Mode (Appendix A) and \textit{Rd/Rd} for Debug Accessory Mode (Appendix B).

The Source uses de-bounce timers to reliably detect states on the CC pins to de-bounce the connection (\textit{tCCDebounce}), and hide \textit{USB PD} BMC communications (\textit{tPDDebounce}).

Table 4-10 summarizes the port state from the Source’s perspective.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|l|c|}
\hline
CC1 & CC2 & State & Position \\
\hline
Open & Open & Nothing attached & N/A \\
\hline
Rd & Open & Sink attached & 1 \\
\hline
Open & Rd & & 2 \\
\hline
Open & Ra & Powered cable without Sink attached & 1 \\
\hline
Ra & Open & & 2 \\
\hline
Rd & Ra & Powered cable with Sink, \textit{VCONN-Powered Accessory} (VPA), or \textit{VCONN-Powered USB Device} (VPD) attached & 1 \\
\hline
Ra & Rd & & 2 \\
\hline
Rd & Rd & Debug Accessory Mode attached (Appendix B) & N/A \\
\hline
Ra & Ra & Audio Adapter Accessory Mode attached (Appendix A) & N/A \\
\hline
\end{tabular}
\caption{Source Perspective}
\end{table}

Once the Sink is powered, the Sink monitors CC1 and CC2 for a voltage greater than its local ground. The CC pin that is at a higher voltage (i.e. pulled up by \textit{Rp} in the Source) indicates the orientation of the plug.

Table 4-11 summarizes the typical behaviors for simple Sources (Hosts) and Sinks (Devices) for each state in Table 4-10.
Table 4-11 Source (Host) and Sink (Device) Behaviors by State

<table>
<thead>
<tr>
<th>State</th>
<th>Source Behavior</th>
<th>Sink Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nothing attached</td>
<td>• Sense CC pins for attach</td>
<td>• Sense VBUS for attach</td>
</tr>
<tr>
<td></td>
<td>• Do not apply VBUS or VCONN</td>
<td></td>
</tr>
<tr>
<td>Sink attached</td>
<td>• Sense CC for orientation</td>
<td>• Sense CC pins for orientation</td>
</tr>
<tr>
<td></td>
<td>• Sense CC for detach</td>
<td>• Sense loss of VBUS for detach</td>
</tr>
<tr>
<td></td>
<td>• Apply VBUS and VCONN</td>
<td></td>
</tr>
<tr>
<td>Powered cable without Sink attached</td>
<td>• Sense CC pins for attach</td>
<td>• Sense VBUS for attach</td>
</tr>
<tr>
<td></td>
<td>• Do not apply VBUS or VCONN</td>
<td></td>
</tr>
<tr>
<td>Powered cable with Sink, VCONN-Powered Accessory, or VCONN-Powered USB Device attached</td>
<td>• Sense CC for orientation</td>
<td>• If accessories or VPDs are supported, see Source Behavior with exception that VBUS is not applied., otherwise, N/A.</td>
</tr>
<tr>
<td></td>
<td>• Sense CC for detach</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Apply VBUS and VCONN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Detect VPD and remove VBUS</td>
<td></td>
</tr>
<tr>
<td>Debug Accessory Mode attached</td>
<td>• Sense CC pins for detach</td>
<td>• Sense VBUS for detach</td>
</tr>
<tr>
<td></td>
<td>• Reconfigure for debug</td>
<td>• Reconfigure for debug</td>
</tr>
<tr>
<td>Audio Adapter Accessory Mode attached</td>
<td>• Sense CC pins for detach</td>
<td>• If accessories are supported, see Source Behavior, otherwise, N/A.</td>
</tr>
<tr>
<td></td>
<td>• Reconfigure for analog audio</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-3 shows how the inserted plug orientation is detected at the Source’s receptacle by noting on which of the two CC pins in the receptacle an Rd termination is sensed. Now that the Source (Host) has recognized that a Sink (Device) is attached and the plug orientation is determined, it configures the TX/RX data bus routing to the receptacle.

The Source (Host) then turns on VBUS. For the CC pin that does not connect Source-to-Sink through the cable, the Source supplies VCONN and may remove the termination. With the Sink (Device) now powered, it configures the USB data path. This completes the Host-to-Device connection.

The Source monitors the CC wire for the loss of pull-down termination to detect detach. If the Sink is removed, the Source port removes any voltage applied to VBUS and VCONN, resets its interface configuration and resumes looking for a new Sink attach.

Once a valid Source-to-Sink connection is established, alternatives to traditional USB power (VBUS as defined by either USB 2.0 or USB 3.2 specifications) may be available depending on the capabilities of the host and device. These include USB Type-C Current, USB Power Delivery, and USB Battery Charging 1.2.

In the case where USB PD PR_Swap is used to swap the Source and Sink of VBUS, the supplier of VCONN remains unchanged during and after the VBUS power swap. The new Source monitors the CC wire and the new Sink monitors VBUS to detect detach. When a detach event is detected, any voltages applied to VBUS and VCONN are removed, each port resets its interface configuration and resumes looking for an attach event.

In the case where USB PD DR_Swap is used to swap the data roles (DFP and UFP), the source of VBUS and VCONN do not change after the data role swap.
In the case where USB PD VCONN_Swap is used to swap the VCONN source, the VBUS Source/Sink and DFP/UFP roles are maintained during and after the VCONN swap.

The last step in the normal USB Type-C connect process is for the USB device to be attached and enumerated per standard USB 2.0 and USB 3.2 processes.

4.5.1.3 Configuration Channel Functional Models

The functional models for the configuration channel behavior based on the CC1 and CC2 pins are described in this section for each port type: Source, Sink and Dual-Role-Power (DRP).

The figures in the following sections illustrate the CC1 and CC2 routing after the CC detection process is complete. In these figures, VBUS and VCONN may or may not actually be available.

4.5.1.3.1 Source Configuration Channel Functional Model

Figure 4-7 illustrates the functional model for CC1 and CC2 for a Source port prior to attach. This illustration includes consideration for USB PD.

Figure 4-7 Source Functional Model for CC1 and CC2

Referring to Figure 4-7, a port that behaves as a Source has the following functional characteristics:

1. The Source uses a FET to enable/disable power delivery across VBUS and initially the Source has VBUS disabled.
2. The Source supplies pull-up resistors (Rp) on CC1 and CC2 and monitors both to detect a Sink. The presence of an Rd pull-down resistor on either pin indicates that a Sink is being attached. The value of Rp indicates the initial USB Type-C Current level supported by the host.
3. The Source uses the CC pin pull-down characteristic to detect and establish the correct routing for the SuperSpeed USB data path and determine which CC pin is intended for supplying VCONN.
4. Once a Sink is detected, the Source enables VBUS and VCONN.
5. The Source can dynamically adjust the value of Rp to indicate a change in available USB Type-C Current to a Sink.
6. The Source monitors the continued presence of Rd to detect Sink detach. When a detach event is detected, the Source removes, if supplied, VBUS and VCONN, and returns to step 2.

7. If the Source supports advanced functions (USB Power Delivery and/or Alternate Modes), USB PD communication is required.

Figure 4-8 illustrates the functional model for CC1 and CC2 for a Source that supports USB PD PR_Swap.

Figure 4-8 Source Functional Model Supporting USB PD PR_Swap

![Diagram](image)

4.5.1.3.2 Sink Configuration Channel Functional Model

Figure 4-9 illustrates the functional model for CC1 and CC2 for a Sink. This illustration includes consideration for both USB Type-C Current and USB PD.
Figure 4-9 Sink Functional Model for CC1 and CC2

Referring to Figure 4-9, a port that behaves as a Sink has the following functional characteristics:

1. The Sink terminates both CC1 and CC2 to GND using pull-down resistors.
2. The Sink determines that a Source is attached by the presence of power on VBUS.
3. The Sink uses the CC pin pull-up characteristic to detect and establish the correct routing for the SuperSpeed USB data path.
4. The Sink can optionally monitor CC to detect an available higher USB Type-C Current from the Source. The Sink shall manage its load to stay within the detected Source current limit.
5. If the Sink supports advanced functions (USB Power Delivery and/or Alternate Modes), USB PD communication is required.

Figure 4-10 illustrates the functional model for CC1 and CC2 for a Sink that supports USB PD PR_Swap and supports USB PD VCONN_Swap prior to attach.
Figure 4-10 Sink Functional Model Supporting USB PD PR_Swap and VCONN_Swap

4.5.1.3.3 Dual-Role-Power (DRP) Configuration Channel Functional Model

Figure 4-11 illustrates the functional model for CC1 and CC2 for a DRP presenting as a Source prior to attach. This illustration includes consideration for both the USB Type-C Current and the **USB PD** features.

Figure 4-11 DRP Functional Model for CC1 and CC2

Referring to Figure 4-11, a port that can alternate between DFP and UFP behaviors has the following functional characteristics:

1. The DRP uses a FET to enable/disable power delivery across **VBUS** and initially when in Source mode has **VBUS** disabled.
2. The DRP uses switches for presenting as a Source or Sink.

3. The DRP has logic used during initial attach to toggle between Source and Sink operation:
 a. Until a specific stable state is established, the DRP alternates between exposing itself as a Source and Sink. The timing of this process is dictated by a period (t_{DRP}), percentage of time that a DRP exposes Rp (dcSRC.DRP) and role transition time (t_{DRPTransition}).
 b. When the DRP is presenting as a Source, it follows Source operation to detect an attached Sink – if a Sink is detected, it applies VBUS, VCONN, and continues to operate as a Source (e.g., cease alternating).
 c. When the DRP is presenting as a Sink, it monitors VBUS to detect that it is attached to a Source – if a Source is detected, it continues to operate as a Sink (cease alternating).

4. If the DRP supports advanced functions (USB Power Delivery and/or Alternate Modes), USB PD communication is required.

4.5.1.4 USB Type-C Port Power Roles and Role Swapping Mechanisms

USB Type-C ports on products (USB hosts, USB devices, USB chargers, etc.) can be generally characterized as implementing one of seven power role behavioral models:

- Source-only
- Source (Default) – strong preference toward being a Source but subsequently capable of becoming a Sink using USB PD swap mechanisms.
- Sink-only
- Sink (Default) – strong preference toward being a Sink but subsequently capable of becoming a Source using USB PD swap mechanisms.
- DRP: Toggling (Source/Sink)
- DRP: Sourcing Device
- DRP: Sinking Host

Two independent sets of swapping mechanisms are defined for USB Type-C port implementations, one based on role swapping within the initial state machine connection process and the other based on subsequent use of USB PD-based swapping mechanisms.

4.5.1.4.1 USB Type-C State-Machine-Based Role Swapping

During the initial USB Type-C state machine connection process, the products being connected end up in one of the two following roles associated with the termination of its port:

- Rp \rightarrow VBUS and VCONN source and behaving as a downstream facing port (USB Host)
- Rd \rightarrow VBUS sink and behaving as an upstream facing port (USB Device)

A USB Type-C DRP-based product may incorporate either or both the Try.SRC and Try.SNK swap mechanisms to affect the resulting role. Try.SRC allows a DRP that has a policy-based preference to be a Source when connecting to another DRP to effect a transition from a destined Sink role to the Source role. Alternately, Try.SNK allows a DRP that has a policy-based preference to be a Sink when connecting to another DRP to effect a transition from a destined Source role to the Sink role. Connection timing and other factors are involved in this process as defined in the USB Type-C state machine operation (see Section 4.5.2). It is
important to note that these mechanisms, Try.SRC and Try.SNK, can only be used once as part of the initial connection process.

Try.SRC and Try.SNK are intended to ensure more predictable power roles when initially connecting two DRPs, especially if the port partner does not support USB PD. For example, a small mobile device may want to implement Try.SNK, so that when attaching to a DRP laptop, the mobile device will always initially be the power sink. Similarly, a laptop or Power Bank may wish to implement Try.SRC to ensure it always sources power to attached DRPs. Self-powered devices such as AMAs or those whose primary function is a data UFP may also consider implementing Try.SNK to ensure they can properly expose their functionality. If both sides support USB PD, the appropriate roles may then be further refined or swapped as per the USB PD specification.

4.5.1.4.2 USB PD-based Power Role, Data Role and VCONN Swapping

Following the completion of the initial USB Type-C state machine connection process, products may use USB PD-based swapping mechanisms to command a change power roles, data roles and which end of the cable will supply VCONN. These mechanisms are:

- **USB PD PR_Swap**: swaps Source (Rp) and Sink (Rd)
- **USB PD DR_Swap**: swaps DFP (host data) and UFP (device data) roles
- **USB PD VCONN_Swap**: swaps which port supplies VCONN

Table 4-12 summarizes the behaviors of a port in response to the three USB PD swap commands.

<table>
<thead>
<tr>
<th></th>
<th>DFP/UFP Data Roles</th>
<th>Rp/Rd</th>
<th>VBUS Source/Sink</th>
<th>VCONN Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR_Swap</td>
<td>Unchanged</td>
<td>Swapped</td>
<td>Swapped</td>
<td>Unchanged</td>
</tr>
<tr>
<td>DR_Swap</td>
<td>Swapped</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
<tr>
<td>VCONN_Swap</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Swapped*</td>
</tr>
</tbody>
</table>

* Swapping of VCONN source port

4.5.1.4.3 Power Role Behavioral Model Summary

Table 4-13 provides a summary of the defining characteristics of the seven fundamental power roles.
Table 4-13 Power Role Behavioral Model Summary

<table>
<thead>
<tr>
<th>Power Role</th>
<th>Source-Only</th>
<th>Source (Default)</th>
<th>Sink-Only</th>
<th>Sink (Default)</th>
<th>DRP</th>
<th>Sourcing Device</th>
<th>Sinking Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toggles</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Req.</td>
<td>Req</td>
<td>Req</td>
</tr>
<tr>
<td>PR_Swap</td>
<td>NA</td>
<td>Req</td>
<td>Req</td>
<td>Req</td>
<td>Req.</td>
<td>Req</td>
<td>Req</td>
</tr>
<tr>
<td>USB Host</td>
<td>Opt</td>
<td>Opt</td>
<td>Opt</td>
<td>Opt</td>
<td>NA</td>
<td>Req</td>
<td>Req</td>
</tr>
<tr>
<td>USB Device</td>
<td>Opt</td>
<td>Opt</td>
<td>Opt</td>
<td>Opt</td>
<td>NA</td>
<td>Req</td>
<td>Req</td>
</tr>
<tr>
<td>DFP</td>
<td>Req</td>
<td>Req</td>
<td>Req</td>
<td>Req</td>
<td>Req.</td>
<td>Req</td>
<td>Req</td>
</tr>
<tr>
<td>Try.SRC/Try.SNK</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Opt.</td>
<td>Opt</td>
<td>Opt</td>
</tr>
</tbody>
</table>

Note: 1. Requires use of DR_Swap
4.5.2 CC Functional and Behavioral Requirements

This section provides the functional and behavioral requirements for implementing CC. The first sub-section provides connection state diagrams that are the basis for the remaining sub-sections.

The terms Source (SRC) and Sink (SNK) used in this section refer to the port’s power role while the terms DFP and UFP refer to the port’s data role. A DRP (Dual-Role-Power) port is capable of acting as either a Source or Sink. Typically Sources are found on hosts and supply VBUS while a Sink is found on a device and consumes power from VBUS. When a connection is initially made, the port’s initial power state and data role are established.

USB PD introduces three swap commands that may alter a port’s power or data role:

- The PR_Swap command changes the port’s power state as reflected in the following state machines. PR_Swap does not change the port sourcing VCONN.
- The DR_Swap command has no effect on the following state machines or VCONN as it only changes the port’s data role.
- VCONN_Swap command changes the port sourcing VCONN. The PR_Swap command and DR_Swap command have no effect on the port sourcing VCONN.

Note: A VCONN-Powered USB Device that supports the optional Charge-Through capability, once detected via USB PD messaging, will also change the Host-side port’s power state without changing the port sourcing VCONN.

Note: USB PD defines another optional swapping mechanism (FR_Swap) that is used in a special case where a user interaction could inadvertently trigger a need to change the source of VBUS. A variant of PR_Swap, FR_Swap similarly swaps Source (Rp) and Sink (Rd) between two connected ports. For purposes of this specification, only PR_Swap is explicitly considered in the behavior requirements and implementations that support FR_Swap should, where applicable, apply PR_Swap-related behaviors to FR_Swap. See the USB PD specification for further details regarding FR_Swap.

The connection state diagrams and CC behavior descriptions in this section describe the behavior of receptacle-based ports. The plug on a direct connect device or a device with a captive cable shall behave as a plug on a cable that is attached at its other end in normal orientation to a receptacle. These devices shall apply and sense CC voltage levels on pin A5 only and pin B5 shall have an impedance above zOPEN, unless it is a VCONN-Powered Accessory, in which case B5 shall have an impedance Ra.

4.5.2.1 Connection State Diagrams

This section provides reference connection state diagrams for CC-based behaviors.

Refer to Section 4.5.2.2 for the specific state transition requirements related to each state shown in the diagrams.

Refer to Section 4.5.2.4 for a description of which states are mandatory for each port type, and a list of states where USB PD communication is permitted.
Figure 4-12 illustrates a connection state diagram for a Source (Host/Hub DFP).

Figure 4-12 Connection State Diagram: Source
Figure 4-13 illustrates a connection state diagram for a simple Sink (Device/Hub UFP).

Figure 4-13 Connection State Diagram: Sink

- **ErrorRecovery**
 - Directed from any state

- **Disabled**
 - Directed from any state

- **Unattached.SNK**
 - Directed from any state

- **AttachWait.SNK**
 - Source Detected for tCCDebounce and VBUS Detected
 - USB 2.0 only and DebugAcc not support and VBUS Detected

- **Attached.SNK**
 - VBUS Removed

- **Connection Detected**
 - Directed from any state

- **DebugAccessory.SNK**
 - DebugAcc Detected for tCCDebounce and VBUS Detected

- **VBUS Removed**

- **Dead Battery**

USB 2.0 only and DebugAcc not support and VBUS Detected
Figure 4-14 illustrates a connection state diagram for a Sink that supports Accessory Modes.

Figure 4-14 Connection State Diagram: Sink with Accessory Support
Figure 4-15 illustrates a connection state diagram for a simple DRP (Dual-Role-Power) port.

Figure 4-15 Connection State Diagram: DRP
Figure 4-16 illustrates a connection state diagram for a DRP that supports Try.SRC andAccessory Modes.

Figure 4-16 Connection State Diagram: DRP with Accessory and Try.SRC Support
Figure 4-17 illustrates a connection state diagram for a DRP that supports Try.SNK and Accessory Modes.

Figure 4-17 Connection State Diagram: DRP with Accessory and Try.SNK Support
Figure 4-18 illustrates a connection state diagram for a Charge-Through VCONN-Powered USB Device.

Figure 4-18 Connection State Diagram: Charge-Through VPD

Only if a Power Source is detected and present on the Charge-Through port
4.5.2.2 Connection State Machine Requirements

Entry into any unattached state when “directed from any state” shall not be used to override tDRP toggle.

A DRP or a Sink may consume default power from VBUS in any state where it is not required to provide VBUS.

The following two tables define the electrical states for a CC pin in both a Source and a Sink. Every port has CC1 and CC2 pins, each with its own individual CC pin state. The combination of a port’s CC1 and CC2 pin states are be used to define the conditions under which a port transitions from one state to another.

Table 4-14 Source Port CC Pin State

<table>
<thead>
<tr>
<th>CC Pin State</th>
<th>Port partner CC Termination</th>
<th>Voltage Detected on CC when port asserts Rp</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRC.Open</td>
<td>Open, Rp</td>
<td>Above vOPEN</td>
</tr>
<tr>
<td>SRC.Rd</td>
<td>Rd</td>
<td>Within the vRd range (i.e., between minimum vRd and maximum vRd)</td>
</tr>
<tr>
<td>SRC.Ra</td>
<td>Ra</td>
<td>Below maximum vRa</td>
</tr>
</tbody>
</table>

Table 4-15 Sink Port CC Pin State

<table>
<thead>
<tr>
<th>CC Pin State</th>
<th>Port partner CC Termination</th>
<th>Voltage Detected on CC when port asserts Rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNK.Rp</td>
<td>Rp</td>
<td>Above minimum vRd-Connect</td>
</tr>
<tr>
<td>SNK.Open</td>
<td>Open, Ra, Rd</td>
<td>Below maximum vRa</td>
</tr>
</tbody>
</table>

4.5.2.2.1 Disabled State

This state appears in Figure 4-12, Figure 4-13, Figure 4-14, Figure 4-15, Figure 4-16 and Figure 4-17.

The Disabled state is where the port prevents connection from occurring by removing all terminations from the CC pins.

The port should transition to the Disabled state from any other state when directed. When the port transitions to the Disabled state from Attached.SNK, it shall keep all terminations on the CC pins removed for a minimum of tErrorRecovery.

A port may choose not to support the Disabled state. If the Disabled state is not supported, the port shall be directed to either the Unattached.SNK or Unattached.SRC states after power-on.

4.5.2.2.1.1 Disabled State Requirements

The port shall not drive VBUS or VCONN, and shall present a high-impedance to ground (above zOPEN) on its CC1 and CC2 pins.
4.5.2.2.1 Exiting From Disabled State

A Sink shall transition to Unattached.SNK when directed.

A Source shall transition to Unattached.SRC when directed.

A DRP shall transition to either Unattached.SNK or Unattached.SRC when directed.

4.5.2.2 ErrorRecovery State

This state appears in Figure 4-12, Figure 4-13, Figure 4-14, Figure 4-15, Figure 4-16 and Figure 4-17.

The ErrorRecovery state is where the port removes the terminations from the CC1 and CC2 pins for tErrorRecovery followed by transitioning to the appropriate Unattached.SNK or Unattached.SRC state based on port type. This is the equivalent of forcing a detach event and looking for a new attach.

The port should transition to the ErrorRecovery state from any other state when directed.

A port may choose not to support the ErrorRecovery state. If the ErrorRecovery state is not supported, the port shall be directed to the Disabled state if supported. If the Disabled state is not supported, the port shall be directed to either the Unattached.SNK or Unattached.SRC states.

4.5.2.2.1 ErrorRecovery State Requirements

The port shall not drive VBUS or VCONN, and shall present a high-impedance to ground (above zOPEN) on its CC1 and CC2 pins.

4.5.2.2.2 Exiting From ErrorRecovery State

A Sink shall transition to Unattached.SNK after tErrorRecovery.

A Source shall transition to Unattached.SRC after tErrorRecovery.

A DRP (Figure 4-15) and a DRP with Accessory and Try.SNK Support (Figure 4-17) shall transition to Unattached.SNK after tErrorRecovery.

A DRP with Accessory and Try.SRC Support (Figure 4-16) shall transition to Unattached.SRC after tErrorRecovery.

4.5.2.2.3 Unattached.SNK State

This state appears in Figure 4-13, Figure 4-14, Figure 4-15, Figure 4-16, Figure 4-17 and Figure 4-18.

When in the Unattached.SNK state, the port is waiting to detect the presence of a Source.

A port with a dead battery shall enter this state while unpowered.

4.5.2.2.3.1 Unattached.SNK Requirements

The port shall not drive VBUS or VCONN.

Both CC1 and CC2 pins shall be independently terminated to ground through Rd.

A Charge-Through VCONN-Powered USB Device shall isolate its Host-side port from its Charge-Through port, including CCs and VBUS, and independently terminate its Charge-Through port’s CC1 and CC2 pins and Host-side port’s CC pin to ground through Rd.
4.5.2.2.3.2 Exiting from Unattached.SNK State

If the port supports USB PD or accessories, the port shall transition to AttachWait.SNK when the SNK.Rp state is present on at least one of its CC pins.

The maximum times that a Port shall take to transition to AttachWait.SNK are the following:

- tNoToggleConnect when neither Port Partner is toggling
- tOnePortToggleConnect when one Port Partner only is toggling

When both Port Partners are toggling, a Port should transition to AttachWait.SNK within tTwoPortToggleConnect. Note that when both Port Partners are DRPs it is indeterminate whether the local port will transition to AttachWait.SRC or AttachWait.SNK.

Note: The times tOnePortToggleConnect and tTwoPortToggleConnect relate to how long toggling ports may take to sync and detect a connection.

A USB 2.0 only Sink that doesn’t support accessories and is self-powered or requires only default power and does not support USB PD may transition directly to Attached.SNK when VBUS is detected.

A DRP shall transition to Unattached.SRC within tDRPTransition after the state of both CC pins is SNK.Open for tDRP – dcSRC.DRP · tDRP, or if directed.

A Sink with Accessory support shall transition to Unattached.Accessory within tDRPTransition after the state of both the CC1 and CC2 pins is SNK.Open for tDRP – dcSRC.DRP · tDRP, or if directed.

A Charge-Through VCONN-Powered USB Device shall transition to Unattached.SRC within tDRPTransition after the state of the Host-side port’s CC pin is SNK.Open for tDRP – dcSRC.DRP · tDRP and both of the following is detected on the Charge-Through port.

- SNK.Rp state is detected on exactly one of the CC1 or CC2 pins for at least tCCDebounce
- VBUS is detected

A Charge-Through VCONN-Powered USB Device shall transition to Attached.SNK when a Source connection is detected, as indicated by the SNK.Rp state on its Host-side port’s CC pin.

4.5.2.2.4 AttachWait.SNK State

This state appears in Figure 4-13, Figure 4-14, Figure 4-15, Figure 4-16, Figure 4-17 and Figure 4-18.

When in the AttachWait.SNK state, the port has detected the SNK.Rp state on at least one of its CC pins and is waiting for VBUS.

When in the AttachWait.SNK state, the Charge-Through VCONN-Powered USB Device has detected the SNK.Rp state on its Host-side port’s CC pin and is waiting for host-side VBUS.

4.5.2.2.4.1 AttachWait.SNK Requirements

The port shall not drive VBUS or VCONN.

Both the CC1 and CC2 pins shall be independently terminated to ground through Rd.
A Charge-Through VCONN-Powered USB Device shall isolate its Host-side port from its Charge-Through port, including CCs and VBUS, and independently terminate its Charge-Through port's CC1 and CC2 pins and Host-side port's CC pin to ground through Rd.

It is strongly recommended that a USB 3.2 SuperSpeed device hold off VBUS detection to the device controller until the Attached.SNK state or the DebugAccessory.SNK state is reached, i.e. at least one CC pin is in the SNK.Rp state. Otherwise, it may connect as USB 2.0 when attached to a legacy host or hub’s DFP.

4.5.2.2.4.2 Exiting from AttachWait.SNK State

A Sink shall transition to Unattached.SNK when the state of both the CC1 and CC2 pins is SNK.Open for at least tPDDebounce.

A DRP shall transition to Unattached.SRC when the state of both the CC1 and CC2 pins is SNK.Open for at least tPDDebounce.

The port shall transition to Attached.SNK after the state of only one of the CC1 or CC2 pins is SNK.Rp for at least tCCDebounce and VBUS is detected. Note the Source may initiate USB PD communications which will cause brief periods of the SNK.Open state on one of the CC pins with the state of the other CC pin remaining SNK.Open, but this event will not exceed tPDDebounce.

If the port is a VCONN-Powered Accessory or a VCONN-Powered USB Device, the port shall transition to Attached.SNK when either VCONN or VBUS is detected. The port may transition without waiting tCCDebounce on CC.

If the port supports Debug Accessory Mode, the port shall transition to DebugAccessory.SNK if the state of both the CC1 and CC2 pins is SNK.Rp for at least tCCDebounce and VBUS is detected. Note the DAM Source may initiate USB PD communications which will cause brief periods of the SNK.Open state on one of the CC pins with the state of the other CC pin remaining SNK.Rp, but this event will not exceed tPDDebounce.

A Charge-Through VCONN-Powered USB Device shall transition to Attached.SNK after the state of the Host-side port’s CC pin is SNK.Rp for at least tCCDebounce and either host-side VCONN or VBUS is detected.

A DRP that strongly prefers the Source role may optionally transition to Try.SRC instead of Attached.SNK when the state of only one CC pin has been SNK.Rp for at least tCCDebounce and VBUS is detected.

4.5.2.2.5 Attached.SNK State

This state appears in Figure 4-13, Figure 4-14, Figure 4-15, Figure 4-16, Figure 4-17 and Figure 4-18.

When in the Attached.SNK state, the port is attached and operating as a Sink. When the port initially enters this state it is also operating as a UFP. The power and data roles can be changed using USB PD commands.

A port that entered this state directly from Unattached.SNK due to detecting VBUS shall not determine orientation or availability of higher than Default USB Power and shall not use USB PD.
4.5.2.2.5.1 Attached.SNK Requirements

If the port needs to determine the orientation of the connector, it shall do so only upon entry to this state by detecting which of the CC1 or CC2 pins is connected through the cable (i.e., the CC pin that is in the SNK.Rp state).

If the port supports signaling on SuperSpeed USB pairs, it shall functionally connect the SuperSpeed USB pairs and maintain the connection during and after a USB PD PR_Swap.

If the port has entered the Attached.SNK state from the AttachWait.SNK or TryWait.SNK states, only one the CC1 or CC2 pins will be in the SNK.Rp state. The port shall continue to terminate this CC pin to ground through Rd.

If the port has entered the Attached.SNK state from the Attached.SRC state following a USB PD PR_Swap, the port shall terminate the connected CC pin to ground through Rd.

The port shall meet the Sink Power Sub-State requirements specified in Section 4.5.2.2.22.

If the port is a VCONN-Powered USB Device, it shall respond to USB PD cable identity queries on SOP'. It shall not send or respond to messages on SOP. It shall ensure there is sufficient capacitance on CC to meet cReceiver as defined in USB PD.

A Charge-Through VCONN-Powered USB Device shall isolate its Host-side port from its Charge-Through port, including CCs and VBUS, present a high-impedance to ground (above zOPEN) on its Charge-Through port's CC1 and CC2 pins and terminate its Host-side port's CC pin to ground through Rd.

A Charge-Through VCONN-Powered USB Device shall start a Charge-Through Support Timer when it enters the Attached.SNK state. If a Charge-Through VCONN-Powered USB Device fails to exit the Attached.SNK state before the Charge-Through Support Timer exceeds tAMETimeout, it shall present a USB Billboard Device Class interface indicating that it does not support Charge-Through.

A Charge-Through VCONN-Powered USB Device shall reset the Charge-Through Support Timer when it enters the Attached.SNK state. If a Charge-Through VCONN-Powered USB Device fails to exit the Attached.SNK state before the Charge-Through Support Timer exceeds tAMETimeout, it shall present a USB Billboard Device Class interface indicating that it does not support Charge-Through.

A Charge-Through VCONN-Powered USB Device shall reset the Charge-Through Support Timer when it receives any USB PD Structured VDM Command it supports. If a Charge-Through VCONN-Powered USB Device receives a Structured VDM Command multiple times, it shall only reset the Charge-Through Support Timer once. This ensures a Charge-Through VCONN-Powered USB Device will present a USB Billboard Device Class interface if it fails to exit Attached.SNK while receiving repeated or continuous Structured VDM Commands (e.g., Discover Identity).

A Charge-Through VCONN-Powered USB Device shall hold the Charge-Through Support Timer in reset while it is in any USB PD BIST mode.

Except for a VCONN-Powered USB Device or Charge-Through VCONN-Powered USB Device, the port may negotiate a USB PD PR_Swap, DR_Swap or VCONN_Swap.

If the port supports Charge-Through VCONN-Powered USB Device, and an explicit USB PD contract has failed to be negotiated, the port shall query the identity of the cable via USB PD on SOP'.

By default, upon entry from AttachWait.SNK or Unattached.SNK, VCONN shall not be supplied in the Attached.SNK state. If Attached.SNK is entered from Attached.SRC as a result of a USB PD PR_Swap, it shall maintain VCONN supply state, whether on or off, and its data role/connections. A USB PD DR_Swap has no effect on which port sources VCONN.
The port may negotiate a USB PD VCONN_Swap. When the port successfully executes USB PD VCONN_Swap operation and was not sourcing VCONN, it shall start sourcing VCONN within tVCONNQON. The port shall execute the VCONN_Swap in a make-before-break sequence in order to keep active USB Type-C to USB Type-C cables powered. When the port successfully executes USB PD VCONN_Swap operation and was sourcing VCONN, it shall stop sourcing VCONN within tVCONNOFF.

4.5.2.2.5.2 Exiting from Attached.SNK State

A port that is not a VCONN-Powered USB Device and is not in the process of a USB PD PR_Swap or a USB PD Hard Reset or a USB PD FR_Swap shall transition to Unattached.SNK within tSinkDisconnect when VBUS falls below vSinkDisconnect for VBUS operating at or below 5 V or below vSinkDisconnectPD when negotiated by USB PD to operate above 5 V.

A VCONN-Powered USB Device shall return to Unattached.SNK when VBUS has fallen below vSinkDisconnect and VCONN has fallen below vVCONNDisconnect.

A port that has entered into USB PD communications with the Source and has seen the CC voltage exceed vRd-USB may monitor the CC pin to detect cable disconnect in addition to monitoring VBUS.

A port that is monitoring the CC voltage for disconnect (but is not in the process of a USB PD PR_Swap or USB PD FR_Swap) shall transition to Unattached.SNK within tSinkDisconnect after the CC voltage remains below vRd-USB for tPDDebounce.

If supplying VCONN, the port shall cease to supply it within tVCONNOFF of exiting Attached.SNK.

A Charge-Through VCONN-Powered USB Device shall transition to CTUnattached.VPD if VCONN is present and the state of its Host-side port’s CC pin is SNK.Open for tVPDCTDD.

A port that via SOP’ has detected an attached Charge-Through VCONN-Powered USB Device shall transition to TryWait.SRC if implemented, or transition to Unattached.SRC or Unattached.Accessory if TryWait.SRC is not supported. This transition may be delayed until the device has sufficient battery charge needed to remain powered until it reaches the CTAwaited.SNK state.

After receiving a USB PD PS_RDY from the original Source during a USB PD PR_Swap, the port shall transition directly to the Attached.SRC state (i.e., remove Rd from CC, assert Rp on CC and supply VBUS), but shall maintain its VCONN supply state, whether off or on, and its data role/connections.

4.5.2.2.6 UnattachedWait.SRC State

This state appears in Figure 4-12.

When in the UnattachedWait.SRC state, the port is discharging the CC pin that was providing VCONN in the previous Attached.SRC state.

4.5.2.2.6.1 UnattachedWait.SRC Requirements

The port shall not enable VBUS or VCONN.

The port shall complete the VCONN turn off initiated when leaving the previous Attached.SRC state.

The port shall continue to provide an Rp termination, as specified in Table 4-24, on the CC pin not being discharged.
The port shall not provide an Rp termination on the CC pin being discharged.

The port shall provide an Rdch termination on the CC pin being discharged.

The port shall discharge the CC pin being discharged below vVCONNReset.

4.5.2.2.6.2 Exiting from UnattachedWait.SRC State

The port shall transition to Unattached.SRC when both VCONN is turned off and the CC pin is below vVCONNReset.

4.5.2.2.7 Unattached.SRC State

This state appears in Figure 4-12, Figure 4-15, Figure 4-16, Figure 4-17 and Figure 4-18.

When in the Unattached.SRC state, the port is waiting to detect the presence of a Sink or an Accessory.

When in the Unattached.SRC state, the Charge-Through VCONN-Powered USB Device has detected a Source on its Charge-Through port and is independently monitoring its Host-side port to detect the presence of a Sink.

4.5.2.2.7.1 Unattached.SRC Requirements

The port shall not drive VBUS or VCONN.

The port shall source current on both the CC1 and CC2 pins independently.

The port shall provide a separate Rp termination on the CC1 and CC2 pins as specified in Table 4-24. Note: A Source with a captive cable or just a plug presents a single Rp termination on its CC pin (A5).

The Charge-Through VCONN-Powered USB Device shall isolate its Host-side port from its Charge-Through port, including CCs and VBUS. The Charge-Through VCONN-Powered USB Device shall ensure that it is powered by VBUS from the Charge-Through port.

Upon entry into this state, the Charge-Through VCONN-Powered USB Device shall remove its Rd termination to ground on the Host-side port CC and provide an Rp termination instead advertising Default USB Power, as specified in Table 4-24, and continue to independently terminate its Charge-Through port’s CC1 and CC2 pins to ground through Rd.

4.5.2.2.7.2 Exiting from Unattached.SRC State

The port shall transition to AttachWait.SRC when:

- The SRC.Rd state is present on either the CC1 or CC2 pin or
- The SRC.Ra state is present on both the CC1 and CC2 pins.

The maximum times that a Port shall take to transition to AttachWait.SRC are the following:

- tNoToggleConnect when neither Port Partner is toggling
- tOnePortToggleConnect when one Port Partner only is toggling

When both Port Partners are toggling, a Port should transition to AttachWait.SRC within tTwoPortToggleConnect. Note that when both Port Partners are DRPs it is indeterminate whether the local port will transition to AttachWait.SRC or AttachWait.SNK.

Note: The times tOnePortToggleConnect and tTwoPortToggleConnect relate to how long toggling ports may take to sync and detect a connection.
Note: A cable without an attached device can be detected, when the SRC.Ra state is detected on one of the CC1 or CC2 pins and the other CC pin is SRC.Open. However in this case, the port shall not transition to AttachWait.SRC.

The Charge-Through VCONN-Powered USB Device shall transition to AttachWait.SRC when host-side VBUS is vSafe0V and SRC.Rd state is detected on the Host-side port’s CC pin.

A DRP shall transition to Unattached.SNK within tDRPTransition after dcSRC.DRP ∙ tDRP, or if directed.

A Charge-Through VCONN-Powered USB Device shall transition to Unattached.SNK within tDRPTransition after dcSRC.DRP ∙ tDRP, or if Charge-Through VBUS is removed.

4.5.2.2.8 AttachWait.SRC State

This state appears in Figure 4-12, Figure 4-15, Figure 4-16, Figure 4-17 and Figure 4-18.

The AttachWait.SRC state is used to ensure that the state of both of the CC1 and CC2 pins is stable after a Sink is connected.

When in the AttachWait.SRC state, the Charge-Through VCONN-Powered USB Device ensures that the state of Host-side port’s CC pin is stable after a Sink is connected.

4.5.2.2.8.1 AttachWait.SRC Requirements

The requirements for this state are identical to Unattached.SRC.

4.5.2.2.8.2 Exiting from AttachWait.SRC State

The port shall transition to Attached.SRC when VBUS is at vSafe0V and the SRC.Rd state is detected on exactly one of the CC1 or CC2 pins for at least tCCDebounce.

The Charge-Through VCONN-Powered USB Device shall transition to Try.SNK when the host-side VBUS is at vSafe0V and the SRC.Rd state is on the Host-side port’s CC pin for at least tCCDebounce.

If the port supports Audio Adapter Accessory Mode, it shall transition to AudioAccessory when the SRC.Ra state is detected on both the CC1 and CC2 pins for at least tCCDebounce.

If the port supports Debug Accessory Mode, it shall transition to UnorientedDebugAccessory.SRC when VBUS is at vSafe0V and the SRC.Rd state is detected on both the CC1 and CC2 pins for at least tCCDebounce.

A Source shall transition to Unattached.SRC and a DRP to Unattached.SNK when the SRC.Open state is detected on both the CC1 and CC2 pins. The Source shall detect the SRC.Open state within tSRCDisconnect, but should detect it as quickly as possible.

A Source shall transition to Unattached.SRC and a DRP to Unattached.SNK when the SRC.Open state is detected on either the CC1 or CC2 pin and the other CC pin is SRC.Ra. The Source shall detect the SRC.Open state within tSRCDisconnect, but should detect it as quickly as possible.

A Charge-Through VCONN-Powered USB Device shall transition to Unattached.SNK when the SRC.Open state is detected on the Host-side port’s CC or if Charge-Through VBUS falls below vSinkDisconnect. The Charge-Through VCONN-Powered USB Device shall detect the SRC.Open state within tSRCDisconnect, but should detect it as quickly as possible.
A DRP that strongly prefers the Sink role may optionally transition to \texttt{Try.SNK} instead of \texttt{Attached.SRC} when \texttt{VBUS} is at \texttt{vSafe0V} and the \texttt{SRC.Rd} state is detected on exactly one of the \texttt{CC1} or \texttt{CC2} pins for at least \texttt{tCCDebounce}.

4.5.2.2.9 \texttt{Attached.SRC} State

This state appears in Figure 4-12, Figure 4-15, Figure 4-16, Figure 4-17 and Figure 4-18.

When in the \texttt{Attached.SRC} state, the port is attached and operating as a Source. When the port initially enters this state it is also operating as a DFP. Subsequently, the initial power and data roles can be changed using \texttt{USB PD} commands.

When in the \texttt{Attached.SRC} state, the Charge-Through \texttt{VCONN-Powered USB Device} has detected a Sink on its Host-side port and has connected the Charge-Through port \texttt{VBUS} to the Host-side port \texttt{VBUS}.

4.5.2.2.9.1 \texttt{Attached.SRC} Requirements

If the port needs to determine the orientation of the connector, it shall do so only upon entry to the \texttt{Attached.SRC} state by detecting which of the \texttt{CC1} or \texttt{CC2} pins is connected through the cable, i.e., which CC pin is in the \texttt{SRC.Rd} state.

If the port has entered this state from the \texttt{AttachWait.SRC} state or the \texttt{Try.SRC} state, the \texttt{SRC.Rd} state will be on only one of the \texttt{CC1} or \texttt{CC2} pins. The port shall source current on this CC pin and monitor its state.

If the port has entered this state from the \texttt{Attached.SNK} state as the result of a \texttt{USB PD PR_Swap}, the port shall source current on the connected CC pin and monitor its state.

The port shall provide an \texttt{Rp} as specified in Table 4-24.

The port shall supply \texttt{VBUS} current at the level it advertises on \texttt{Rp}.

The port shall supply \texttt{VBUS} within \texttt{tVBUSON} of entering this state, and for as long as it is operating as a power source.

The port shall not initiate any \texttt{USB PD} communications until \texttt{VBUS} reaches \texttt{vSafe5V}.

If the port supports signaling on SuperSpeed USB pairs, it shall:

- Functionally connect the SuperSpeed USB pairs
- For \texttt{VCONN}, do one of two things:
 - Supply \texttt{VCONN} unconditionally to the CC pin not in the \texttt{SRC.Rd} state, or
 - Supply \texttt{VCONN} to the CC pin in the \texttt{SRC.Ra} state.

A port that does not support signaling on SuperSpeed USB pairs may supply \texttt{VCONN} in the same manner described above.

The port may negotiate a \texttt{USB PD PR_Swap}, \texttt{DR_Swap} or \texttt{VCONN_Swap}.

If the port supplies \texttt{VCONN}, it shall do so within \texttt{tVCONNON}.

The port may query the identity of the cable via \texttt{USB PD} on SOP’. If it detects that it is connected to a \texttt{VCONN-Powered USB Device}, the port may remove \texttt{VBUS} and discharge it to \texttt{vSafe0V}, while continuing to remain in this state with \texttt{VCONN} applied. The port may also initiate other SOP’ communication.
The port shall not supply VCONN if it has entered this state as a result of a USB PD PR_Swap and was not previously supplying VCONN. A USB PD DR_Swap has no effect on which port sources VCONN.

The port may negotiate a USB PD VCONN_Swap. When the port successfully executes USB PD VCONN_Swap operation and was sourcing VCONN, it shall stop sourcing VCONN within tVCONNOFF. The port shall execute the VCONN_Swap in a make-before-break sequence in order to keep active USB Type-C to USB Type-C cables powered. When the port successfully executes USB PD VCONN_Swap operation and was not sourcing VCONN, it shall start sourcing VCONN within tVCONNON.

The Charge-Through VCONN-Powered USB Device shall continue to isolate its Host-side port’s CC pin from its Charge-Through CC pins.

The Charge-Through VCONN-Powered USB Device shall maintain its Rp termination advertising Default USB Power on the Host-side port’s CC pin, and continue to independently terminate its Charge-Through port’s CC1 and CC2 pins to ground through Rd.

The Charge-Through VCONN-Powered USB Device shall immediately connect the Charge-Through port’s VBUS through to the Host-side port’s VBUS.

The Charge-Through VCONN-Powered USB Device shall ensure that it is powered entirely by VBUS.

The Charge-Through VCONN-Powered USB Device shall only respond to USB PD Discover Identity queries on SOP’ on its Host-side port and complete any active queries prior to exiting this state. It shall ensure there is sufficient capacitance on the Host-side port CC to meet cReceiver as defined in USB PD.

4.5.2.2.9.2 Exiting from Attached.SRC State

A Source that is supplying VCONN or has yielded VCONN source responsibility to the Sink through USB PD VCONN_Swap messaging shall transition to UnattachedWait.SRC when the SRC_Open state is detected on the monitored CC pin. The Source shall detect the SRC_Open state within tSRCDisconnect, but should detect it as quickly as possible.

A Source that is not supplying VCONN and has not yielded VCONN responsibility to the Sink through USB PD VCONN_Swap messaging shall transition to Unattached.SRC when the SRC_Open state is detected on the monitored CC pin. The Source shall detect the SRC_Open state within tSRCDisconnect, but should detect it as quickly as possible.

When the SRC_Open state is detected on the monitored CC pin, a DRP shall transition to Unattached.SNK unless it strongly prefers the Source role. In that case, it shall transition to TryWait.SNK. This transition to TryWait.SNK is needed so that two devices that both prefer the Source role do not loop endlessly between Source and Sink. In other words, a DRP that would enter Try.SRC from AttachWait.SNK shall enter TryWait.SNK for a Sink detach from Attached.SRC.

A DRP that supports Charge-Through VCONN-Powered USB Device shall transition to CTUnattached.SNK if the connected device identifies itself as a Charge-Through VCONN-Powered USB Device in its Discover Identity Command response. The DRP may delay this transition in order to perform further SOP’ communication.

A port shall cease to supply VBUS within tVBUSOFF of exiting Attached.SRC.
A port that is supplying \(V_{\text{CONN}} \) shall cease to supply it within \(t_{\text{VCONNOFF}} \) of exiting \texttt{Attached.SRC}, unless it is exiting as a result of a \texttt{USB PD PR Swap} or is transitioning into the \texttt{CT Unattached.SNK} state.

After a \texttt{USB PD PR Swap} is accepted (i.e., either an Accept message is received or acknowledged), a DRP shall transition directly to the \texttt{Attached.SNK} state (i.e., remove \(R_p \) from CC, assert \(R_d \) on CC and stop supplying \(V_{\text{BUS}} \)) and maintain its current data role, connection and \(V_{\text{CONN}} \) supply state.

A Charge-Through \texttt{VCONN-Powered USB Device} shall transition to \texttt{Unattached.SNK} when \(V_{\text{BUS}} \) falls below \(v_{\text{SinkDisconnect}} \) or the Host-side port’s CC pin is \texttt{SRC Open}. The Charge-Through \texttt{VCONN-Powered USB Device} shall detect the \texttt{SRC Open} state within \(t_{\text{SRCDisconnect}} \), but should detect it as quickly as possible.

\section*{4.5.2.2.10 \ Try.SRC State}

This state appears in Figure 4-16.

When in the \texttt{Try.SRC} state, the port is querying to determine if the port partner supports the Sink role.

Note: if both \texttt{Try.SRC} and \texttt{Try.SNK} mechanisms are implemented, only one shall be enabled by the port at any given time. Deciding which of these two mechanisms is enabled is product design-specific.

\subsection*{4.5.2.2.10.1 \ Try.SRC Requirements}

The port shall not drive \(V_{\text{BUS}} \) or \(V_{\text{CONN}} \).

The port shall source current on both the CC1 and CC2 pins independently.

The port shall provide an \(R_p \) as specified in Table 4-24.

\subsection*{4.5.2.2.10.2 \ Exiting from Try.SRC State}

The port shall transition to \texttt{Attached.SRC} when the \texttt{SRC.Rd} state is detected on exactly one of the CC1 or CC2 pins for at least \(t_{\text{TryCCDebounce}} \).

The port shall transition to \texttt{TryWait.SNK} after \(t_{\text{DRPTry}} \) and the \texttt{SRC.Rd} state has not been detected and \(V_{\text{BUS}} \) is within \(v_{\text{Safe0V}} \), or after \(t_{\text{TryTimeout}} \) and the \texttt{SRC.Rd} state has not been detected.

\section*{4.5.2.2.11 \ TryWait.SNK State}

This state appears in Figure 4-16.

When in the \texttt{TryWait.SNK} state, the port has failed to become a Source and is waiting to attach as a Sink. Alternatively the port is responding to the Sink being removed while in the \texttt{Attached.SRC} state.

\subsection*{4.5.2.2.11.1 \ TryWait.SNK Requirements}

The port shall not drive \(V_{\text{BUS}} \) or \(V_{\text{CONN}} \).

Both the CC1 and CC2 pins shall be independently terminated to ground through \(R_d \).
4.5.2.2.11.2 Exiting from TryWait.SNK State

The port shall transition to Attached.SNK after tCCDebounce if or when VBUS is detected. Note the Source may initiate USB PD communications which will cause brief periods of the SNK.Open state on both the CC1 and CC2 pins, but this event will not exceed tPDDebounce.

The port shall transition to Unattached.SNK when the state of both of the CC1 and CC2 pins is SNK.Open for at least tPDDebounce.

4.5.2.2.12 Try.SNK State

This state appears in Figure 4-14, Figure 4-17 and Figure 4-18.

When in the Try.SNK state, the port is querying to determine if the port partner supports the Source role.

When in the Try.SNK state, the Charge-Through VCONN-Powered USB Device is querying to determine if the port partner on the Host-side port supports the Source role.

Note: if both Try.SRC and Try.SNK mechanisms are implemented, only one shall be enabled by the port at any given time. Deciding which of these two mechanisms is enabled is product design-specific.

4.5.2.2.12.1 Try.SNK Requirements

The port shall not drive VBUS or VCONN.

Both the CC1 and CC2 pins shall be independently terminated to ground through Rd.

The Charge-Through VCONN-Powered USB Device shall isolate its Host-side port from its Charge-Through port, including CCs and VBUS. The Charge-Through VCONN-Powered USB Device shall ensure that it is powered by VBUS from the Charge-Through port.

The Charge-Through VCONN-Powered USB Device shall remove its Rp termination (Default USB Power advertisement) on the Host-side port CC and provide an Rd termination to ground instead, as specified in Table 4-24 and remain to independently terminate its Charge-Through port’s CC1 and CC2 pins to ground through Rd.

4.5.2.2.12.2 Exiting from Try.SNK State

The port shall wait for tDRPTry and only then begin monitoring the CC1 and CC2 pins for the SNK.Rp state.

The port shall then transition to Attached.SNK when the SNK.Rp state is detected on exactly one of the CC1 or CC2 pins for at least tTryCCDebounce and VBUS is detected.

Alternatively, the port shall transition to TryWait.SRC if SNK.Rp state is not detected for tTryCCDebounce.

The Charge-Through VCONN-Powered USB Device shall wait for tDRPTry and only then begin monitoring the Host-side port’s CC pin for the SNK.Rp state.

The Charge-Through VCONN-Powered USB Device shall then transition to Attached.SNK when the SNK.Rp state is detected on the Host-side port’s CC pin for at least tTryCCDebounce and VBUS or VCONN is detected on Host-side port.

Alternatively, the Charge-Through VCONN-Powered USB Device shall transition to TryWait.SRC if Host-side SNK.Rp state is not detected for tTryCCDebounce.
A Sink with Accessory Support shall transition to **Unsupported.Accessory** if **SNK.Rp** state is not detected for **tDRPTryWait**.

Note: The Source may initiate **USB PD** communications which will cause brief periods of the **SNK.Open** state on both the CC1 and CC2 pins, but this event will not exceed **tTryCCDebounce**.

4.5.2.2.13 TryWait.SRC State

This state appears in Figure 4-17 and Figure 4-18.

When in the **TryWait.SRC** state, the port has failed to become a Sink and is waiting to attach as a Source.

When in the **TryWait.SRC** state, the Charge-Through **VCONN-Powered USB Device** has failed to become a Sink on its Host-side port and is waiting to attach as a Source on its Host-side port.

4.5.2.2.13.1 TryWait.SRC Requirements

The requirements for this state are identical to **Unattached.SRC**.

4.5.2.2.13.2 Exiting from TryWait.SRC State

The port shall transition to **Attached.SRC** when **VBUS** is at **vSafe0V** and the **SRC.Rd** state is detected on exactly one of the CC pins for at least **tTryCCDebounce**.

The Charge-Through **VCONN-Powered USB Device** shall transition to **Attached.SRC** when host-side **VBUS** is at **vSafe0V** and the **SRC.Rd** state is detected on the Host-side port’s CC pin for at least **tTryCCDebounce**.

The port shall transition to **Unattached.SNK** after **tDRPTry** if neither of the CC1 or CC2 pins are in the **SRC.Rd** state.

The Charge-Through **VCONN-Powered USB Device** shall transition to **Unattached.SNK** after **tDRPTry** if the Host-side port’s CC pin is not in the **SRC.Rd** state.

4.5.2.2.14 Unattached.Accessory State

This state appears in Figure 4-14.

The **Unattached.Accessory** state allows accessory-supporting Sinks to connect to audio or **VCONN-Powered Accessories**.

This state is functionally equivalent to the **Unattached.SRC** state in a DRP, except that **Attached.SRC** is not supported.

4.5.2.2.14.1 Unattached.Accessory Requirements

The port shall not drive **VBUS** or **VCONN**.

The port shall source current on both the CC1 and CC2 pins independently.

The port shall provide an **Rp** as specified in Table 4-24.

4.5.2.2.14.2 Exiting from Unattached.Accessory State

A port that supports **Audio Adapter Accessory Mode** shall transition to **AttachWait.Accessory** when the state of both CC pins is **SRC.Ra**.
A port that supports VCONN-Powered Accessories also shall transition to AttachWaitAccessory when the state of either CC1 or CC2 pin is SRC.Ra and the other CC pin is SRC.Rd.

The maximum time the local port shall take to transition from Unattached.Accessory to the AttachWaitAccessory state when an Audio Adapter Accessory or VCONN-Powered Accessory is present is tOnePortToggleConnect.

Otherwise, the port shall transition to Unattached.SNK within tDRPTransition after dcSRC.DRP ∙ tDRP, or if directed.

4.5.2.2.15 AttachWait.Accessory State
This state appears in Figure 4-14.

The AttachWait.Accessory state is used to ensure that the state of both of the CC1 and CC2 pins is stable after a cable is plugged in.

4.5.2.2.15.1 AttachWait.Accessory Requirements
The requirements for this state are identical to Unattached.Accessory.

4.5.2.2.15.2 Exiting from AttachWait.Accessory State
If the port supports Audio Adapter Accessory Mode, it shall transition to AudioAccessory when the state of both the CC1 and CC2 pins is SRC.Ra for at least tCCDebounce.

The port shall transition to Unattached.SNK when the state of either the CC1 or CC2 pin is SRC.Open for at least tCCDebounce.

If the port supports VCONN-Powered Accessories, it shall transition to PoweredAccessory state if the state of either the CC1 or CC2 pin is SRC.Rd and the other CC pin is SRC.Ra concurrently for at least tCCDebounce.

4.5.2.2.16 AudioAccessory State
This state appears in Figure 4-12, Figure 4-14, Figure 4-16 and Figure 4-17.

The AudioAccessory state is used for the Audio Adapter Accessory Mode specified in Appendix A.

4.5.2.2.16.1 AudioAccessory Requirements
The port shall reconfigure its pins as detailed in Appendix A.

The port shall not drive VBUS or VCONN. A port that sinks current from the audio accessory over VBUS shall not draw more than 500 mA.

The port shall provide an Rp as specified in Table 4-24.

The port shall source current on at least one of the CC1 or CC2 pins and monitor to detect when the state is no longer SRC.Ra. If the port sources and monitors only one of CC1 or CC2, then it shall ensure that the termination on the unmonitored CC pin does not affect the monitored signal when the port is connected to an Audio Accessory that may short both CC1 and CC2 pins together.

4.5.2.2.16.2 Exiting from AudioAccessory State
If the port is a Sink, the port shall transition to Unattached.SNK when the state of the monitored CC1 or CC2 pin(s) is SRC.Open for at least tCCDebounce.
If the port is a Source or DRP, the port shall transition to Unattached.SRC when the state of the monitored CC1 or CC2 pin(s) is SRC.Open for at least tCCDebounce.

4.5.2.2.17 UnorientedDebugAccessory.SRC

This state appears in Figure 4-12, Figure 4-16 and Figure 4-17.

The UnorientedDebugAccessory.SRC state is used for the Debug Accessory Mode specified in Appendix B.

4.5.2.2.17.1 UnorientedDebugAccessory.SRC Requirements

This mode is for debug only and shall not be used for communicating with commercial products.

The port shall provide an Rp as specified in Table 4-24 on both the CC1 and CC2 pins and monitor to detect when the state of either is SRC.Open.

The port shall supply V_BUS current at the level it advertises on Rp. The port shall not drive VCONN.

The port may connect any non-orientation specific debug signals for Debug Accessory Mode operation only after entry to this state.

4.5.2.2.17.2 Exiting from UnorientedDebugAccessory.SRC State

If the port is a Source, the port shall transition to Unattached.SRC when the SRC.Open state is detected on either the CC1 or CC2 pin.

If the port is a DRP, the port shall transition to Unattached.SNK when the SRC.Open state is detected on either the CC1 or CC2 pin.

The port shall transition to OrientedDebugAccessory.SRC state if orientation is required and detected as described in Section B.2.6.1.2.

4.5.2.2.18 OrientedDebugAccessory.SRC State

This state appears in Figure 4-12, Figure 4-16 and Figure 4-17.

The OrientedDebugAccessory.SRC state is used for the Debug Accessory Mode specified in Appendix B.

4.5.2.2.18.1 OrientedDebugAccessory.SRC State Requirements

This mode is for debug only and shall not be used for communicating with commercial products.

The port shall provide an Rp as specified in Table 4-24 on both the CC1 and CC2 pins and monitor to detect when the state of either is SRC.Open.

The port shall supply V_BUS current at the level it advertises on Rp. The port shall not drive VCONN.

The port shall connect any orientation specific debug signals for Debug Accessory Mode operation only after entry to this state. Any non-orientation specific debug signals for Debug Accessory Mode operation shall be connected or remain connected in this state.

If the port needs to establish USB PD communications, it shall do so only after entry to this state. The port shall not initiate any USB PD communications until V_BUS reaches vSafe5V. In this state, the port takes on the initial USB PD role of DFP/Source.
4.5.2.18.2 Exiting from OrientedDebugAccessory.SRC State

If the port is a Source, the port shall transition to Unattached.SRC when the SRC.Open state is detected on either the CC1 or CC2 pin.

If the port is a DRP, the port shall transition to Unattached.SNK when the SRC.Open state is detected on either the CC1 or CC2 pin.

4.5.2.19 DebugAccessory.SNK

This state appears in Figure 4-13, Figure 4-14, Figure 4-16 and Figure 4-17.

The DebugAccessory.SNK state is used for the Debug Accessory Mode specified in Appendix B.

4.5.2.19.1 DebugAccessory.SNK Requirements

This mode is for debug only and shall not be used for communicating with commercial products.

The port shall not drive VBUS or VCONN.

The port shall provide an Rd as specified in Table 4-25 on both the CC1 and CC2 pins and monitor to detect when the state of either is SRC.Open.

If supported, orientation is determined as outlined in Section B.2.6.1.1. The port shall connect any debug signals for Debug Accessory Mode operation only after entry to this state.

4.5.2.19.2 Exiting from DebugAccessory.SNK State

The port shall transition to Unattached.SNK when VBUS is no longer present.

4.5.2.20 PoweredAccessory State

This state appears in Figure 4-14.

When in the PoweredAccessory state, the port is powering a VCONN–Powered Accessory or VCONN–Powered USB Device.

4.5.2.20.1 PoweredAccessory Requirements

If the port needs to determine the orientation of the connector, it shall do so only upon entry to the PoweredAccessory state by detecting which of the CC1 or CC2 pins is connected through the cable (i.e., which CC pin is in the SRC.Rd state).

The SRC.Rd state is detected on only one of the CC1 or CC2 pins. The port shall advertise either 1.5 A or 3.0 A (see Table 4-24) on this CC pin and monitor its state.

The port shall supply VCONN on the unused CC pin within tVconnON-PA of entering the PoweredAccessory state.

The port shall not drive VBUS.

When the port initially enters the PoweredAccessory state it shall operate as a USB Power Delivery Source with a DFP data role. In addition, the port shall support at least one of the following:

- Use USB PD to establish an explicit contract and then use Structured Vendor Defined Messages (Structured VDMs) to identify a VCONN–Powered Accessory and enter an Alternate Mode.

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
• Use **USB PD** to query the identity of a **VCONN-Powered USB Device** (that operates as a cable plug responding to SOP’).

4.5.2.20.2 Exiting from PoweredAccessory State

The port shall transition to **Unattached.SNK** when the **SRC.Open** state is detected on the monitored CC pin.

The port shall transition to **Try.SNK** if the attached device is not a **VCONN-Powered Accessory** or **VCONN-Powered USB Device**. For example, the attached device does not support **USB PD** or does not respond to **USB PD** commands required for a **VCONN-Powered Accessory** (e.g., Discover SVIDs, Discover Modes, etc.) or is a Sink or DRP attached through a Powered Cable.

The port shall transition to **Unsupported.Accessory** if the attached device is a **VCONN-Powered Accessory** but the port has not successfully entered an **Alternate Mode** within **tAMETimeout** (see Appendix E).

A port that supports Charge-Through **VCONN-Powered USB Device** shall transition to **CTUnattached.SNK** if the connected device identifies itself as a Charge-Through **VCONN-Powered USB Device** in its Discover Identity Command response. The port may delay this transition in order to perform further SOP’ communication.

The port shall cease to supply **VCONN** within **tVCONNOFF** of exiting the PoweredAccessory state unless it is transitioning into the **CTUnattached.SNK** state.

4.5.2.21 Unsupported.Accessory State

This state appears in Figure 4-14.

If a **VCONN-Powered Accessory** does not enter an **Alternate Mode**, the **Unsupported.Accessory** state is used to wait until the accessory is unplugged before continuing.

4.5.2.21.1 Unsupported.Accessory Requirements

Only one of the CC1 or CC2 pins shall be in the **SRC.Rd** state. The port shall advertise Default USB Power (see Table 4-24) on this CC pin and monitor its voltage.

The port shall not drive **VBUS** or **VCONN**.

A Sink with either **VCONN-Powered Accessory** or **VCONN-Powered USB Device** support shall provide user notification that it does not recognize or support the attached accessory or device.

4.5.2.21.2 Exiting from Unsupported.Accessory

The port shall transition to **Unattached.SNK** when the **SRC.Open** state is detected on the monitored CC pin.

4.5.2.22 CTUnattached.VPD State

This state appears in Figure 4-18.

When in the CTUnattached.VPD state, the Charge-Through **VCONN-Powered USB Device** has detected **SNK.Open** on its host port for **tVPDCTDD**, indicating that it is connected to a Charge-Through capable Source, and is independently monitoring its Charge-Through port for the presence of a pass-through Power Source.
This state may also have been entered through detach of a Power Source on the Charge-Through port or detach of a sink from the CTVPD's Charge-through port.

4.5.2.2.22.1 CTUnattached.VPD Requirements

The Charge-Through VCONN-Powered USB Device shall isolate its Host-side port from its Charge-Through port, including CCs and VBUS. The Charge-Through VCONN-Powered USB Device shall ensure that it is powered by VCONN, does not consume more than ICCS (USB 3.2) / ICCSH (USB 2.0) from VBUS for monitoring, and is sufficiently isolated from VBUS to tolerate high voltages during Charge-Through operation.

Upon entry into this state, the device shall remove its Rd termination to ground (if present) on the Host-side port CC and provide an Rp termination advertising 3.0 A instead, as specified in Table 4-24. Note that because VBUS is not provided, the Rp termination signals continued connection to the port partner but does not carry with it any current advertisement.

The Charge-Through VCONN-Powered USB Device shall only respond to USB PD Discover Identity queries on SOP’ on its Host-side port. It shall ensure there is sufficient capacitance on the Host-side port CC to meet cReceiver as defined in USB PD.

The Charge-Through VCONN-Powered USB Device shall independently terminate both the Charge-Through port’s CC1 and CC2 pins to ground through Rd.

The Charge-Through VCONN-Powered USB Device shall provide a bypass capacitance of CCTR on the Charge-Through Port’s VBUS pins.

4.5.2.2.22.2 Exiting from CTUnattached.VPD

The Charge-Through VCONN-Powered USB Device shall transition to CTAttachWait.VPD when a Source connection is detected on the Charge-Through port, as indicated by the SNK.Rp state on exactly one of the Charge-Through port’s CC pins.

Debug accessories are not supported on the Charge-Through port.

The Charge-Through VCONN-Powered USB Device shall transition to Unattached.SNK if VCONN falls below vVCONNDisconnect.

The Charge-Through VCONN-Powered USB Device shall transition to CTUnattached.Unsupported within tDRPTransition after the state of both the Charge-Through port’s CC1 and CC2 pins is SNK.Open for tDRP – dcSRC.DRP · tDRP, or if directed.

4.5.2.2.23 CTAttachWait.VPD State

This state appears in Figure 4-18.

When in the CTAttachWait.VPD state, the device has detected the SNK.Rp state on exactly one of its Charge-Through port’s CC pins and is waiting for VBUS on the Charge-Through port.

4.5.2.2.23.1 CTAttachWait.VPD Requirements

The Charge-Through VCONN-Powered USB Device shall isolate its Host-side port from its Charge-Through port, including CCs and VBUS. The Charge-Through VCONN-Powered USB Device shall ensure that it is powered by VCONN, does not consume more than ICCS (USB 3.2) / ICCSH (USB 2.0) from VBUS for monitoring, and is sufficiently isolated from VBUS to tolerate high voltages during Charge-Through operation.
The Charge-Through VCONN-Powered USB Device shall maintain its Rp termination advertising 3.0 A on the Host-side port’s CC pin, as well as the independent terminations to ground through Rd on the Charge-Through port’s CC1 and CC2 pins.

The Charge-Through VCONN-Powered USB Device shall only respond to USB PD Discover Identity queries on SOP’ on its Host-side port, and complete any active queries prior to exiting this state. It shall ensure there is sufficient capacitance on the Host-side port CC to meet cReceiver as defined in USB PD.

4.5.2.23.2 Exiting from CTAttachWait.VPD

The Charge-Through VCONN-Powered USB Device shall transition to CTUnattached.VPD when the state of both the Charge-Through port’s CC1 and CC2 pins are SNK.Open for at least tPDDebounce.

The Charge-Through VCONN-Powered USB Device shall transition to CTAttached.VPD after the state of only one of the Charge-Through port’s CC1 or CC2 pins is SNK.Rp for at least tCCDebounce and VBUS on the Charge-Through port is detected.

Note the Charge-Through Source may initiate USB PD communications which will cause brief periods of the SNK.Open state on one of the Charge-Through port’s CC pins with the state of the Charge-Through port’s other CC pin remaining SNK.Open, but this event will not exceed tPDDebounce.

The Charge-Through VCONN-Powered USB Device shall transition to CTDisabled.VPD if VCONN falls below vVCONNDisconnect.

4.5.2.24 CTAttached.VPD State

This state appears in Figure 4-18.

When in the CTAttached.VPD state, the Charge-Through VCONN-Powered USB Device has detected a Power Source on its Charge-Through port and has connected the Charge-Through port’s CC and VBUS pins directly to the Host-side port’s CC and VBUS pins. Hence all power delivery, negotiation and USB PD communication are performed directly between the unit on Host-side port and the Power Source connected to the Charge-Through port.

4.5.2.24.1 CTAttached.VPD Requirements

Upon entry to this state, the Charge-Through VCONN-Powered USB Device shall detect which of the Charge-Through port’s CC1 or CC2 pins is connected through the cable (i.e., the CC pin that is in the SNK.Rp state). The device shall then immediately, in the following order:

1. Remove or reduce any additional capacitance on the Host-side CC port that was introduced in order to meet cReceiver as defined in USB PD to present on CC a value equal to or less than two times the maximum value for cCablePlug_CC.
2. Disable the Rp termination advertising 3.0 A on the host port’s CC pin.
3. Passively multiplex the detected Charge-Through port’s CC pin through to the host port’s CC pin with an impedance of less than RccCON.
4. Disable the Rd on the Charge-Through port’s CC1 and CC2 pins.
5. Connect the Charge-Through port’s VBUS through to the host port’s VBUS.

These steps shall be completed within VPDDetach minimum of entering this state.

The Charge-Through VCONN-Powered USB Device shall ensure that it is powered by VCONN, does not consume more than ICCS (USB 3.2) / ICCSH (USB 2.0) from VBUS for monitoring, and is sufficiently isolated from VBUS to tolerate high voltages during Charge-Through operation.
The Charge-Through VCONN-Powered USB Device shall not respond to any USB PD communication on any CC pin in this state. Any active queries on SOP’ shall have been completed prior to entering this state.

4.5.2.24.2 Exiting from CTAttached.VPD

The Charge-Through VCONN-Powered USB Device shall transition to CTUnattached.VPD when VBUS falls below vSinkDisconnect and the state of the passed-through CC pin is SNK.Open for tVPDCTDD.

The Charge-Through VCONN-Powered USB Device shall transition to CTDISabled.VPD if VCONN falls below vVCONNDisconnect.

4.5.2.25 CTDISabled.VPD State

This state appears in Figure 4-18.

When in the CTDISabled.VPD state, the Charge-Through VCONN-Powered USB Device has detected the detach on its Host-side port but may still potentially be connected to a Power Source on the Charge-Through port, and is thus ensuring that the VBUS from the Power Source is removed.

4.5.2.25.1 CTDISabled.VPD Requirements

The Charge-Through VCONN-Powered USB Device shall isolate its Host-side port from its Charge-Through port, including CCs and VBUS.

The device shall present a high-impedance to ground (above zOPEN) on the Host-side port’s CC pin and on the Charge-Through port CC1 and CC2 pins.

The Charge-Through VCONN-Powered USB Device shall ensure that it is powered entirely by VBUS.

4.5.2.25.2 Exiting from CTDISabled.VPD

The Charge-Through VCONN-Powered USB Device shall transition to Unattached.SNK after tVPDDisable.

4.5.2.26 CTUnattached.SNK State

This state appears in Figure 4-14, Figure 4-16 and Figure 4-17.

When in the CTUnattached.SNK state, the port has detected that it is attached to a Charge-Through VCONN-Powered USB Device and is ready if a Power Source is attached to the Charge-Through VCONN-Powered USB Device.

This state may also have been entered through detach of a Charge-Through Power Source.

4.5.2.26.1 CTUnattached.SNK Requirements

Upon entry to this state, the port shall remove its Rp termination (if present) and terminate CC to ground through Rd.

The port shall continue to supply VCONN.

The port shall stop sourcing or sinking VBUS and discharge it.

In USB PD Version 2.0, the port shall act as a bus master for the purposes of initiating PD messages.
The port may query the state of the attached VCONN-Powered USB Device by sending SOP’ messages on USB PD to read the VPD’s eMarker.

4.5.2.2.26.2 Exiting from CTUnattached.SNK

The port shall transition to CTAttached.SNK when VBUS is detected. Note that by this point, the VCONN-Powered USB Device has already de-bounced the passed-through CC pin.

The port shall transition to Unattached.SNK if the state of the CC pin is SNK.Open for tVPDDetach after VBUS is vSafe0V.

4.5.2.2.27 CTAttached.SNK State

This state appears in Figure 4-14, Figure 4-16 and Figure 4-17.

When in the CTAttached.SNK state, the port is connected to a Charge-Through VCONN-Powered USB Device, which in turn is passing through the connection to a Power Source.

4.5.2.2.27.1 CTAttached.SNK Requirements

The port shall continue to terminate CC to ground through Rd. Since there is now a Power Source connected through to VBUS and CC, the port shall operate in one of the Sink Power Sub-States shown in Figure 4-19, and remain within the Sink Power Sub-States, until either VBUS is removed or a USB PD contract is established with the source.

The port shall not negotiate a voltage on VBUS higher than the maximum voltage specified in the Charge-Through VCONN-Powered USB Device’s Discover Identity Command response.

The port shall continue to supply VCONN.

The port shall reject a VCONN swap request.

The port shall not perform USB BC 1.2 primary detection, as that will interfere with VPD functionality.

In USB PD Version 2.0, the port shall act as a bus slave for the purposes of initiating USB PD messages, although it remains a DFP for USB data.

The port shall neither initiate nor respond to any SOP’ communication.

The port shall meet the Sink Power Sub-State requirements specified in Section 4.5.2.2.29.

The port shall meet the additional maximum current constraints described in Section 4.6.2.5.

The port shall follow the restrictions on USB PD messages described in Section 4.10.2.

The port shall alter its advertised capabilities to UFP role/sink only role as described in Section 4.10.2.

4.5.2.2.27.2 Exiting from CTAttached.SNK

A port that is not in the process of a USB PD Hard Reset shall transition to CTUnattached.SNK within tSinkDisconnect when VBUS falls below vSinkDisconnect for VBUS operating at or below 5 V or below vSinkDisconnectPD when negotiated by USB PD to operate above 5 V.

A port that has entered into USB PD communications with the Source and has seen the CC voltage exceed vRd-USB may monitor the CC pin to detect cable disconnect in addition to monitoring VBUS.
A port that is monitoring the CC voltage for disconnect shall transition to CTUnattached.SNK within $t_{SinkDisconnect}$ after the CC voltage remains below vRd_{-USB} for $t_{PDDebounce}$.

4.5.2.2.28 CTUnattached.Unsupported State

This state appears in Figure 4-18.

When in the CTUnattached.Unsupported state, the Charge-Through VCONN-Powered USB Device has previously detected SNK.Open on its host port for $t_{VPDCTDD}$, indicating that it is connected to a Charge-Through Capable Source, and is now monitoring its Charge-Through port for the presence of an unsupported sink.

A Charge-Through VCONN-Powered USB Device does not support Sinks, Debug Accessory Mode, or Audio Adapter Accessory Mode.

4.5.2.2.28.1 CTUnattached.Unsupported Requirements

The Charge-Through VCONN-Powered USB Device shall isolate its Host-side port from its Charge-Through port, including CCs and VBUS. The Charge-Through VCONN-Powered USB Device shall ensure that it is powered by VCONN, does not consume more than I_{CCS} (USB 3.2) / I_{CCS} (USB 2.0) from VBUS for monitoring, and is sufficiently isolated from VBUS to tolerate high voltages during Charge-Through operation.

Upon entry into this state, the Charge-Through VCONN-Powered USB Device shall maintain its Rp termination advertising 3.0 A on the Host-side port’s CC pin, remove its Rd terminations to ground on the Charge-Through port’s CC1 and CC2 pins, and provide a Rp termination advertising Default USB Power instead.

The Charge-Through VCONN-Powered USB Device shall only respond to USB PD Discover Identity queries on SOP’ on its Host-side port. It shall ensure there is sufficient capacitance on the Host-side port CC to meet cReceiver as defined in USB PD.

4.5.2.2.28.2 Exiting from CTUnattached.Unsupported

The Charge-Through VCONN-Powered USB Device shall transition to CTAttachWait.Unsupported when a Sink connection is detected on the Charge-Through port, as indicated by the SRC.Rd state on at least one of the Charge-Through port’s CC pins or SRC.Ra state on both the CC1 and CC2 pins.

The Charge-Through VCONN-Powered USB Device shall transition to Unattached.SNK if VCONN falls below $vVCONN_{Disconnect}$.

Otherwise, a Charge-Through VCONN-Powered USB Device shall transition to CTUnattached.VPD within $t_{DRPTransition}$ after $dc_{SRC.DRP} \cdot t_{DRP}$, or if directed.

4.5.2.2.29 CTAttachWait.Unsupported State

This state appears in Figure 4-18.

The CTAttachWait.Unsupported state is used to ensure that the state of both the Charge-Through Port’s CC1 and CC2 pins are stable for at least $t_{CCDebounce}$.

4.5.2.2.29.1 CTAttachWait.Unsupported Requirements

The requirements for this state are identical to CTUnattached.Unsupported state.
4.5.2.29.2 Exiting from CTAttachWait.Unsupported

The Charge-Through VCONN-Powered USB Device shall transition to CTTry.SNK if the state of at least one of the Charge-Through port’s CC pins is SRC.Rd, or if the state of both the CC1 and CC2 pins is SRC.Ra for at least tCCDebounce.

The Charge-Through VCONN-Powered USB Device shall transition to CTUnattached.VPD when the state of either the Charge-Through Port’s CC1 or CC2 pin is SRC.Open for at least tCCDebounce.

The Charge-Through VCONN-Powered USB Device shall transition to Unattached.SNK if VCONN falls below vVCONNDisconnect.

4.5.2.30 CTTry.SNK State

This state appears in Figure 4-18.

When in the CTTry.SNK state, the Charge-Through VCONN-Powered USB Device is querying to determine if the port partner on the Charge-Through port supports the source role.

4.5.2.30.1 CTTry.SNK Requirements

The requirements for this state is identical to CTUnattached.VPD state.

4.5.2.30.2 Exiting from CTTry.SNK

The Charge-Through VCONN-Powered USB Device shall wait for tDRPTry and only then begin monitoring the Charge-Through port’s CC pins for the SNK.Rp state.

The Charge-Through VCONN-Powered USB Device shall then transition to CTAttached.VPD when the SNK.Rp state is detected on the Charge-Through port’s CC pins for at least tTryCCDebounce and VBUS is detected on Charge-Through port.

A Charge-Through VCONN-Powered USB Device shall transition to CTAttached.Unsupported if SNK.Rp state is not detected for tDRPTryWait.

Note: The Source may initiate USB PD communications which will cause brief periods of the SNK.Open state on both the CC1 and CC2 pins, but this event will not exceed tTryCCDebounce.

The Charge-Through VCONN-Powered USB Device shall transition to Unattached.SNK if VCONN falls below vVCONNDisconnect.

4.5.2.31 CTAttached.Unsupported State

This state appears in Figure 4-18.

If the port partner to the Charge-Through VCONN-Powered USB Device’s Charge-Through port either does not support the source power role, or failed to negotiate the source role, the CTAttached.Unsupported state is used to wait until that device is unplugged before continuing.

4.5.2.31.1 CTAttached.Unsupported Requirements

The Charge-Through VCONN-Powered USB Device shall isolate its Host-side port from its Charge-Through port, including CCs and VBUS. The Charge-Through VCONN-Powered USB Device shall ensure that it is powered by VCONN, does not consume more than ICCS (USB 3.2) / ICCSH (USB 2.0) from VBUS for monitoring, and is sufficiently isolated from VBUS to tolerate high voltages during Charge-Through operation.
Upon entry into this state, the Charge-Through VCONN-Powered USB Device shall maintain its Rp termination advertising 3.0 A on the Host-side port’s CC pin, remove its Rd terminations to ground on the Charge-Through port’s CC1 and CC2 pins, and provide a Rp termination advertising Default USB Power instead.

At least one of the CC1 or CC2 pins will be in the SRC.Rd state or both will be in the SRC.Ra state. The Charge-Through port shall advertise Default USB Power (see Table 4-24) on its CC pins and monitor their voltage.

The Charge-Through VCONN-Powered USB Device shall present a USB Billboard Device Class interface indicating that it does not recognize or support the attached accessory or device.

4.5.2.2.31.2 Exiting from CTAttached.Unsupported

The Charge-Through VCONN-Powered USB Device shall transition to CTUnattached.VPD when SRC.Open state is detected on both the Charge-Through port’s CC pins or the SRC.Open state is detected on one CC pin and SRC.Ra is detected on the other CC pin.

4.5.2.3 Sink Power Sub-State Requirements

When in the Attached.SNK or CTAttached.SNK states and the Source is supplying default VBUS, the port shall operate in one of the sub-states shown in Figure 4-19. The initial Sink Power Sub-State is PowerDefault.SNK. Subsequently, the Sink Power Sub-State is determined by Source’s USB Type-C current advertisement. The port in Attached.SNK shall remain within the Sink Power Sub-States until either VBUS is removed or a USB PD contract is established with the Source.

Figure 4-19 Sink Power Sub-States

The Sink is only required to implement Sink Power Sub-State transitions if the Sink wants to consume more than default USB current.
Note that for the `CTAttached.SNK` state, there are further limitations on maximum current (see Section 4.6.2.5).

4.5.2.3.1 PowerDefault.SNK Sub-State

This sub-state supports Sinks consuming current within the lowest range (default) of Source-supplied current.

4.5.2.3.1.1 PowerDefault.SNK Requirements

The port shall draw no more than the default USB power from VBUS. See Section 4.6.2.1.

If the port wants to consume more than the default USB power, it shall monitor vRd to determine if more current is available from the Source.

4.5.2.3.1.2 Exiting from PowerDefault.SNK

For any change in vRd indicating a change in allowable power, the port shall not transition until the new vRd has been stable for at least tRpValueChange.

For a vRd in the vRd-1.5 range, the port shall transition to the Power1.5.SNK Sub-State.

For a vRd in the vRd-3.0 range, the port shall transition to the Power3.0.SNK Sub-State.

4.5.2.3.2 Power1.5.SNK Sub-State

This sub-state supports Sinks consuming current within the two lower ranges (default and 1.5 A) of Source-supplied current.

4.5.2.3.2.1 Power1.5.SNK Requirements

The port shall draw no more than 1.5 A from VBUS.

The port shall monitor vRd while it is in this sub-state.

4.5.2.3.2.2 Exiting from Power1.5.SNK

For any change in vRd indicating a change in allowable power, the port shall not transition until the new vRd has been stable for at least tRpValueChange.

For a vRd in the vRd-USB range, the port shall transition to the PowerDefault.SNK Sub-State and reduce its power consumption to the new range within tSinkAdj.

For a vRd in the vRd-3.0 range, the port shall transition to the Power3.0.SNK Sub-State.

4.5.2.3.3 Power3.0.SNK Sub-State

This sub-state supports Sinks consuming current within all three ranges (default, 1.5 A and 3.0 A) of Source-supplied current.

4.5.2.3.3.1 Power3.0.SNK Requirements

The port shall draw no more than 3.0 A from VBUS.

The port shall monitor vRd while it is in this sub-state.

4.5.2.3.3.2 Exiting from Power3.0.SNK

For any change in vRd indicating a change in allowable power, the port shall not transition until the new vRd has been stable for at least tRpValueChange.
For a vRd in the vRd-USB range, the port shall transition to the **PowerDefault SNK Sub-State** and reduce its power consumption to the new range within **tSinkAdj**.

For a vRd in the vRd-1.5 range, the port shall transition to the **Power1.5 SNK Sub-State** and reduce its power consumption to the new range within **tSinkAdj**.

4.5.2.4 Cable State Machine Requirements

Figure 4-20 illustrates the cable eMarker connection state diagram.

Figure 4-20 Cable eMarker State Diagram

4.5.2.4.1 Cable Power On State

This state appears in Figure 4-20. This is the initial power on state for each eMarker in the cable when VCONN is applied.

4.5.2.4.1.1 Cable Power On State Requirements

Each eMarker in the cable shall present **Ra** when no VCONN is applied.

Each eMarker in the cable shall power on and may continue to present **Ra** in this state.

The cable shall not respond to SOP’ and SOP” commands in this state.

4.5.2.4.1.2 Exiting from Cable Power On State

Each eMarker in a passive or active cable shall transition to Assign Cable SOP* when it has completed its boot process. Each eMarker shall transition to Assign Cable SOP* within **tVCONNStable**.

4.5.2.4.2 Assign Cable SOP* State

This state appears in Figure 4-20.

Typically, a passive cable has only one eMarker powered at a time. This cable eMarker in a passive cable shall respond to SOP’ in this state. If two eMarkers are powered at the same time in a passive cable, then one shall respond to a pre-set SOP’ and the other to SOP”.

Each cable eMarker in an active cable shall respond to a pre-set SOP’ or SOP”. If only one eMarker exists in the cable, it shall only respond to SOP’.
4.5.2.4.2.1 Assign Cable SOP* State Requirements

Each eMarker in the passive or active cable shall be able to respond to any USB PD communication sent to its pre-set SOP’ or SOP”. For a passive cable, only one eMarker should be powered at a time and shall respond to SOP’ only. If two eMarkers exist in a passive or active cable and are powered at the same time, then only one shall respond to SOP’ and the other shall respond to SOP”. The assignment of SOP’ and SOP” is fixed for each eMarker in a cable and shall not be dynamically set when power is applied to VCONN.

Each eMarker in the cable shall weaken or remove Ra if it has not already done so.

Passive cables shall meet the Power for electronically marked passive cables defined in Table 4-6.

Active Cables shall meet the Power for Active cables in Table 4-6.

4.5.2.4.2.2 Exiting from Assign Cable SOP* State

Each eMarker in the cable shall transition to Cable Power On upon sensing VCONN less than vRaReconnect or upon a Power On Reset event.

Each eMarker in the cable shall transition to Cable Power On upon sensing a Hard Reset or Cable Reset.

4.5.2.5 Connection States Summary

Table 4-16 defines the mandatory and optional states for each type of port.

<table>
<thead>
<tr>
<th>Table 4-16 Mandatory and Optional States</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURCE</td>
</tr>
<tr>
<td>Disabled</td>
</tr>
<tr>
<td>ErrorRecovery</td>
</tr>
<tr>
<td>Unattached.SNK</td>
</tr>
<tr>
<td>AttachWait.SNK</td>
</tr>
<tr>
<td>Attached.SNK</td>
</tr>
<tr>
<td>UnattachedWait.SRC</td>
</tr>
<tr>
<td>Unattached.SRC</td>
</tr>
<tr>
<td>AttachWait.SRC</td>
</tr>
<tr>
<td>Attached.SRC</td>
</tr>
<tr>
<td>Try.SRC⁴</td>
</tr>
<tr>
<td>TryWait.SNK²</td>
</tr>
<tr>
<td>Try.SNK⁴, ⁸</td>
</tr>
<tr>
<td>TryWait.SRC⁴, ⁸</td>
</tr>
<tr>
<td>AudioAccessory</td>
</tr>
<tr>
<td>UnorientedDebugAccessory.SRC</td>
</tr>
<tr>
<td>OrientedDebugAccessory.SRC</td>
</tr>
<tr>
<td>DebugAccessory.SNK</td>
</tr>
<tr>
<td>SOURCE</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Unattached.Accessory</td>
</tr>
<tr>
<td>AttachWait.Accessory</td>
</tr>
<tr>
<td>Powered.Accessory</td>
</tr>
<tr>
<td>Unsupported.Accessory</td>
</tr>
<tr>
<td>CT Unattached.VPD</td>
</tr>
<tr>
<td>CTA AttachWait.VPD</td>
</tr>
<tr>
<td>CTA Attached.VPD</td>
</tr>
<tr>
<td>CTD Disabled.VPD</td>
</tr>
<tr>
<td>CT Unattached.SNK</td>
</tr>
<tr>
<td>CTA Attached.SNK</td>
</tr>
<tr>
<td>CT Unattached. Unsupported</td>
</tr>
<tr>
<td>CTA AttachWait. Unsupported</td>
</tr>
<tr>
<td>CTA Try.SNK</td>
</tr>
<tr>
<td>CTA Attached. Unsupported</td>
</tr>
<tr>
<td>Power Default.SNK</td>
</tr>
<tr>
<td>Power 1.5.SNK</td>
</tr>
<tr>
<td>Power 3.0.SNK</td>
</tr>
</tbody>
</table>

Notes:
1. Optional for UFP applications that are USB 2.0-only, consume USB Default Power and do not support USB PD or accessories.
2. TryWait.SNK is mandatory when Try.SRC is supported.
3. Unsupported.Accessory is mandatory when Powered.Accessory is supported.
4. Try.SRC and Try.SNK shall not be supported at the same time, although an unattached device may dynamically choose between Try.SRC and Try.SNK state machines based on external factors.
5. TryWait.SRC is mandatory when Try.SNK is supported.
6. UnorientedDebugAccessory.SRC is required for any Source or DRP that supports Debug Accessory Mode.
7. OrientedDebugAccessory.SRC is only required if orientation detection is necessary in Debug Accessory Mode.
8. Mandatory for a DFP that was providing VCONN in the previous Attached.SRC state. N/A for a DFP that was not providing VCONN in the previous Attached.SRC state.
9. CT AttachWait.VPD, CTA Attached.VPD, CTD Disabled.VPD, Try.SNK, TryWait.SRC, CTA Unattached. Unsupported, CTA AttachWait. Unsupported, CTA Attached. Unsupported, and CTA Try.SNK are mandatory when CT Unattached.VPD is supported.
10. Optional for non-USB4 implementations.
4.5.3 USB Port Interoperability Behavior

This section describes interoperability behavior between USB Type-C to USB Type-C ports and between USB Type-C to legacy USB ports.

4.5.3.1 USB Type-C Port to USB Type-C Port Interoperability Behaviors

The following sub-sections describe typical port-to-port interoperability behaviors for the various combinations of USB Type-C Source, Sink and DRPs as presented in Table 4-9. In all of the described behaviors, the impact of USB PD-based swaps (PR_Swap, DR_Swap or VCONN_Swap) are not considered.

The figures in the following sections illustrate the CC1 and CC2 routing after the CC detection process is complete.

4.5.3.1.1 Source to Sink Behavior

Figure 4-21 illustrates the functional model for a Source connected to a Sink. The single CC wire that is in a standard cable is only shown in one of the four possible connection routes, CC1 to CC1.

Figure 4-21 Source to Sink Functional Model

The following describes the behavior when a Source is connected to a Sink.

1. Source and Sink in the unattached state
2. Source transitions from Unattached.SRC to Attached.SRC through AttachWait.SRC
 - Source detects the Sink’s pull-down on CC and enters Attached.SRC through AttachWait.SRC
 - Source turns on VBUS and VCONN
3. Sink transitions from Unattached.SNK to Attached.SNK through AttachWait.SNK.
 - Sink may skip AttachWait.SNK if it is USB 2.0 only and does not support accessories.
 - Sink detects VBUS and enters Attached.SNK through AttachWait.SNK
4. While the Source and Sink are in the attached state:
 - Source adjusts \(R_p \) as needed to limit the current the Sink may draw
 - Sink detects and monitors \(v_{RD} \) for available current on VBUS
 - Source monitors CC for detach and when detected, enters Unattached.SRC
 - Sink monitors VBUS for detach and when detected, enters Unattached.SNK

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
4.5.3.1.2 Source to DRP Behavior

Figure 4-22 illustrates the functional model for a Source connected to a DRP. The single CC wire that is in a standard cable is only shown in one of the four possible connection routes, CC1 to CC1.

Figure 4-22 Source to DRP Functional Model

The following describes the behavior when a Source is connected to a DRP.

1. Source and DRP in the unattached state
 - DRP alternates between Unattached.SRC and Unattached.SNK

2. Source transitions from Unattached.SRC to Attached.SRC through AttachWait.SRC
 - Source detects the DRP’s pull-down on CC and enters AttachWait.SRC. After tCCDebounce it then enters Attached.SRC.
 - Source turns on VBUS and VCONN

3. DRP transitions from Unattached.SNK to Attached.SNK through AttachWait.SNK
 - DRP in Unattached.SNK detects pull up on CC and enters AttachWait.SNK. After that state persists for tCCDebounce and it detects VBUS, it enters Attached.SNK.

4. While the Source and DRP are in their respective attached states:
 - Source adjusts Rp as needed to limit the current the DRP (as Sink) may draw
 - DRP (as Sink) detects and monitors vRd for available current on VBUS
 - Source monitors CC for detach and when detected, enters Unattached.SRC
 - DRP (as Sink) monitors VBUS for detach and when detected, enters Unattached.SNK (and resumes toggling between Unattached.SNK and Unattached.SRC)
4.5.3.1.3 DRP to Sink Behavior

Figure 4-23 illustrates the functional model for a DRP connected to a Sink. The single CC wire that is in a standard cable is only shown in one of the four possible connection routes, CC1 to CC1.

![Figure 4-23 DRP to Sink Functional Model](image)

The following describes the behavior when a DRP is connected to a Sink.

1. DRP and Sink in the unattached state
 - DRP alternates between `Unattached.SRC` and `Unattached.SNK`
2. DRP transitions from `Unattached.SRC` to `AttachWait.SRC` to `Attached.SRC`
 - DRP in `Unattached.SRC` detects one of the CC pull-downs of Sink which is in `Unattached.SNK` and DRP enters `AttachWait.SRC`
 - DRP in `AttachWait.SRC` detects that pull down on CC persists for `tCCDebounce`. It then enters `Attached.SRC` and turns on VBUS and VCONN
3. Sink transitions from `Unattached.SNK` to `Attached.SNK` through `AttachWait.SNK` if required.
 - Sink detects VBUS and enters `Attached.SNK`
4. While the DRP and Sink are in their respective attached states:
 - DRP (as Source) adjusts Rp as needed to limit the current the Sink may draw
 - Sink detects and monitors vRd for available current on VBUS
 - DRP (as Source) monitors CC for detach and when detected, enters `Unattached.SNK` (and resumes toggling between `Unattached.SNK` and `Unattached.SRC`)
 - Sink monitors VBUS for detach and when detected, enters `Unattached.SNK`

4.5.3.1.4 DRP to DRP Behavior

Two behavior descriptions based on the connection state diagrams are provided below. In the first case, the two DRPs accept the resulting Source-to-Sink relationship achieved randomly whereas in the second case the DRP #2 chooses to drive the random result to the opposite result using the Try.SRC mechanism.

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
Figure 4-24 illustrates the functional model for a DRP connected to a DRP in the first case described. The single CC wire that is in a standard cable is only shown in one of the four possible connection routes, CC1 to CC1. Port numbers have been arbitrarily assigned in the diagram to assist the reader to understand the process description.

Figure 4-24 DRP to DRP Functional Model – CASE 1

CASE 1: The following describes the behavior when a DRP is connected to another DRP. In this flow, the two DRPs accept the resulting Source-to-Sink relationship achieved randomly.

1. **Both DRPs in the unattached state**
 - DRP #1 and DRP #2 alternate between **Unattached.SRC** and **Unattached.SNK**
2. **DRP #1 transitions from** **Unattached.SRC** **to** **AttachWait.SRC**
 - DRP #1 in **Unattached.SRC** detects a CC pull down of DRP #2 in **Unattached.SNK** and enters **AttachWait.SRC**
3. **DRP #2 transitions from** **Unattached.SNK** **to** **AttachWait.SNK**
 - DRP #2 in **Unattached.SNK** detects pull up on a CC and enters **AttachWait.SNK**
4. **DRP #1 transitions from** **AttachWait.SRC** **to** **Attached.SRC**
 - DRP #1 in **AttachWait.SRC** continues to see CC pull down of DRP #2 for tCCDebounce, enters **Attached.SRC** and turns on VBUS and VCONN
5. **DRP #2 transitions from** **AttachWait.SNK** **to** **Attached.SNK**
 - DRP #2 after having been in **AttachWait.SNK** for tCCDebounce and having detected VBUS, enters **Attached.SNK**
6. **While the DRPs are in their respective attached states:**
 - DRP #1 (as Source) adjusts Rp as needed to limit the current DRP #2 (as Sink) may draw
 - DRP #2 (as Sink) detects and monitors vRD for available current on VBUS
 - DRP #1 (as Source) monitors CC for detach and when detected, enters **Unattached.SNK** (and resumes toggling between **Unattached.SNK** and **Unattached.SRC**)

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
• DRP #2 (as Sink) monitors VBUS for detach and when detected, enters Unattached.SNK (and resumes toggling between Unattached.SNK and Unattached.SRC)

Figure 4-25 illustrates the functional model for a DRP connected to a DRP in the second case described.

Figure 4-25 DRP to DRP Functional Model – CASE 2 & 3

CASE 2: The following describes the behavior when a DRP is connected to another DRP. In this flow, the DRP #2 chooses to drive the random result to the opposite result using the Try.SRC mechanism.

1. Both DRPs in the unattached state
 • DRP #1 and DRP #2 alternate between Unattached.SRC and Unattached.SNK
2. DRP #1 transitions from Unattached.SRC to AttachWait.SRC
 • DRP #1 in Unattached.SRC detects a CC pull down of DRP #2 in Unattached.SNK and enters AttachWait.SRC
3. DRP #2 transitions from Unattached.SNK to AttachWait.SNK
 • DRP #2 in Unattached.SNK detects pull up on a CC and enters AttachWait.SNK
4. DRP #1 transitions from AttachWait.SRC to Attached.SRC
 • DRP #1 in AttachWait.SRC continues to see CC pull down of DRP #2 for tCCDebounce, enters Attached.SRC and turns on VBUS and VCONN
5. DRP #2 transitions from AttachWait.SNK to Try.SRC.
 • DRP #2 in AttachWait.SNK has been in this state for tCCDebounce and detects VBUS but strongly prefers the Source role, so transitions to Try.SRC
 • DRP #2 in Try.SRC asserts a pull-up on CC and waits
6. DRP #1 transitions from Attached.SRC to Unattached.SNK to AttachWait.SNK
 • DRP #1 in Attached.SRC no longer detects DRP #2’s pull-down on CC and transitions to Unattached.SNK.
 • DRP #1 in Unattached.SNK turns off VBUS and VCONN and applies a pull-down on CC

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
• DRP #1 in **Unattached.SNK** detects pull up on a CC and enters **AttachWait.SNK**

7. DRP #2 transitions from **Try.SRC** to **Attached.SRC**
• DRP #2 in **Try.SRC** detects the DRP #1 in **Unattached.SNK**’s pull-down on CC and enters **Attached.SRC**
• DRP #2 in **Attached.SRC** turns on VBUS and VCONN

8. DRP #1 transitions from **AttachWait.SNK** to **Attached.SNK**
• DRP #1 in **AttachWait.SNK** after **tCCDebounce** and detecting VBUS, enters **Attached.SNK**

9. While the DRPs are in their respective attached states:
• DRP #2 (as Source) adjusts Rp as needed to limit the current DRP #1 (as Sink) may draw
• DRP #1 (as Sink) detects and monitors VRd for available current on VBUS
• DRP #2 (as Source) monitors CC for detach and when detected, enters **Unattached.SNK** (and resumes toggling between **Unattached.SNK** and **Unattached.SRC**)
• DRP #1 (as Sink) monitors VBUS for detach and when detected, enters **Unattached.SNK** (and resumes toggling between **Unattached.SNK** and **Unattached.SRC**)

CASE 3: The following describes the behavior when a DRP is connected to another DRP. In this flow, the DRP #1 chooses to drive the random result to the opposite result using the **Try.SNK** mechanism.

1. Both DRPs in the unattached state
• DRP #1 and DRP #2 alternate between **Unattached.SRC** and **Unattached.SNK**

2. DRP #1 transitions from **Unattached.SRC** to **AttachWait.SRC**
• DRP #1 in **Unattached.SRC** detects a CC pull down of DRP #2 in **Unattached.SNK** and enters **AttachWait.SRC**

3. DRP #2 transitions from **Unattached.SNK** to **AttachWait.SNK**
• DRP #2 in **Unattached.SNK** detects pull up on a CC and enters **AttachWait.SNK**

4. DRP #1 transitions from **AttachWait.SRC** to **Try.SNK**
• DRP #1 in **AttachWait.SRC** has been in this state for **tCCDebounce** and detects DRP #2’s pull-down on CC but strongly prefers the Sink role, so transitions to **Try.SNK**
• DRP #1 in **Try.SNK** asserts a pull down on CC and waits

5. DRP #2 transitions from **AttachWait.SNK** to **Unattached.SRC** to **AttachWait.SRC**.
• DRP #2 in **AttachWait.SNK** no longer detects DRP #1’s pull up on CC and transitions to **Unattached.SRC**
• DRP #2 in **Unattached.SRC** applies a pull up on CC
• DRP #2 in **Unattached.SRC** detects a pull down on a CC pin and enters **AttachWait.SRC**
• DRP #1 detects DRP #2’s pull up on CC and remains in **Try.SNK**

6. DRP #2 transitions from **AttachWait.SRC** to **Attached.SRC**
• DRP #2 in AttachWait.SRC times out (tCCDebounce) and transitions to Attached.SRC
• DRP #2 in Attached.SRC turns on VBUS and VCONN
7. DRP #1 transitions from Try.SNK to Attached.SNK
 • DRP #1 in Try.SNK after detecting VBUS, enters Attached.SNK
8. While the DRPs are in their respective attached states:
 • DRP #2 (as Source) adjusts Rp as needed to limit the current DRP #1 (as Sink) may draw
 • DRP #1 (as Sink) detects and monitors vRD for available current on VBUS
 • DRP #2 (as Source) monitors CC for detach and when detected, enters Unattached.SNK (and resumes toggling between Unattached.SNK and Unattached.SRC)
 • DRP #1 (as Sink) monitors VBUS for detach and when detected, enters Unattached.SNK (and resumes toggling between Unattached.SNK and Unattached.SRC)

4.5.3.1.5 Source to Source Behavior

Figure 4-26 illustrates the functional model for a Source connected to a Source. The single CC wire that is in a standard cable is only shown in one of the four possible connection routes, CC1 to CC1. Port numbers have been arbitrarily assigned in the diagram to assist the reader to understand the process description.

Figure 4-26 Source to Source Functional Model

The following describes the behavior when a Source is connected to another Source.

1. Both Sources in the unattached state
 • Source #1 fails to detect a Sink’s pull-down on CC and remains in Unattached.SRC
 • Source #2 fails to detect a Sink’s pull-down on CC and remains in Unattached.SRC
4.5.3.1.6 Sink to Sink Behavior

Figure 4-27 illustrates the functional model for a Sink connected to a Sink. The single CC wire that is in a standard cable is only shown in one of the four possible connection routes, CC1 to CC1. Port numbers have been arbitrarily assigned in the diagram to assist the reader to understand the process description.

Figure 4-27 Sink to Sink Functional Model

The following describes the behavior when a Sink is connected to another Sink.

1. Both Sinks in the unattached state
 - Sink #1 fails to detect pull up on CC or VBUS supplied by a Source and remains in Unattached.SNK
 - Sink #2 fails to detect pull up on CC or VBUS supplied by a Source and remains in Unattached.SNK

4.5.3.1.7 DRP to VCONN-Powered USB Device (VPD) Behavior

Figure 4-28 illustrates the functional model for a DRP connected to a VCONN-Powered USB Device that does not feature charge-through functionality.

Figure 4-28 DRP to VPD Model
The following describes the behavior when a DRP that supports VPDs is connected to a VPD.

1. DRP and VPD in the unattached state
 - DRP alternates between Unattached.SRC and Unattached.SNK

2. DRP transitions from Unattached.SRC to Attached.SRC through AttachWait.SRC
 - DRP in Unattached.SRC detects the CC pull-down of VPD which is in Unattached.SNK and DRP enters AttachWait.SRC
 - DRP in AttachWait.SRC detects that pull-down on CC persists for tCCDebounce. It then enters Attached.SRC and turns on VBUS and VCONN

3. VPD transitions from Unattached.SNK to Attached.SNK through AttachWait.SNK
 - VPD detects VCONN and enters Attached.SNK

4. While DRP and VPD are in their respective attached states, DRP discovers the VPD and removes VBUS
 - DRP (as Source) queries the cable identity via USB PD on SOP'.
 - VPD responds on SOP', advertising that it is a VCONN-Powered USB Device that does not support charge-through.
 - DRP (as Source) removes VBUS
 - DRP (as Source) maintains its Rp

5. DRP and VPD for detach
 - DRP (as Source) monitors CC for detach and when detected, enters Unattached.SNK (and resumes toggling between Unattached.SNK and Unattached.SRC)
 - VPD monitors VCONN for detach and when detected, enters Unattached.SNK

4.5.3.1.8 DRP to Charge-Through VCONN-Powered USB Device (CTVPD) Behavior

Figure 4-29 illustrates the functional model for a DRP connected to a Charge-Through VCONN-Powered USB Device, with a Source attached to the Charge-Through port on the VCONN-Powered USB Device.
CASE 1: The following describes the behavior when a DRP is connected to a Charge-Through VCONN-Powered USB Device (abbreviated CTVPD), with no Power Source attached to the Charge-Through port on the CTVPD.

1. **DRP and CTVPD are both in the unattached state**
 a. DRP alternates between Unattached.SRC and Unattached.SNK
 b. CTVPD has applied Rd on its Charge-Through port's CC1 and CC2 pins and Rd on the Host-side port's CC pin

2. **DRP transitions from Unattached.SRC to Attached.SRC through AttachWait.SRC**
 a. DRP in Unattached.SRC detects a CC pull down of CTVPD which is in Unattached.SNK and DRP enters AttachWait.SRC
 b. DRP in AttachWait.SRC detects that pull down on CC persists for tCCDebounce, enters Attached.SRC and turns on VBUS and VCONN

3. **CTVPD transitions from Unattached.SNK to Attached.SNK through AttachWait.SNK**
 a. CTVPD detects the host-side CC pull-up of the DRP and CTVPD enters AttachWait.SNK
 b. CTVPD in AttachWait.SNK detects that pull up on the Host-side port's CC persists for tCCDebounce, VCONN present and enters Attached.SNK
 c. CTVPD present a high-impedance to ground (above zOPEN) on its Charge-Through port’s CC1 and CC2 pins

4. **While DRP and CTVPD are in their respective attached states, DRP discovers the CTVPD and transitions to CTUnattached.SNK**
 a. DRP (as Source) queries the device identity via USB PD (Device Identity Command) on SOP'
 b. CTVPD responds on SOP', advertising that it is a Charge-Through VCONN-Powered USB Device
 c. DRP (as Source) removes VBUS
 d. DRP (as Source) changes its Rp to a Rd
 e. DRP (as Sink) continues to provide VCONN and enters CTUnattached.SNK

5. **CTVPD transitions to CTUnattached.VPD**
 a. CTVPD detects VBUS removal, VCONN presence, the low Host-side CC pin and enters CTUnattached.VPD
 b. CTVPD changes its host-side Rd to a Rp advertising 3.0 A
 c. CTVPD isolates itself from VBUS
 d. CTVPD apply Rd on its Charge-Through port's CC1 and CC2 pins

6. **While the CTVPD in CTUnattached.VPD state and the DRP in CTUnattached.SNK state:**
 a. CTVPD monitors Charge-Though CC pins for a source or sink; when a Power Source attach is detected, enters CTAttachWait.VPD; when a sink is detected, enters CTAttachWait.Unsupported
 b. CTVPD monitors VCONN for Host detach and when detected, enters Unattached.SNK
 c. DRP monitors VBUS and CC for CTVPD detach for tVPDDetach and when detected, enters Unattached.SNK
 d. DRP monitors VBUS for Power Source attach and when detected, enters CTAttach.SNK

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
CASE 2: The following describes the behavior when a Power Source is connected to a Charge-Through VCONN-Powered USB Device (abbreviated CTVPD), with a Host already attached to the Host-side port on the CTVPD.

1. DRP is in CTUnattached.SNK state, CTVPD in CTUnattached.VPD, and Power Source in the unattached state
 a. CTVPD has applied Rd on the Charge-Through port's CC1 and CC2 pins and Rp termination advertising 3.0 A on the Host-side port's CC pin

2. Power Source transitions from Unattached.SRC to Attached.SRC through AttachWait.SRC
 a. Power Source detects the CC pull-down of the CTVPD and enters AttachWait.SRC
 b. Power Source in AttachWait.SRC detects that pull down on CC persists for tCCDebounce, enters Attached.SRC and turns on VBUS

3. CTVPD transitions from CTUnattached.VPD through CTAAttachWait.VPD to CTAAttached.VPD
 a. CTVPD detects the Source's Rp on one of its Charge-Through CC pins, and transitions to CTAAttachWait.VPD
 b. CTVPD finishes any active USB PD communication on SOP' and ceases to respond to SOP’ queries
 c. CTVPD in CTAAttachWait.VPD detects that the pull up on Charge-Through CC pin persists for tCCDebounce, detects VBUS and enters CTAAttached.VPD
 d. CTVPD connects the active Charge-Through CC pin to the Host-side port's CC pin
 e. CTVPD disables its Rp termination advertising 3.0 A on the Host-side port's CC pin
 f. CTVPD disables its Rd on the Charge-Through CC pins
 g. CTVPD connects VBUS from the Charge-Through side to the Host side

4. DRP (as Sink) transitions to CTAAttached.SNK
 a. DRP (as Sink) detects VBUS, monitors vRd for available current and enter CTAAttached.SNK

5. While the devices are all in their respective attached states:
 a. CTVPD monitors VCONN for DRP detach and when detected, enters CTD-disabled.VPD
 b. CTVPD monitors VBUS and CC for Power Source detach and when detected, enters CTUnattached.VPD within tVPDCTDD
 c. DRP (as Sink) monitors VBUS for Charge-Through Power Source detach and when detected, enters CTUnattached.SNK
 d. DRP (as Sink) monitors VBUS and CC for CTVPD detach and when detected, enters Unattached.SNK (and resumes toggling between Unattached.SNK and Unattached.SRC)
 e. Power Source monitors CC for CTVPD detach and when detected, enters Unattached.SRC
CASE 3: The following describes the behavior when a Power Source is connected to a Charge-Through VCONN-Powered USB Device (abbreviated CTVPD), with no Host attached to the Host-side port on the CTVPD.

1. **CTVPD** and Power Source are both in the unattached state
 a. **CTVPD** has applied **Rd** on the Charge-Through port’s CC1 and CC2 pins and **Rd** on the Host-side port’s CC pin

2. Power Source transitions from Unattached.SRC to Attached.SRC through AttachWait.SRC
 a. Power Source detects the CC pull-down of the **CTVPD** and enters AttachWait.SRC
 b. Power Source in AttachWait.SRC detects that pull down on CC persists for tCCDebounce, enters Attached.SRC and turns on VBUS

3. **CTVPD** alternates between Unattached.SNK and Unattached.SRC
 a. **CTVPD** detects the Source’s **Rp** on one of its Charge-Through CC pins, detects VBUS for tCCDebounce and starts alternating between Unattached.SRC and Unattached.SNK

4. While the **CTVPD** alternates between Unattached.SRC and Unattached.SNK state and the Power Source in Attached.SRC state:
 a. **CTVPD** monitors the Host-side port’s CC pin for device attach and when detected, enters AttachWait.SRC
 b. **CTVPD** monitors VBUS for Power Source detach and when detected, enters Unattached.SNK
 c. Power Source monitors CC for **CTVPD** detach and when detected, enters Unattached.SRC

CASE 4: The following describes the behavior when a DRP is connected to a Charge-Through VCONN-Powered USB Device (abbreviated CTVPD), with a Power Source already attached to the Charge-Through side on the CTVPD.

1. **DRP** and **CTVPD** are in unattached state and Power Source in Attached.SRC state
 a. DRP alternates between Unattached.SRC and Unattached.SNK
 b. **CTVPD** alternates between Unattached.SRC and Unattached.SNK
 c. **CTVPD** has applied **Rd** on its Charge-Through port’s CC1 and CC2 pins
 d. Power Source has applied VBUS

2. DRP transitions from Unattached.SNK to AttachWait.SNK
 a. DRP in Unattached.SNK detects the CC pull-up of **CTVPD** which is in Unattached.SRC and DRP enters AttachWait.SNK

3. **CTVPD** transitions from Unattached.SRC to Try.SNK through AttachWait.SRC
 a. **CTVPD** in Unattached.SRC detects the CC pull-down of DRP which is in Unattached.SNK and **CTVPD** enters AttachWait.SRC
 b. **CTVPD** in AttachWait.SRC detects that pull down on CC persists for tCCDebounce and enters Try.SNK
 c. **CTVPD** disables **Rp** termination advertising Default USB Power on the Host-side port’s CC pin
 d. **CTVPD** enables **Rd** on the Host-side port’s CC pin
4. DRP transitions from AttachWait.SNK to Attached.SRC through Unattached.SRC and AttachWait.SRC
 a. DRP in AttachWait.SNK detects the CC pull-up removal of CTVPD which is in Try.SNK and DRP enters Unattached.SRC
 b. DRP in Unattached.SRC detects the CC pull-down of CTVPD which is in Try.SNK and DRP enters AttachWait.SRC
 c. DRP in AttachWait.SRC detects that pull down on CC persists for tCCDebounce. It then enters Attached.SRC and enable VBUS and VCONN

5. CTVPD transitions from Try.SNK to Attached.SNK
 a. CTVPD detects the CC pull-up of the DRP persists for tTryCCDebounce
 b. CTVPD detects VBUS on the Host-side port and enters Attached.SNK

6. While DRP and CTVPD are in their respective attached states, DRP discovers the Charge-Through CTVPD and transitions to CTUnattached.SNK
 a. DRP (as Source) queries the device identity via USB PD (Discover Identity Command) on SOP'
 b. CTVPD responds on SOP', advertising that it is a Charge-Through VCONN-Powered USB Device
 c. DRP (as Source) removes VBUS
 d. DRP (as Source) changes its Rp into an Rd
 e. DRP (as Sink) continues to provide VCONN and enters CTUnattached.SNK

7. CTVPD transitions to CTUnattached.VPD
 a. CTVPD detects VBUS removal, VCONN presence, and the low CC pin on its host port and enters CTUnattached.VPD
 b. CTVPD changes its host-side Rd into an Rp termination advertising 3.0 A
 c. CTVPD isolates itself from VBUS

8. CTVPD transitions from CTUnattached.VPD through CTAttachWait.VPD to CTAttached.VPD
 a. CTVPD detects the Source's Rp on one of its Charge-Through CC pins, and transitions to CTAttachWait.VPD
 b. CTVPD in CTAttachWait.VPD detects that the pull up on Charge-Through CC pin persists for tCCDebounce, detects VBUS and enters CTAttached.VPD
 c. CTVPD finishes any active USB PD communication on SOP' and ceases to respond to SOP' queries
 d. CTVPD connects the active Charge-Through CC pin to the Host-side port's CC pin
 e. CTVPD disables its Rp termination advertising 3.0 A on the Host-side port's CC pin
 f. CTVPD disables its Rd on the Charge-Through CC pins
 g. CTVPD connects VBUS from the Charge-Through side to the Host side

9. DRP (as Sink) transitions to CTAttached.SNK
 a. DRP (as Sink) detects VBUS and monitors vRd for available current and enter CTAttached.SNK

10. While the devices are all in their respective attached states:
a. **CTVPD** monitors **VCONN** for DRP detach and when detected, enters **CTDisabled.VPD**

b. **CTVPD** monitors **VBUS** and **CC** for Power Source detach and when detected, enters **CTUnattached.VPD** within **tVPDCTDD**

c. DRP (as Sink) monitors **VBUS** for Charge-Through Power Source detach and when detected, enters **CTUnattached.SNK**

d. DRP (as Sink) monitors **VBUS** and **CC** for **CTVPD** detach and when detected, enters **Unattached.SNK** (and resumes toggling between **Unattached.SNK** and **Unattached.SRC**)

e. Power Source monitors **CC** for **CTVPD** detach and when detected, enters **Unattached.SRC**

CASE 5: The following describes the behavior when a Power Source is connected to a Charge-Through **VCONN-Powered USB Device** (abbreviated **CTVPD**), with a DRP (with dead battery) attached to the Host-side port on the **CTVPD**.

1. DRP, **CTVPD** and Power Source are all in the unattached state
 a. DRP apply dead battery **Rd**
 b. **CTVPD** apply **Rd** on the Charge-Through port’s **CC1** and **CC2** pins and **Rd** on the Host-side port’s **CC** pin

2. Power Source transitions from **Unattached.SRC** to **Attached.SRC** through **AttachWait.SRC**
 a. Power Source detects the **CC** pull-down of the **CTVPD** and enters **AttachWait.SRC**
 b. Power Source in **AttachWait.SRC** detects that pull down on **CC** persists for **tCCDebounce**, enters **Attached.SRC** and turns on **VBUS**

3. **CTVPD** alternates between **Unattached.SNK** and **Unattached.SRC**
 a. **CTVPD** detects the Source’s **Rp** on one of its Charge-Through CC pins, detects **VBUS** for **tCCDebounce** and starts alternating between **Unattached.SRC** and **Unattached.SNK**

4. **CTVPD** transitions from **Unattached.SRC** to **Try.SNK** through **AttachWait.SRC**
 a. **CTVPD** in **Unattached.SRC** detects the CC pull-down of DRP which is in **Unattached.SNK** and **CTVPD** enters **AttachWait.SRC**
 b. **CTVPD** in **AttachWait.SRC** detects that pull down on **CC** persists for **tCCDebounce** and enters **Try.SNK**
 c. **CTVPD** disables **Rp** termination advertising Default USB Power on the Host-side port’s **CC** pin
 d. **CTVPD** enables **Rp** on the Host-side port’s **CC** pin

5. DRP in dead battery condition remains in **Unattached.SNK**

6. **CTVPD** transitions from **Try.SNK** to **Attached.SRC** through **TryWait.SRC**
 a. **CTVPD** didn’t detect the CC pull-up of the DRP for **tTryCCDebounce** after **tDRPTry** and enters **TryWait.SRC**
 b. **CTVPD** disables **Rp** on the Host-side port’s **CC** pin
 c. **CTVPD** enables **Rp** termination advertising Default USB Power on the Host-side port’s **CC** pin
d. CTVPD detects the CC pull-down of the DRP for tTryCCDebounce and enters Attached.SRC

e. CTVPD connects Vbus from the Charge-Through side to the Host side

7. DRP transitions from Unattached.SNK to Attached.SNK through AttachWait.SNK

a. DRP in Unattached.SNK detects the CC pull-up of CTVPD which is in Attached.SRC and DRP enters AttachWait.SNK

b. DRP in AttachWait.SNK detects that pull up on CC persists for tCCDebounce, Vbus present and enters Attached.SNK

8. While the devices are all in their respective attached states:

a. CTVPD monitors the Host-side port's CC pin for device attach and when detected, enters Unattached.SNK

b. CTVPD monitors Vbus for Power Source detach and when detected, enters Unattached.SNK

c. Power Source monitors CC for CTVPD detach and when detected, enters Unattached.SRC

d. DRP monitors Vbus for CTVPD detach and when detected, enters Unattached.SNK

e. Additionally, the DRP may query the identity of the cable via USB PD on SOP’ when it has sufficient battery power and when a Charge-Through VPD is identified enters TryWait.SRC if implemented, or enters Unattached.SRC if TryWait.SRC is not supported

CASE 6: The following describes the behavior when a DRP is connected to a Charge-Through VCONN-Powered USB Device (abbreviated CTVPD) and a Sink is attached to the Charge-Through port on the CTVPD.

1. DRP, CTVPD and Sink are all in the unattached state

a. DRP alternates between Unattached.SRC and Unattached.SNK

b. CTVPD has applied Rd on its Charge-Through port's CC1 and CC2 pins and Rd on the Host-side port's CC pin

2. DRP transitions from Unattached.SRC to Attached.SRC through AttachWait.SRC

a. DRP in Unattached.SRC detects the CC pull-down of CTVPD which is in Unattached.SNK and DRP enters AttachWait.SRC

b. DRP in AttachWait.SRC detects that pull down on CC persists for tCCDebounce. It then enters Attached.SRC and enable Vbus and VCONN

3. CTVPD transitions from Unattached.SNK to Attached.SNK through AttachWait.SNK

a. CTVPD detects the host-side CC pull-up of the DRP and CTVPD enters AttachWait.SNK

b. CTVPD in AttachWait.SNK detects that pull up on the Host-side port's CC persists for tCCDebounce, VCONN present and enters Attached.SNK

c. CTVPD present a high-impedance to ground (above zOPEN) on its Charge-Through port’s CC1 and CC2 pins

4. While DRP and CTVPD are in their respective attached states, DRP discovers the Charge-Through CTVPD and transitions to CTUnattached.SNK
a. DRP (as Source) queries the device identity via *USB PD* (Discover Identity Command) on SOP'
b. CTVPD responds on SOP', advertising that it is a Charge-Through *VCONN-Powered USB Device*
c. DRP (as Source) removes *VBUS*
d. DRP (as Source) changes its *Rp* into an *Rd*
e. DRP (as Sink) continues to provide *VCONN* and enters *CTUnattached.SNK*

5. **CTVPD** transitions to **CTUnattached.VPD**
 a. **CTVPD** detects *VBUS* removal, *VCONN* presence, and the low CC pin on its host port and enters **CTUnattached.VPD**
 b. **CTVPD** changes its host-side *Rd* into an *Rp* termination advertising 3.0 A
 c. **CTVPD** isolates itself from *VBUS*
 d. **CTVPD** apply *Rd* on its Charge-Through port’s CC1 and CC2 pins

6. **CTVPD** alternates between **CTUnattached.VPD** and **CTUnattached.Unsupported**
 a. **CTVPD** detects *SRC.Open* on its Charge-Through CC pins and starts alternating between **CTUnattached.VPD** and **CTUnattached.Unsupported**

7. **CTVPD** transitions from **CTUnattached.Unsupported** to **CTTry.SNK** through **CTAttachWait.Unsupported**
 a. **CTVPD** in **CTUnattached.Unsupported** detects the CC pull-down of the Sink which is in **Unattached.SNK** and **CTVPD** enters **CTAttachWait.Unsupported**
 b. **CTVPD** in **CTAttachWait.Unsupported** detects that pull down on CC persists for *tCCDebounce* and enters **CTTry.SNK**
 c. **CTVPD** disables *Rp* termination advertising Default USB Power on the Charge-Through port’s CC pins
 d. **CTVPD** enables *Rd* on the Charge-Through port’s CC pins

8. **CTVPD** transitions from **CTTry.SNK** to **CTAttached.Unsupported**
 a. **CTVPD** didn’t detect the CC pull-up of the potential Source for *tDRPTryWait* after *tDRP.Try* and enters **CTAttached.Unsupported**

9. While the **CTVPD** in **CTAttached.Unsupported** state, the DRP in **CTUnattached.SNK** state and the Sink in **Unattached.SNK** state:
 a. **CTVPD** disables the *Rd* termination on the Charge-Through port's CC pins and applies *Rp* termination advertising Default USB Power
 b. **CTVPD** exposes a *USB Billboard Device Class* to the DRP indicating that it is connected to an unsupported device on its Charge Through port
 c. **CTVPD** monitors Charge-Though CC pins for Sink detach and when detected, enters **CTUnattached.VPD**
 d. **CTVPD** monitors *VCONN* for Host detach and when detected, enters **Unattached.SNK**
 e. DRP monitors CC for **CTVPD** detach for *tVPDDetach* and when detected, enters **Unattached.SNK**
 f. DRP monitors *VBUS* for **CTVPD** Charge-Through source attach and, when detected, enters **CTAttached.SNK**
4.5.3.2 USB Type-C port to Legacy Port Interoperability Behaviors

The following sub-sections describe port-to-port interoperability behaviors for the various combinations of USB Type-C Source, Sink and DRPs and legacy USB ports.

4.5.3.2.1 Source to Legacy Device Port Behavior

Figure 4-30 illustrates the functional model for a Source connected to a legacy device port. This model is based on having an adapter present as a Sink to the Source. This adapter has a USB Type-C plug on one end plugged into the Source and either a USB Standard-B plug, USB Micro-B plug, USB Mini-B plug, or a USB Standard-A receptacle on the other end.

Figure 4-30 Source to Legacy Device Port Functional Model

The following describes the behavior when a Source is connected to a legacy device adapter that has an Rd to ground so as to mimic the behavior of a Sink.

1. Source in the unattached state
2. Source transitions from Unattached.SRC to Attached.SRC through AttachWait.SRC
 - Source detects the Sink's pull-down on CC and enters AttachWait.SRC. After tCCDebounce, it enters Attached.SRC.
 - Source turns on VBUS and VCONN
3. While the Source is in the attached state:
 - Source monitors CC for detach and when detected, enters Unattached.SRC

4.5.3.2.2 Legacy Host Port to Sink Behavior

Figure 4-31 illustrates the functional model for a legacy host port connected to a Sink. This model is based on having an adapter that presents itself as a Source to the Sink, this adapter is either a USB Standard-A legacy plug or a USB Micro-B legacy receptacle on one end and the USB Type-C plug on the other end plugged into a Sink.
The following describes the behavior when a legacy host adapter that has an Rp to VBUS so as to mimic the behavior of a Source that is connected to a Sink. The value of Rp shall indicate an advertisement of Default USB Power (See Table 4-24), even though the cable itself can carry 3 A. This is because the cable has no knowledge of the capabilities of the power source, and any higher current is negotiated via USB BC 1.2.

1. Sink in the unattached state
2. Sink transitions from Unattached.SNK to Attached.SNK through AttachWait.SNK if needed.
 - While in Unattached.SNK, if device is not USB 2.0 only, supports accessories or requires more than default power, it enters AttachWait.SNK when it detects a pull up on CC and ignores VBUS. Otherwise, it may enter Attached.SNK directly when VBUS is detected.
 - Sink detects VBUS and enters Attached.SNK
3. While the Sink is in the attached state:
 - Sink monitors VBUS for detach and when detected, enters Unattached.SNK
4.5.3.2.3 DRP to Legacy Device Port Behavior

Figure 4-32 illustrates the functional model for a DRP connected to a legacy device port. This model is based on having an adapter present as a Sink (Device) to the DRP. This adapter has a USB Type-C plug on one end plugged into a DRP and either a USB Standard-B plug, USB Micro-B plug, USB Mini-B plug, or a USB Standard-A receptacle on the other end.

Figure 4-32 DRP to Legacy Device Port Functional Model

The following describes the behavior when a DRP is connected to a legacy device adapter that has an Rd to ground so as to mimic the behavior of a Sink.

1. DRP in the unattached state
 • DRP alternates between Unattached.SRC and Unattached.SNK
2. DRP transitions from Unattached.SRC to Attached.SRC
 • DRP in Unattached.SRC detects the adapter’s pull-down on CC and enters AttachWait.SRC
 • DRP in AttachWait.SRC times out (tCCDebounce) and transitions to Attached.SRC
 • DRP in Attached.SRC turns on VBUS and VCONN
 • DRP in AttachWait.SRC may support Try.SNK and if so, may transition through Try.SNK and TryWait.SRC prior to entering Attached.SRC
3. While the DRP is in the attached state:
 • DRP monitors CC for detach and when detected, enters Unattached.SNK (and resumes toggling between Unattached.SNK and Unattached.SRC)
4.5.3.2.4 Legacy Host Port to DRP Behavior

Figure 4-33 illustrates the functional model for a legacy host port connected to a DRP operating as a Sink. This model is based on having an adapter that presents itself as a Source (Host) to the DRP operating as a Sink, this adapter is either a USB Standard-A legacy plug or a USB Micro-B legacy receptacle on one end and the USB Type-C plug on the other end plugged into a DRP.

Figure 4-33 Legacy Host Port to DRP Functional Model

The following describes the behavior when a legacy host adapter that has an Rp to VBUS so as to mimic the behavior of a Source is connected to a DRP. The value of Rp shall indicate an advertisement of Default USB Power (See Table 4-24), even though the cable itself can carry 3 A. This is because the cable has no knowledge of the capabilities of the power source, and any higher current is negotiated via USB BC 1.2.

1. DRP in the unattached state
 - DRP alternates between Unattached.SRC and Unattached.SNK
2. DRP transitions from Unattached.SNK to AttachWait.SNK to Attached.SNK
 - DRP in Unattached.SNK detects pull up on CC and enters AttachWait.SNK.
 - DRP in AttachWait.SNK detects VBUS and enters Attached.SNK.
 - DRP in AttachWait.SNK may support Try.SRC and if so, may transition through Try.SRC and TryWait.SNK prior to entering Attached.SNK.
3. While the DRP is in the attached state:
 - DRP monitors VBUS for detach and when detected, enters Unattached.SNK (and resumes toggling between Unattached.SNK and Unattached.SRC).

4.6 Power

Power delivery over the USB Type-C connector takes advantage of the existing USB methods as defined by: the USB 2.0 and USB 3.2 specifications, the USB BC 1.2 specification and the USB Power Delivery specification. Power for USB4 operation requires a USB PD explicit contract as defined in Section 5.3 and the USB Power Delivery specification. Prior to entering a USB PD explicit contract, a USB4 port operates as a USB 3.2 port regarding power.

The USB Type-C Current mechanism allows the Source to offer more current than defined by the USB BC 1.2 specification. A USB power source shall not provide more than 20 V nominal
on VBUS. **USB PD** power sources that deliver power over a USB Type-C connector shall follow the power rules as defined in Section 10 of the **USB Power Delivery** specification.

All USB Type-C-based devices shall support **USB Type-C Current** and may support other USB-defined methods for power. The following order of precedence of power negotiation shall be followed: **USB BC 1.2** supersedes the **USB 2.0** and **USB 3.2** specifications, **USB Type-C Current** at 1.5 A and 3.0 A supersedes **USB BC 1.2**, and **USB Power Delivery** supersedes **USB Type-C Current**. Table 4-17 summarizes this order of precedence of power source usage.

Table 4-17 Precedence of power source usage

<table>
<thead>
<tr>
<th>Precedence</th>
<th>Mode of Operation</th>
<th>Nominal Voltage</th>
<th>Maximum Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest</td>
<td>USB PD</td>
<td>Configurable</td>
<td>5 A</td>
</tr>
<tr>
<td></td>
<td>USB Type-C Current</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>@ 3.0 A</td>
<td>5 V</td>
<td>3.0 A</td>
</tr>
<tr>
<td></td>
<td>USB Type-C Current</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>@ 1.5 A</td>
<td>5 V</td>
<td>1.5 A</td>
</tr>
<tr>
<td>Lowest</td>
<td>Default USB Power</td>
<td>USB 3.2</td>
<td>See USB 3.2</td>
</tr>
<tr>
<td></td>
<td>USB 2.0</td>
<td>5 V</td>
<td>See USB 2.0</td>
</tr>
</tbody>
</table>

Notes:
1. **USB BC 1.2** permits a power provider to be designed to support a level of power between 0.5 A and 1.5 A. If the **USB BC 1.2** power provider does not support 1.5 A, then it is required to follow power droop requirements. A **USB BC 1.2** power consumer may consume up to 1.5 A provided that the voltage does not drop below 2 V, which may occur at any level of power above 0.5 A.

For example, once the PD mode (e.g. a power contract has been negotiated) has been entered, the device shall abide by that power contract ignoring any other previously made or offered by the **USB Type-C Current**, **USB BC 1.2** or **USB 2.0** and **USB 3.2** specifications. When the PD mode is exited, the device shall fallback in order to the **USB Type-C Current**, **USB BC 1.2** or **USB 2.0** and **USB 3.2** specification power levels.

All USB Type-C ports shall tolerate being connected to USB power source supplying default USB power, e.g. a host being connected to a legacy USB charger that always supplies VBUS.

4.6.1 Power Requirements during USB Suspend

USB Type-C implementations with **USB Type-C Current**, **USB PD** and VCONN, along with active cables, requires the need to expand the traditional USB suspend definition.

4.6.1.1 VBUS Requirements during USB Suspend

The **USB 2.0** and **USB 3.2** specifications define the amount of current a Sink is allowed to consume during suspend.

USB suspend power rules shall apply when the **USB Type-C Current** is at the Default USB Power level or when **USB PD** is being used and the Suspend bit is set appropriately.

When **USB Type-C Current** is set at 1.5 A or 3.0 A, the Sink is allowed to continue to draw current from VBUS during USB suspend. During USB suspend, the Sink’s requirement to track and meet the **USB Type-C Current** advertisement remains in force (See Section 4.5.2.3).
USB PD provides a method for the Source to communicate to the Sink whether or not the Sink has to follow the USB power rules for suspend.

4.6.1.2 VCONN Requirements during USB Suspend

If the Source supplies VBUS power during USB suspend, it shall also supply VCONN and meet the requirements defined in Table 4-5.

Electronically Marked Cables shall meet the requirements in Table 4-6 during USB suspend.

VCONN powered accessories shall meet the requirements defined in Table 4-7 during USB suspend.

4.6.2 VBUS Power Provided Over a USB Type-C Cable

The minimum requirement for VBUS power supplied over the USB Type-C cable assembly matches the existing requirement for VBUS supplied over existing legacy USB cable assemblies. USB Power Delivery is intended to work over un-modified USB Type-C to USB Type-C cables, therefore any USB Type-C cable assembly that incorporates electrical components or electronics shall ensure that it tolerate, or be protected from, a VBUS voltage of 21 V.

4.6.2.1 USB Type-C Current

Default USB voltage and current are defined by the USB 2.0 and USB 3.2 specifications. All USB Type-C Current advertisements are at the USB VBUS voltage defined by these specifications.

The USB Type-C Current feature provides the following extensions:

- Higher current than defined by the USB 2.0, the USB 3.2 or the BC 1.2 specifications
- Allows the power source to manage the current it provides

The USB Type-C connector uses CC pins for configuration including an ability for a Source to advertise to its port partner (Sink) the amount of current it shall supply:

- Default is the as-configured for high-power operation current value as defined by the USB Specification (500 mA for USB 2.0 ports; 900 mA or 1,500 mA for USB 3.2 ports in single-lane or dual-lane operation, respectively)
- 1.5 A
- 3.0 A

When a Source is advertising USB Type-C Default current, the Sink behavior is defined as follows:

- It connects as a USB 2.0 or USB 3.2 device, after which the Sink shall follow the appropriate USB specification.
- It enters a USB PD contract, after which the Sink shall follow the USB PD specification to determine the current (e.g., Rp will no longer be Default as it is superseded by the USB PD contract).
- It detects a USB BC 1.2, charging port, after which the Sink shall follow the USB BC 1.2 specification.
- It attaches as a USB Type-C Power Sinking Device (PSD), after which the Sink may draw up to 500 mA.
A PSD shall fully support USB Type-C Current operation, should support USB PD and may support USB BC 1.2. A PSD may be a Sink or a DRP operating in Sink mode. A PSD shall not have a USB or USB Type-C Alternate Mode communications function.

The relationship of USB Type-C Current and the equivalent USB PD Power (PDP) value is shown in Table 4-18.

Table 4-18 USB Type-C Current Advertisement and PDP Equivalent

<table>
<thead>
<tr>
<th>USB Type-C Current</th>
<th>PDP Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>2.5 W</td>
</tr>
<tr>
<td>500 mA (USB 2.0)</td>
<td></td>
</tr>
<tr>
<td>900 mA (USB 3.2 single-lane)</td>
<td>4.5 W</td>
</tr>
<tr>
<td>1,500 mA (USB 3.2 dual-lane)</td>
<td>7.5 W</td>
</tr>
<tr>
<td>1.5 A</td>
<td>7.5 W</td>
</tr>
<tr>
<td>3.0 A</td>
<td>15 W</td>
</tr>
</tbody>
</table>

A Sink that takes advantage of the additional current offered (e.g., 1.5 A or 3.0 A) shall monitor the CC pins and shall adjust its current consumption within tSinkAdj to remain within the value advertised by the Source. While a USB PD contract is in place, a Sink is not required to monitor USB Type-C current advertisements and shall not respond to USB Type-C current advertisements.

The Source shall supply VBUS to the Sink within tVBUSON. VBUS shall be in the specified voltage range at the advertised current.

A Source (port supplying VBUS) shall protect itself from a Sink that draws current in excess of the port’s USB Type-C Current advertisement.

The Source adjusts Rp (or current source) to advertise which of the three current levels it supports. See Table 4-24 for the termination requirements for the Source to advertise currents.

The value of Rp establishes a voltage (vRd) on CC that is used by the Sink to determine the maximum current it may draw.

Table 4-35 defines the CC voltage range observed by the Sink that only support default USB current.

If the Sink wants to consume more than the default USB current, it shall track vRd to determine the maximum current it may draw. See Table 4-36.

Figure 4-34 and Figure 4-35 illustrate where the Sink monitors CC for vRd to detect if the host advertises more than the default USB current.
4.6.2.2 USB Battery Charging 1.2

USB Battery Charging Specification, Revision 1.2 defines a method that uses the USB 2.0 D+ and D− pins to advertise VBUS can supply up to 1.5 A. Support for *USB BC 1.2* charging is optional.

A USB Type-C port that implements *BC 1.2* that is capable of supplying at least 1.5 A shall advertise *USB Type-C Current* at the 1.5 A level within *tVBUSON* of entering the *Attached.SRC* state, otherwise the port shall advertise *USB Type-C Current* at the Default USB Power level. A USB Type-C port that implements *BC 1.2* that also supports *USB Type-C Current* at 3.0 A may advertise *USB Type-C Current* at 3.0 A.

If a Sink that supports *BC 1.2* detection, detects *Rp* at the Default USB Power level and does not discover a *BC 1.2*-compliant Source, then it shall limit its maximum current consumption to the standard USB levels based on Table 4-17. This will ensure maximum current limits are not exceeded when connected to a Source which does not support *BC 1.2*.

4.6.2.3 Proprietary Power Source

This section has been deprecated. Devices with USB Type-C connectors shall only employ signaling methods defined in USB specifications to negotiate power.

4.6.2.4 USB Power Delivery

USB Power Delivery is a feature on the USB Type-C connector. When *USB PD* is implemented, *USB PD* Bi-phase Mark Coded (BMC) carried on the CC wire shall be used for *USB PD* communications between USB Type-C ports.

At attach, VBUS shall be operationally stable prior to initiating *USB PD* communications.
Figure 4-36 illustrates how the USB PD BMC signaling is carried over the USB Type-C cable’s CC wire.

![Figure 4-36 USB PD over CC Pins](image)

Figure 4-37 illustrates USB PD BMC signaling as seen on CC from both the perspective of the Source and Sink. The breaks in the signaling are intended to represent the passage of time.

![Figure 4-37 USB PD BMC Signaling over CC](image)

When not in an Explicit Contract, USB PD Sources that are, based on their PDP, capable of supplying:

- 5 V at 3 A or greater shall advertise USB Type-C Current at the 3 A level
- 5 V at 1.5A or greater but less than 3 A shall advertise USB Type-C Current at the 1.5 A level
- 5 V at less than 1.5A shall advertise USB Type-C Current at the Default USB Power level

within tVbusON of entering the Attached.SRC state. For Multi-Port Shared Capacity Chargers, a USB PD Source capable of supplying 5 V at 3A or greater may initially offer USB Type-C Current at the 1.5 A level and subsequently increase the offer after attach (see Section 4.8.6.2). During USB Suspend a USB PD Source may set its Rp value to default to indicate that the Sink shall only draw USB suspend current as defined in Section 4.6.1.1.
While a USB PD Explicit Contract is in place, a Source compliant with USB PD Revision 2 shall advertise a USB Type-C Current of either 1.5 A or 3.0 A. The USB PD Revision 2 Source upon entry into an Explicit Contract shall advertise an Rp value of 1.5 A or 3.0 A after it receives the GoodCRC in response to the first PS_RDY Message.

While a USB PD Explicit Contract is in place, a Source compliant with USB PD Revision 3 shall set the Rp value according to the collision avoidance scheme defined in Section 5.7 of the USB PD Revision 3 specification. The USB PD Revision 3 Source upon entry into an Explicit Contract shall advertise an Rp value consistent with the USB PD Revision 3 collision avoidance scheme.

Refer to Section 1.6 of the USB Power Delivery specification for a definition of an Explicit Contract.

4.6.2.5 Charge-Through VCONN-Powered USB Device (CTVPD) Current Limitations

Since Charge-Through VCONN-Powered USB Devices implement charging by passively connecting the Source’s CC and VBUS to the Host, the VCONN-Powered USB Device is effectively increasing the impedance on VBUS, GND, and CC between the Power Source and the Host, resulting in impedances that can exceed the maximum allowed for cables. To avoid communication issues and false disconnects from the increased GND and VBUS drops, the following shall occur:

1. The Charge-Through VCONN-Powered USB Device shall report its worst-case GND and VBUS impedance (including the extra mated connector pair and FETs) in its USB PD Discover Identity Command response on SOP.

2. The Host that supports Charge-Through VCONN-Powered USB Device shall use this information, along with inferred information about the cable, to limit its maximum current in the case where the Power Source advertises a current greater than what the Charge-Through VCONN-Powered USB Device would allow.

The Host has no way to query the cable, as its VCONN source is consumed by the VCONN-Powered USB Device. Instead, the Host may assume the cable is 5 A for the purposes of calculating the Charge-Through current limit only if it receives a USB PD SourceCapability PDO of greater than 3 A (even if the Host ultimately does not Request that PDO, or if the host requests a current of 3 A or less).

The Host shall further limit its maximum current beyond that advertised by the Power Source, based on the reported GND impedance and the inferred cable capability. GND impedance is reported in the VPD Discover Identity Command Response in 1-milliohm steps and is used in the following formulas:

- GND-limited current with a 3A cable inferred = \(0.25 \text{ V} / (0.25 \text{ V} / 3 \text{ A} + \text{VPD_GND_DCR})\)
- GND-limited current with a 5A cable inferred = \(0.25 \text{ V} / (0.25 \text{ V} / 5 \text{ A} + \text{VPD_GND_DCR})\)

Some examples are in Table 4-19.
Table 4-19 Precedence of power source usage

<table>
<thead>
<tr>
<th>Reported GND Impedance</th>
<th>3A Cable Inferred(^1)</th>
<th>5A Cable Inferred(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.010 Ω</td>
<td>2.679 A</td>
<td>4.167 A</td>
</tr>
<tr>
<td>0.015 Ω</td>
<td>2.542 A</td>
<td>3.846 A</td>
</tr>
<tr>
<td>0.020 Ω</td>
<td>2.419 A</td>
<td>3.571 A</td>
</tr>
<tr>
<td>0.025 Ω</td>
<td>2.308 A</td>
<td>3.333 A</td>
</tr>
<tr>
<td>0.030 Ω</td>
<td>2.206 A</td>
<td>3.125 A</td>
</tr>
<tr>
<td>0.035 Ω</td>
<td>2.113 A</td>
<td>2.941 A</td>
</tr>
<tr>
<td>0.040 Ω</td>
<td>2.027 A</td>
<td>2.778 A</td>
</tr>
</tbody>
</table>

Notes:
1. As calculated by \(0.25 \text{ V} / (0.25 \text{ V} / 3 \text{ A} + \text{VPD_GND_DCR})\).
2. As calculated by \(0.25 \text{ V} / (0.25 \text{ V} / 5 \text{ A} + \text{VPD_GND_DCR})\).

In addition, the increased \(V_{BUS}\) impedance could result in a greater than 1 V \(V_{BUS}\) drop as measured at the input to the Host. Based on the \(V_{BUS}\) impedance reported in the VPD Discover Identity Command Response in 2-milliohm steps and the inferred cable capability, the Host shall either lower its \(V_{BUS}\) detach threshold or further limit its maximum current based on the following formulas:

- \(V_{BUS}\) and GND-limited current with a 3A cable inferred = \(0.75 \text{ V} / (0.75 \text{ V} / 3 \text{ A} + \text{VPD_VBUS_DCR + VPD_GND_DCR})\)
- \(V_{BUS}\) and GND-limited current with a 5A cable inferred = \(0.75 \text{ V} / (0.75 \text{ V} / 5 \text{ A} + \text{VPD_VBUS_DCR + VPD_GND_DCR})\)

Table 4-20 Example Charge-Through VPD Sink Maximum Currents based on \(V_{BUS}\) Impedance and GND Impedance

<table>
<thead>
<tr>
<th>Reported (V_{BUS}) Impedance(^3)</th>
<th>Reported GND Impedance(^4)</th>
<th>3A Cable Inferred(^1)</th>
<th>5A Cable Inferred(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.020 Ω</td>
<td>0.010 Ω</td>
<td>2.679 A</td>
<td>4.167 A</td>
</tr>
<tr>
<td>0.030 Ω</td>
<td>0.015 Ω</td>
<td>2.542 A</td>
<td>3.846 A</td>
</tr>
<tr>
<td>0.040 Ω</td>
<td>0.020 Ω</td>
<td>2.419 A</td>
<td>3.571 A</td>
</tr>
<tr>
<td>0.050 Ω</td>
<td>0.025 Ω</td>
<td>2.308 A</td>
<td>3.333 A</td>
</tr>
<tr>
<td>0.060 Ω</td>
<td>0.030 Ω</td>
<td>2.206 A</td>
<td>3.125 A</td>
</tr>
<tr>
<td>0.070 Ω</td>
<td>0.035 Ω</td>
<td>2.113 A</td>
<td>2.941 A</td>
</tr>
<tr>
<td>0.080 Ω</td>
<td>0.040 Ω</td>
<td>2.027 A</td>
<td>2.778 A</td>
</tr>
</tbody>
</table>

Notes:
1. As calculated by \(0.75 \text{ V} / (0.75 \text{ V} / 3 \text{ A} + \text{VPD_VBUS_DCR + VPD_GND_DCR})\).
2. As calculated by \(0.75 \text{ V} / (0.75 \text{ V} / 5 \text{ A} + \text{VPD_VBUS_DCR + VPD_GND_DCR})\).
3. Table does not show all allowable combinations, only a subset provided for illustration.
4. The ratio of the reported \(V_{BUS}\) impedance to the reported GND impedance is 2:1.
4.7 USB Hubs

USB 2.0, USB 3.2, and USB4 hubs are defined by the USB 2.0, USB 3.2, and USB4 specifications, respectively. USB hubs implemented with one or more USB Type-C connectors shall comply with these specification as relevant to a USB Type-C implementation. All the downstream facing USB Type-C ports on a USB hub should support the same functionality or shall be clearly marked as to the functionality supported.

USB hubs shall have an upstream facing port (to connect to a host or hub higher in the USB tree) that may be a Sourcing Device (See Section 4.8.4). The hub shall clearly identify to the user its upstream facing port. This may be accomplished by physical isolation, labeling or a combination of both.

USB hub's downstream facing ports shall not have Dual-Role-Data (DRD) capabilities. However, these ports may have Dual-Role-Power (DRP) capabilities.

CC pins are used for port-to-port connections and shall be supported on all USB Type-C connections on the hub.

For USB 2.0 and USB 3.2 hubs, downstream-facing ports shall not implement or pass-through Alternate or Accessory Modes and SBU pins shall not be connected (zSBU Termination) on any USB hub port. For USB4 hubs, see Section 5.2.3.2 regarding support for Alternate Modes.

The USB hub's DFPs shall support power source requirements for a Source. See Section 4.8.1.

Additional requirements for USB4 hubs are in Chapter 5.

4.8 Power Sourcing and Charging

This section defines requirements and recommendations related to using USB Type-C ports for delivering power. Any USB Type-C port that offers more than Default Current and/or supports USB Power Delivery shall meet the requirements as if it is a charger.

The following lists the most applicable subsections by USB Type-C ports on:

- Host systems: 4.8.1 and 4.8.5. Note: 4.8.6 is not intended for host systems.
- Devices that can supply power: 4.8.4.
- Hubs:
 - Traditional hubs – Refer to USB 2.0/USB 3.2 base specifications and 4.8.1 as applicable if USB BC 1.2 is supported.
 - Hubs that can supply power beyond the base specs – 4.8.1, 4.8.4, 4.8.5 and 4.8.6.
- Dedicated chargers:

4.8.1 DFP as a Power Source

Sources (e.g. battery chargers, hub downstream ports and hosts) may all be used for battery charging. When a charger is implemented with a USB Type-C receptacle or a USB Type-C captive cable, it shall follow all the applicable requirements.
• A Source shall expose its power capabilities using the USB Type-C Current method and it may additionally support other USB-standard methods (USB BC 1.2 or USB-PD).

• A Source advertising its current capability using USB BC 1.2 shall meet the requirements in Section 4.6.2.2 regarding USB Type-C Current advertisement.

• A Source that has negotiated a USB-PD contract shall meet the requirements in Section 4.6.2.4 regarding USB Type-C Current advertisement.

• If a Source is capable of supplying a voltage greater than default VBUS, it shall fully conform to the USB-PD specification and shall negotiate its power contracts using only USB-PD.

• If a Source is capable of reversing source and sink power roles, it shall fully conform to the USB-PD specification and shall negotiate its power contracts using only USB-PD.

• If a Source is capable of supplying a current greater than 3.0 A, it shall use the USB-PD Discover Identity to determine the current carrying capacity of the cable.

4.8.1.1 USB-based Chargers with USB Type-C Receptacles

• A USB-based charger with a USB Type-C receptacle (Source) shall only apply power to VBUS when it detects a Sink is attached and shall remove power from VBUS when it detects the Sink is detached (vOPEN).

• A USB-based charger with a USB Type-C receptacle shall not advertise current exceeding 3.0 A except when it uses the USB-PD Discover Identity mechanism to determine the cable’s actual current carrying capability and then it shall limit the advertised current accordingly.

• A USB-based charger with a USB Type-C receptacle (Source) which is not capable of data communication shall advertise USB Type-C Current of at least 1.5 A within tVbusON of entering the Attached.SRC state and shall short D+ and D− together with a resistance less than 200 ohms. This will ensure backwards compatibility with legacy sinks which may use USB BC 1.2 for charger detection.

4.8.1.2 USB-based Chargers with USB Type-C Captive Cables

• A USB-based charger with a USB Type-C captive cable that supports USB PD shall only apply power to VBUS when it detects a Sink is attached and shall remove power from VBUS when it detects the Sink is detached (vOPEN).

• A USB-based charger with a USB Type-C captive cable that does not support USB PD may supply VBUS at any time. It is recommended that such a charger only apply power to VBUS when it detects a Sink is present and remove power from VBUS when it detects the Sink is not present (vOPEN).

• A USB-based charger with a USB Type-C captive cable shall limit its current advertisement so as not to exceed the current capability of the cable (up to 5 A).

• A USB-based charger with a USB Type-C captive cable which is not capable of data communication shall advertise USB Type-C Current of at least 1.5 A. It is recommended that such a charger short D+ and D− together with a resistance less than 200 ohms.

• The voltage as measured at the plug of a USB-based charger with a USB Type-C captive cable may be up to 0.75 × I / 3 V (0 < I ≤ 3 A), or 0.75 × I / 5 V (0 < I ≤ 5 A) lower than the standard tolerance range for the chosen voltage, where I is the actual current being drawn.
A USB-based charger that advertises **USB Type-C Current** shall output a voltage in the range of 4.75 V – 5.5 V when no current is being drawn and between 4.0 V – 5.5 V at 3 A. The output voltage as a function of load up to the advertised **USB Type-C Current** (default, 1.5 A and 3 A) shall remain within the cross-hatched area shown in Figure 4-38.

Figure 4-38 USB Type-C Cable’s Output as a Function of Load for Non-PD-based USB Type-C Charging

A USB PD-based charger that has negotiated a voltage V at ≤ 3 A shall output a voltage in the range of Vmax (V + 5%) and Vmin (V – 5%) when no current is being drawn and Vmax and Vmin – 0.75 V at 3 A. Under all loads, the output voltage shall remain within the cross-hatched area shown in Figure 4-39.

Figure 4-39 0 – 3 A USB PD-based Charger USB Type-C Cable’s Output as a Function of Load

A USB PD-based charger that has negotiated a voltage V at between 3 A and 5 A shall output a voltage in the range of Vmax (V + 5%) and Vmin (V – 5%) when no current is being drawn and Vmax and Vmin – 0.75 V at 5 A. Under
all loads, the output voltage shall remain within the cross hatched area shown in Figure 4-40.

Figure 4-40 3 - 5 A USB PD-based Charger USB Type-C Cable’s Output as a Function of Load

- Note: The maximum allowable cable IR drop for ground is 250 mV (see Section 4.4.1). This is to ensure the signal integrity of the CC wire when used for connection detection and USB PD BMC signaling.

4.8.2 Non-USB Charging Methods

A product (Source and/or Sink) with a USB Type-C connector shall only employ signaling methods defined in USB specifications to negotiate power over its USB Type-C connector(s).

4.8.3 Sinking Host

A Sinking Host is a special sub-class of a DRP that is capable of consuming power, but is not capable of acting as a USB device. For example a hub’s DFP or a notebook’s DFP that operates as a host but not as a device.

The Sinking Host shall follow the rules for a DRP (See Section 4.5.1.4 and Figure 4-15). The Sinking DFP shall support USB PD and shall support the DR_Swap command in order to get the Sink into the DFP data role.

4.8.4 Sourcing Device

A Sourcing Device is a special sub-class of a DRP that is capable of supplying power, but is not capable of acting as a USB host. For example a hub’s UFP or a monitor’s UFP that operates as a device but not as a host.

The Sourcing Device shall follow the rules for a DRP (See Section 4.5.1.4 and Figure 4-15). It shall also follow the requirements for the Source as Power Source (See Section 4.8.1). The Sourcing Device shall support USB PD and shall support the DR_Swap command in order to enable the Source to assume the UFP data role.

4.8.5 Charging a System with a Dead Battery

A system that supports being charged by USB whose battery is dead shall apply \(R_d \) to both CC1 and CC2 and follow all Sink rules. When it is connected to a Source, DRP or Sourcing
Device, the system will receive the default VBUS. It may use any allowed method to increase the amount of power it can use to charge its battery.

Circuitry to present Rd in a dead battery case only needs to guarantee the voltage on CC is pulled within the same range as the voltage clamp implementation of Rd in order for a Source to recognize the Sink and provide VBUS. For example, a 20% resistor of value Rd in series with a FET with VGTH(max) < VCLAMP(max) with the gate weakly pulled to CC would guarantee detection and be removable upon power up.

When the system with a dead battery has sufficient charge, it may use the USB PD DR_Swap message to become the DFP.

4.8.6 USB Type-C Multi-Port Chargers

A USB Type-C Multi-Port Charger is a product that exposes multiple USB Type-C Source ports for the purpose of charging multiple connected devices. A compliant USB Type-C charger may offer on each of its ports a mix of power options as defined in Section 4.6.

Multi-Port Chargers will generally fall into two categories as defined by the following.

1. Assured Capacity Chargers: a multi-port charger where the sum of the maximum capabilities of all of the exposed ports, as indicated to the user, is equal to the total power delivery capacity of the charger.

2. Shared Capacity Chargers: a multi-port charger where the sum of the maximum capabilities of all of the exposed ports, as indicated to the user, is less than the total power delivery capacity of the charger.

A Multi-Port Charger may offer in a single product separate visually identifiable groupings of charging ports. In this case, each group can independently offer either one of the two charging categories, either an Assured Capacity Charger or a Shared Capacity Charger.

This section defines the requirements and provides guidelines for the operation and behavior of a USB Type-C Multi-Port Charger.

4.8.6.1 General Requirements

Individual source ports shall always comply with power negotiation and rules set forth by the USB Type-C and USB Power Delivery specifications, adjusted as needed when available resources change as other ports take more or less power.

The minimum capability of all individual USB Type-C ports of a USB Type-C Multi-Port Charger shall be 5V @ 1.5 A independent of how many of the other ports are in use.

When a USB Type-C Charger includes charging ports that are based on USB Standard-A receptacles, the following requirements shall be met.

- The USB Standard-A ports shall be implemented as an independent group, i.e. USB Standard-A ports shall not be included in a group of USB Type-C ports behaving as a Shared Capacity Charger. Any load change on a USB Type-A port shall not result in a voltage change on any of the USB Type-C ports and vice-versa.

- The minimum capability of each USB Standard-A port shall be 5V @ 500 mA independent of how many of the other ports are in use.

4.8.6.2 Multi-Port Charger Behaviors

Each Source port of Assured Capacity Chargers shall, by design, behave independently and be unaffected by the status and loading of the other ports. An exception to this behavior is allowed if the charger has to take any action necessary to meet an overall product operational safety requirement due to unexpected behavior on any port.
For Shared Capacity Chargers, the following behavioral rules shall apply:

- Each of the exposed Source Ports shall have the same power capabilities. Each port of the charger shall be capable of the same maximum capability, minimum capability, and be able to draw from the shared power equally.

- All exposed USB PD unattached Source Ports shall have the same power capabilities.
 - Ports shall have the ability to supply the available shared capacity power up to the port's maximum power.
 - A shared capacity charger's ports may offer less than this value, but shall increase the offer up to the required value when the Sink sets the Capabilities Mismatch bit in its response. This may be done in multiple steps, but all ports in the Shared Capacity Group shall reach the maximum power within three seconds.
 - Whenever a power contract is made or changed on any port, the available shared capacity shall be re-computed and the source shall send updated Source Capability messages as needed.
 - As ports of a Shared Capacity Group are connected, each remaining unattached Source Port shall be capable of advertising the lower of the Maximum Capability of the port OR the Total Shared Capacity - the contracted power for the attached ports - (the number of unattached ports - 1) * the minimum port power.
 - Ports shall offer at least 7.5 W.
 - When calculating the available shared capacity for ports in a Fixed Supply power contract, the shared capacity charger shall use the Voltage times the Maximum Current in the PDO as the power the port is supplying regardless of the actual Operating Current requested in the RDO request.
 - When calculating the available shared capacity for ports in a PPS power contract, the shared capacity charger shall use the Maximum Voltage times the Maximum Current in the APDO as the power the port is supplying regardless of the actual voltage and current in the RDO request.
 - Ports when not in a PD contract shall follow the rules for a shared USB Type-C Current source unless there is sufficient remaining power for each port to advertise 15 W.

- All exposed USB Type-C Current ports shall have the ability to offer the same power capabilities.
 - All ports shall initially offer 1.5 A.
 - Ports shall increase to 3 A after attach if they have sufficient available shared capacity within one second.
 - Ports shall never offer less than 1.5 A – e.g. shall not offer Default.

As Source ports are connected and begin providing power, the remaining Source ports will each have the same power capabilities. The maximum capability may be less than the previously connected ports due to less unused capacity of the total power delivery capacity of the charger. For example, if the total power delivery capacity of a USB Type-C two-port charger is 60 W with a port PDP of 35 W and the first connected Source port has established a 35 W power contract with its connected Sink, then the second Source port will only be able to offer a PDP of 25 W.

Each port should start by offering the minimum capability for the port and increase the offering to the Sink upon a connection. For example, if the maximum capability of a USB Type-C only Source port is 3 A, then all of the exposed Source ports will be able to offer 3
A. Each port should start by offering less than the max (such as 1.5 A) and then increase the offering to 3 A after an attach. This would happen for each port as it is connected until the unused shared capacity is exhausted, at which point no other ports would increase to 3 A offering. A sink, in this example, would see a starting advertisement of USB Type-C Current @ 1.5 A at attach and would then see the USB Type-C Current advertisement increase to 3 A. As another example, if the maximum capability of a USB Type-C Source port is to offer USB PD with a PDP of 35 W, then all of the exposed Source ports would also support USB PD 35 W. Each port would start by offering something less on initial connection, like 15 W, and then increase the offering with new Source Capabilities when it determines the Sink would like more power. If the Sink is not offered the power it requires, it will send a request with the Capability Mismatch bit set to indicate to the source it wants more power. This will happen for each port as it is connected until the unused shared capacity is exhausted, at which point no other ports would increase the power offering.

When establishing the remaining available capacity, a charger that supports policy-based power rebalancing may include the power that can be reclaimed from ports already in use:

1. by adjusting advertised source capabilities equivalent with a reduced PDP to one or more ports that are already in use; or
2. by issuing a USB PD GotoMin command to one or more ports already in use.

Policy-based power rebalancing should consider providing good user experience and preserving nominal USB functionality on impacted devices. Fixed rebalancing algorithms that do not factor in overall USB system policy may not be appropriate for power rebalancing implementations.

4.8.6.3 Multi-Port Charger Port Labeling

Multi-port chargers shall have OEM-designed port labeling consistent with the following rules.

- For Assured Capacity Chargers, each exposed Source port shall be labeled to indicate the PDP of the port. In this case, the user will be able to expect that each of the labeled ports will be able to meet power contracts consistent with the labeling independent of how many of the Source ports are in use.

- For Shared Capacity Chargers, each Source port shall be labeled to indicate the same PDP. Additionally, the charger shall have a label that, with a minimum of equal visual prominence, indicates the total power delivery capacity being shared across all of the ports identified as a group.

A Multi-Port Charger that offers in a single product separate groupings of charging ports, each grouping shall be clearly identified as a separate grouping and each grouping shall be individually labeled consistent with that group’s behavior model, either as an Assured Capacity Charger or a Shared Capacity Charger.

Refer to the USB Implementers Forum (USB-IF) for USB Type-C Chargers certification along with further labeling guidelines.

4.8.6.4 Multi-Port Charger that include USB Data Hub Functionality

Multi-Port chargers that also incorporate USB data hub capabilities shall meet the same requirements as standalone chargers. These charging-capable hubs shall be self-powered and shall fully operate as a charger independent of the state of the USB data bus connections.
For hub-based Multi-Port Chargers that offer power to the upstream-facing port (to the host), this port may either behave as an Assured Capacity Charging port (e.g. be a dedicated charging port) or as a Shared Capacity Charging port (e.g. sharing capacity with downstream-facing ports). In either case, it should be clearly labeled consistent with its designed behavior, including identifying it as part of a group if it is sharing capacity with other ports.

When the upstream-facing port is sharing capacity with the downstream-facing ports, the PDP of the upstream-facing port can differ from the downstream-facing ports.

4.9 Electronically Marked Cables

All USB Full-Featured Type-C cables shall be electronically marked. USB 2.0 Type-C cables may be electronically marked. An eMarker is an element in an Electronically Marked Cable that returns information about the cable in response to a USB PD Discover Identity command.

Electronically marked cables shall support USB Power Delivery Structured VDM Discover Identity command directed to SOP’ (the eMarker). This provides a method to determine the characteristics of the cable, e.g. its current carrying capability, its performance, vendor identification, etc. This may be referred to as the USB Type-C Cable ID function.

Prior to an explicit USB PD contract, a Sourcing Device is allowed to use SOP’ to discover the cable’s identity. After an explicit USB PD contract has been negotiated, only the Source shall communicate with SOP’ and SOP” (see Section 6.2.1).

Passive cables that include an eMarker shall follow the Cable State Machine defined in Section 4.5.2.4 and Figure 4-20.

Electronically marked cables are generally powered from VCONN, although VBUS or another source may be used. Cables that include an eMarker shall meet the maximum power defined in Table 4-6.

Refer to Table 4-5 for the requirements of a Source to supply VCONN. When VCONN is not present, a powered cable shall not interfere with normal CC operation including Sink detection, current advertisement and USB PD operation.

Figure 4-41 illustrates a typical electronically marked cable. The isolation elements (Iso) shall prevent VCONN from traversing end-to-end through the cable. Ra is required in the cable to allow the Source to determine that VCONN is needed.

Figure 4-41 Electronically Marked Cable with VCONN connected through the cable
Figure 4-42 illustrates an electronically marked cable where the VCONN wire does not extend through the cable, therefore an SOP’ (eMarker) element is required at each end of the cable. In this case, no isolation elements are needed.

Figure 4-42 Electronically Marked Cable with SOP’ at both ends

For cables that only respond to SOP’, the location of the responder is not relevant.

4.9.1 Parameter Values

Table 4-21 provides the power on timing requirements for the eMarker SOP’ and SOP” to be ready to communicate.

<table>
<thead>
<tr>
<th>Table 4-21 SOP’ and SOP” Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>tVCONNStable</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

4.9.2 Active Cables

An active cable is an electronically marked cable that incorporates data bus signal conditioning circuits, for example to allow for implementing longer cables. Active cables with data bus signal conditioning in both plugs shall implement SOP’ and may implement SOP”. Active cables shall meet the power requirements defined in Table 4-6.

Active cables may support either one TX/RX pair or two TX/RX pairs. The eMarker in the cable shall identify the number of TX/RX lanes supported. Active cables may or may not require configuration management. Active cable configuration management is defined in Section 5.5.4.

4.10 VCONN-Powered Accessories (VPAs) and VCONN-Powered USB Devices (VPDs)

VCONN-Powered Accessories and VCONN-Powered USB Devices are both direct-attach Sinks that can operate with just VCONN.

Both expose a maximum impedance to ground of Ra on the VCONN pin and Rd on the CC pin. The removal of VCONN when VBUS is not present shall be treated as a detach event.

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
4.10.1 VCONN-Powered Accessories (VPAs)

A VCONN-Powered Accessory implements an Alternate Mode (See Appendix E).

VCONN-Powered Accessories shall comply with Table 4-7.

When operating in the Sink role and when VBUS is not present, VCONN-Powered Accessories shall treat the application of VCONN as an attach signal, and shall respond to USB Power Delivery messages.

When powered by only VCONN, a VCONN-Powered Accessory shall negotiate an Alternate Mode. If it fails to negotiate an Alternate Mode within tAMETimeout, its port partner removes VCONN.

When VBUS is supplied, a VCONN-Powered Accessory is subject to all of the requirements for Alternate Modes, including presenting a USB Billboard Device Class interface if negotiation for an Alternate Mode fails.

Should a VCONN-Powered Accessory wish to provide charge-through functionality, it must do so by negotiating voltage and current independently on both the Host and charge-through ports, and possibly re-regulating the voltage from the Source before passing it through to the Sink. The Sink is able to take the full current that is advertised to it by the VCONN-Powered Accessory.

4.10.2 VCONN-Powered USB Devices (VPDs)

A VCONN-Powered USB Device shall implement a USB UFP endpoint.

VCONN-Powered USB Devices shall comply with Table 4-8.

When VBUS is not present, VCONN-Powered USB Devices shall treat the application of VCONN as an attach signal.

A VCONN-Powered USB Device shall respond to USB PD messaging on SOP', and shall not respond to other USB PD messaging. A VCONN-Powered USB Device shall respond to USB PD Hard Reset and Cable Reset signaling.

A Charge-Through VCONN-Powered USB Device shall discard all USB PD messages while a connection is enabled between the host port CC and Charge-Through port CC.

When VBUS is supplied by the Host, the VCONN-Powered USB Device shall behave like a normal UFP Sink, but still only respond to USB PD messaging on SOP'. If VBUS is subsequently removed while VCONN remains applied, the VCONN-Powered USB Device shall remain connected, and use VCONN as the sole detach signal.

Since VCONN-Powered USB Devices do not respond to USB PD on SOP, they cannot enter Alternate Modes.

A VCONN-Powered USB Device may provide Charge-Through functionality via VPD Charge-Through. VCONN-Powered USB Devices shall not provide any data pass-through to the Charge-Through port other than the CC wire.

Since the power and CC negotiation is passed through directly, the Sink shall limit its maximum current based on the additional impedance introduced by the VCONN-Powered USB Device.

Additionally, since power can only flow from the Charge-Through port to the Host, VCONN must be provided by the host, and there is no data connection beyond the CC wire passed.
through to the connected source, there are limitations on what the Host can advertise and support via \textit{USB PD}:

- The Host shall not negotiate or accept a PR\textunderscore Swap or VCONN\textunderscore Swap
- The Host shall not enable FR\textunderscore Swap
- The Host may only negotiate a DR\textunderscore Swap when using \textit{USB PD} Revision 2.0, and only for the purpose of switching which side is the PD bus master. The Host will always remain a DFP for USB data.
- The Host shall not advertise dual-role data or dual-role power in its SourceCapability or SinkCapability messages – Host changes its advertised capabilities to UFP role/sink only role.
- The Host shall not negotiate any \textit{Alternate Modes} that change the function of pins on the connector.
- The Host shall represent itself to the Charge-Through Source using \textit{USB PD} as if it were a Sink-only, data-less device.

Table 4-22 Charge-Through VPD CC Impedance (RccCON) Requirements

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Maximum</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RccCON</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 Ω</td>
<td>Impedance in the Charge-Though VPD while a connection is enabled between the host port CC and Charge-Through port CC.</td>
</tr>
<tr>
<td></td>
<td>zOPEN</td>
<td>Impedance between the host port CC and Charge-Through CC when a connection is disabled.</td>
</tr>
</tbody>
</table>

Table 4-23 CTVPD Charge-Through Port VBUS Bypass Requirements

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Maximum</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCTB</td>
<td>1 µF</td>
<td>10 µF</td>
</tr>
</tbody>
</table>
4.11 Parameter Values

4.11.1 Termination Parameters

Table 4-24 provides the values that shall be used for the Source’s R_p or current source. Other pull-up voltages shall be allowed if they remain less than 5.5 V and fall within the correct voltage ranges on the Sink side – see Table 4-32, Table 4-33 and Table 4-34. Note: when two Sources are connected together, they may use different termination methods which could result in unexpected current flow.

<table>
<thead>
<tr>
<th>Source Advertisement</th>
<th>Current Source to 1.7 – 5.5 V</th>
<th>Resistor pull-up to 4.75 – 5.5 V</th>
<th>Resistor pull-up to 3.3 V ± 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default USB Power</td>
<td>80 μA ± 20%</td>
<td>56 kΩ ± 20%</td>
<td>36 kΩ ± 20%</td>
</tr>
<tr>
<td>1.5 A @ 5 V</td>
<td>180 μA ± 8%</td>
<td>22 kΩ ± 5%</td>
<td>12 kΩ ± 5%</td>
</tr>
<tr>
<td>3.0 A @ 5 V</td>
<td>330 μA ± 8%</td>
<td>10 kΩ ± 5%</td>
<td>4.7 kΩ ± 5%</td>
</tr>
</tbody>
</table>

Notes:
1. For R_p when implemented in the USB Type-C plug on a USB Type-C to USB 3.1 Standard-A Cable Assembly, a USB Type-C to USB 2.0 Standard-A Cable Assembly, a USB Type-C to USB 2.0 Micro-B Receptacle Adapter Assembly or a USB Type-C captive cable connected to a USB host, a value of 56 kΩ ± 5% shall be used, in order to provide tolerance to IR drop on V_{BUS} and GND in the cable assembly.

The Sink may find it convenient to implement R_d in multiple ways simultaneously (a wide range R_d when unpowered and a trimmed R_d when powered). Transitions between R_d implementations that do not exceed $t_{CCDebounce}$ shall not be interpreted as exceeding the wider R_d range. Transitions between R_d implementations shall not allow the voltage on CC to go outside the voltage band that defines a connection. Table 4-25 provides the methods and values that shall be used for the Sink’s R_d implementation.
Table 4-25 Sink CC Termination (Rd) Requirements

<table>
<thead>
<tr>
<th>Rd Implementation</th>
<th>Nominal value</th>
<th>Can detect power capability?</th>
<th>Max voltage on pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 20% voltage clamp<sup>1</sup></td>
<td>1.1 V</td>
<td>No</td>
<td>1.32 V</td>
</tr>
<tr>
<td>± 20% resistor to GND</td>
<td>5.1 kΩ</td>
<td>No</td>
<td>2.18 V</td>
</tr>
<tr>
<td>± 10% resistor to GND</td>
<td>5.1 kΩ</td>
<td>Yes</td>
<td>2.04 V</td>
</tr>
</tbody>
</table>

Note:
1. The clamp implementation inhibits USB PD communication although the system can start with the clamp and transition to the resistor once it is able to do USB PD.

Table 4-26 provides the impedance value to ground on VCONN in powered cables.

Table 4-26 Powered Cable Termination Requirements

<table>
<thead>
<tr>
<th>Ra</th>
<th>Minimum Impedance</th>
<th>Maximum Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>800 Ω<sup>1</sup></td>
<td>1.2 kΩ</td>
</tr>
</tbody>
</table>

Note:
1. The minimum impedance may be less when powering active circuitry.

Table 4-27 provides the minimum impedance value to ground on CC for a device (Sink or Source) to be undetected by a Source. This shall apply for ports in the Disabled state or ErrorRecovery state. This shall also apply for Sources when unpowered (for example a power brick unplugged from AC mains).

Table 4-27 CC Termination Requirements for Disabled state, ErrorRecovery state, and Unpowered Source

<table>
<thead>
<tr>
<th>Minimum Impedance to GND</th>
</tr>
</thead>
<tbody>
<tr>
<td>zOPEN</td>
</tr>
<tr>
<td>126 kΩ</td>
</tr>
</tbody>
</table>

Table 4-28 provides the impedance value for an SBU to appear open.

Table 4-28 SBU Termination Requirements

<table>
<thead>
<tr>
<th>Termination</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>zSBU Termination</td>
<td>≥ 950 kΩ</td>
</tr>
<tr>
<td></td>
<td>Functional equivalent to an open circuit</td>
</tr>
</tbody>
</table>
4.11.2 Timing Parameters

Table 4-29 provides the timing values that shall be met for delivering power over VBUS and VCONN.

<table>
<thead>
<tr>
<th>Table 4-29 VBUS and VCONN Timing Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>t\text{VBUSON}</td>
</tr>
<tr>
<td>From entry to \textbf{Attached.SRC} until \text{VBUS} reaches the minimum \text{vSafe5V} threshold as measured at the source’s receptacle.</td>
</tr>
<tr>
<td>t\text{VBUSOFF}</td>
</tr>
<tr>
<td>From the time the Sink is detached until the Source removes \text{VBUS} and reaches \text{vSafe0V} (see \textit{USB PD}).</td>
</tr>
<tr>
<td>t\text{VCONNON}</td>
</tr>
<tr>
<td>From the time the Source supplied \text{VBUS} in the \textbf{Attached.SRC} state. Measured from \text{vSafe5V} to the minimum \text{VCONN} voltage (see Table 4-5)</td>
</tr>
<tr>
<td>t\text{VCONNON-PA}</td>
</tr>
<tr>
<td>From the time a Sink with accessory support enters the \textbf{PoweredAccessory} state until the Sink sources minimum \text{VCONN} voltage (see Table 4-5)</td>
</tr>
<tr>
<td>t\text{VCONNOFF}</td>
</tr>
<tr>
<td>From the time that a Sink is detached or as directed until the \text{VCONN} supply is disconnected.</td>
</tr>
<tr>
<td>t\text{SinkAdj}</td>
</tr>
<tr>
<td>Response time for a Sink to adjust its current consumption to be in the specified range due to a change in \textit{USB Type-C Current advertisement}</td>
</tr>
</tbody>
</table>

Note:

1. \text{VCONN} may be applied prior to the application of \text{VBUS}

Figure 4-44 illustrates the timing parameters associated with the DRP toggling process. The \textit{tDRP} parameter represents the overall period for a single cycle during which the port is exposed as both a Source and a Sink. The portion of the period where the DRP is exposed as a Source is established by \textit{dcSRC.DRP} and the maximum transition time between the exposed states is dictated by \textit{tDRPTransition}.
Table 4-30 provides the timing values that shall be met for DRPs. The clock used to control DRP swap should not be derived from a precision timing source such as a crystal, ceramic resonator, etc. to help minimize the probability of two DRP devices indefinitely failing to resolve into a Source-to-Sink relationship. Similarly, the percentage of time that a DRP spends advertising Source not be derived from a precision timing source.

Table 4-30 DRP Timing Parameters

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tDRP</td>
<td>50 ms</td>
<td>100 ms</td>
<td>The period a DRP shall complete a Source to Sink and back advertisement</td>
</tr>
<tr>
<td>dcSRC.DRP</td>
<td>30%</td>
<td>70%</td>
<td>The percent of time that a DRP shall advertise Source during tDRP</td>
</tr>
<tr>
<td>tDRPTransition</td>
<td>0 ms</td>
<td>1 ms</td>
<td>The time a DRP shall complete transitions between Source and Sink roles during role resolution</td>
</tr>
<tr>
<td>tDRPTry</td>
<td>75 ms</td>
<td>150 ms</td>
<td>Wait time associated with the Try.SRC state.</td>
</tr>
<tr>
<td>tDRPTryWait</td>
<td>400 ms</td>
<td>800 ms</td>
<td>Wait time associated with the Try.SNK state.</td>
</tr>
<tr>
<td>tTryTimeout</td>
<td>550 ms</td>
<td>1100 ms</td>
<td>Timeout for transition from Try.SRC to TryWait.SNK.</td>
</tr>
<tr>
<td>tVPDDetach</td>
<td>10 ms</td>
<td>20 ms</td>
<td>Time for a DRP to detect that the connected Charge-Through VCONN-Powered USB Device has been detached, after VBUS has been removed.</td>
</tr>
</tbody>
</table>

Table 4-31 provides the timing requirement for CC connection behaviors.
<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum</th>
<th>Maximum</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>tCCDebounce</td>
<td>100 ms</td>
<td>200 ms</td>
<td>Time a port shall wait before it can determine it is attached</td>
</tr>
<tr>
<td>tPDDebounce</td>
<td>10 ms</td>
<td>20 ms</td>
<td>Time a Sink port shall wait before it can determine it is detached due to the potential for USB PD signaling on CC as described in the state definitions.</td>
</tr>
<tr>
<td>tTryCCDebounce</td>
<td>10 ms</td>
<td>20 ms</td>
<td>Time a port shall wait before it can determine it is re-attached during the try-wait process.</td>
</tr>
<tr>
<td>tErrorRecovery</td>
<td>25 ms</td>
<td></td>
<td>Time a self-powered port shall remain in the ErrorRecovery state.</td>
</tr>
<tr>
<td>tErrorRecovery</td>
<td>240 ms</td>
<td></td>
<td>Time a source shall remain in the ErrorRecovery state if it was sourcing VCONN in the previous state.</td>
</tr>
<tr>
<td>tRpValueChange</td>
<td>10 ms</td>
<td>20 ms</td>
<td>Time a Sink port shall wait before it can determine there has been a change in Rp where CC is not BMC Idle or the port is unable to detect BMC Idle.</td>
</tr>
<tr>
<td>tSRCDisconnect</td>
<td>0 ms</td>
<td>20 ms</td>
<td>Time a Source shall detect the SRC.Open state. The Source should detect the SRC.Open state as quickly as practical.</td>
</tr>
<tr>
<td>tNoToggleConnect</td>
<td>0 ms</td>
<td>5 ms</td>
<td>Time to detect connection when neither Port Partner is toggling.</td>
</tr>
<tr>
<td>tOnePortToggleConnect</td>
<td>0 ms</td>
<td>80 ms</td>
<td>Time to detect connection when one Port Partner is toggling (0 ms ... dcSRC.DRP max * tDRP max + 2 * tNoToggleConnect).</td>
</tr>
<tr>
<td>tTwoPortToggleConnect</td>
<td>0 ms</td>
<td>510 ms</td>
<td>Time to detect connection when both Port Partners are toggling (0 ms ... 5 * tDRP max + 2 * tNoToggleConnect).</td>
</tr>
</tbody>
</table>
Minimum | Maximum | Description
--- | --- | ---
tVPDCTDD | 30 μs | 5 ms | Time for a Charge-Through \(\text{VCONN-Powered USB Device} \) to detect that the Charge-Through source has disconnected from CC after \(\text{VBUS} \) has been removed, transition to \(\text{CTUnattached.VPD} \), and re-apply its \(\text{R} \) \(p \) termination advertising 3.0 A on the host port CC.

tVPDDisable | 25 ms | | Time for a Charge-Through \(\text{VCONN-Powered USB Device} \) shall remain in \(\text{CTDisabled.VPD} \) state.

4.11.3 Voltage Parameters

Table 4-32, Table 4-33 and Table 4-34 provide the CC voltage values that a Source shall use to detect what is attached based on the USB Type-C Current advertisement (Default USB, 1.5 A @ 5 V, or 3.0 A @ 5 V) that the Source is offering.

Table 4-32 CC Voltages on Source Side – Default USB

<table>
<thead>
<tr>
<th>Minimum Voltage</th>
<th>Maximum Voltage</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powered cable/adapter (vRa)</td>
<td>0.00 V</td>
<td>0.15 V</td>
</tr>
<tr>
<td>Sink (vRd)</td>
<td>0.25 V</td>
<td>1.50 V</td>
</tr>
<tr>
<td>No connect (vOPEN)</td>
<td>1.65 V</td>
<td></td>
</tr>
</tbody>
</table>

Table 4-33 CC Voltages on Source Side – 1.5 A @ 5 V

<table>
<thead>
<tr>
<th>Minimum Voltage</th>
<th>Maximum Voltage</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powered cable/adapter (vRa)</td>
<td>0.00 V</td>
<td>0.35 V</td>
</tr>
<tr>
<td>Sink (vRd)</td>
<td>0.45 V</td>
<td>1.50 V</td>
</tr>
<tr>
<td>No connect (vOPEN)</td>
<td>1.65 V</td>
<td></td>
</tr>
</tbody>
</table>
Table 4-34 CC Voltages on Source Side – 3.0 A @ 5 V

<table>
<thead>
<tr>
<th>Detection</th>
<th>Minimum Voltage</th>
<th>Maximum Voltage</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powered cable/adapter (vRa)</td>
<td>0.00 V</td>
<td>0.75 V</td>
<td>0.80 V</td>
</tr>
<tr>
<td>Sink (vRd)</td>
<td>0.85 V</td>
<td>2.45 V</td>
<td>2.60 V</td>
</tr>
<tr>
<td>No connect (vOPEN)</td>
<td>2.75 V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4-35 provides the CC voltage values that shall be detected across a Sink’s Rd for a Sink that does not support higher than default USB Type-C Current Source advertisements.

Table 4-35 Voltage on Sink CC Pins (Default USB Type-C Current only)

<table>
<thead>
<tr>
<th>Detection</th>
<th>Min voltage</th>
<th>Max voltage</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>vRa</td>
<td>−0.25 V</td>
<td>0.15 V</td>
<td>0.2 V</td>
</tr>
<tr>
<td>vRd-Connect</td>
<td>0.25 V</td>
<td>2.18 V</td>
<td></td>
</tr>
</tbody>
</table>

Table 4-36 provides the CC voltage values that shall be detected across a Sink’s Rd for a Sink that implements detection of higher than default USB Type-C Current Source advertisements. This table includes consideration for the effect that the IR drop across the cable GND has on the voltage across the Sink’s Rd.

Table 4-36 Voltage on Sink CC pins (Multiple Source Current Advertisements)

<table>
<thead>
<tr>
<th>Detection</th>
<th>Min voltage</th>
<th>Max voltage</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>vRa</td>
<td>−0.25 V</td>
<td>0.15 V</td>
<td>0.2 V</td>
</tr>
<tr>
<td>vRd-Connect</td>
<td>0.25 V</td>
<td>2.04 V</td>
<td></td>
</tr>
<tr>
<td>vRd-USB</td>
<td>0.25 V</td>
<td>0.61 V</td>
<td>0.66 V</td>
</tr>
<tr>
<td>vRd-1.5</td>
<td>0.70 V</td>
<td>1.16 V</td>
<td>1.23 V</td>
</tr>
<tr>
<td>vRd-3.0</td>
<td>1.31 V</td>
<td>2.04 V</td>
<td></td>
</tr>
</tbody>
</table>
5 USB4 Discovery and Entry

USB4™ discovery and operational entry differs significantly from USB 2.0 and USB 3.2. This chapter defines the process of discovering across a USB Type-C® connection that both port partners are USB4-capable (or not), having the DFP-side of the link make a decision regarding to enter USB4 operation (or not), and how operational entry is accomplished.

5.1 Overview of the Discovery and Entry Process

The following provides an overview of the general process for discovery and entry into USB4 operation.

1. USB Type-C CC Connection State Machines resolve Source/Sink and the initial data roles (DFP/UFP).
2. Initial VBUS and VCONN power is supplied.
3. USB Power Delivery protocol is used to establish a power contract between the port partners.
4. USB PD Discover Identity process is used by the DFP to identify port partner (SOP) capabilities.
5. USB PD Discover Identity process is used by the DFP to identify cable (SOP') capabilities.
6. If the cable and port partner both support USB4 operation, the DFP issues USB PD Enter_USB Messages to both the cable and port partner to enter USB4 operation.
7. If both port partners are Dual-Role-Data (DRD) capable, either the DFP or UFP can optionally initiate a data-role swap in order to exchange host (master) and device (slave) roles.

The first three steps above are the same as used for all USB connections for establishing port relationships and power between the port partners. Step 5 where the cable is queried for its capabilities may optionally occur during Step 3, this would most likely be done before if the Source needs to know if the cable supports supplying current beyond 3 A.

Depending on the resulting power source relationship after the first few steps, the use of USB PD DR_Swap may be necessary to establish the port partner that is closest to the host as the data role DFP. For example, a hub supplying power to a host and DR_Swap is used to correct the data roles between the hub and host.

After the port partner’s capabilities are identified by the DFP, it may be appropriate based on what is discovered about the port partner to also query the port partner using the USB PD Alternate Mode SVID discovery process as an extension to Step 4. There are situations where a port partner supports Alternate Modes that may also be useable during USB4 operation and this would be discovered during this additional query.

After the cable capabilities are identified by the DFP, it may be appropriate based on what is discovered about the cable to also query the cable using the USB PD Alternate Mode SVID discovery process as an extension to Step 5. There are situations where a cable that supports Thunderbolt™ 3 Alternate Mode may also be useable for USB4 operation and this would be discovered during this additional query.

USB4 operation is entered using a USB PD USB Enter_USB Message. This message will be sent to both the cable (SOP’ and SOP” if present) and the port partner (SOP), each of which will respond with an Accept message to confirm and establish when the cable or port partner is functionally ready for USB4 operation. If the cable to be used will be operating in
Thunderbolt 3 Alternate Mode, then the cable will be enabled using the USB PD Enter Mode Command instead of the USB Enter_USB Message (See Appendix F).

USB4 functionally enables an ability for connecting two host platforms and establishing a data channel between the hosts, this is dependent on at least one of these host platforms being capable of Dual-Role-Data operation so that a proper USB Type-C DFP-to-UFP data relationship can be established between them. In most cases, both host platforms will be DRD-capable and once USB4 operation is established, either of these host platforms can choose to initiate a change of its role in the DFP-to-UFP relationship. To accomplish this, the USB PD DR_Swap process is used during Step 7 listed above.

5.2 USB4 Functional Requirements

The following functional requirements are for USB4 hosts and devices.

5.2.1 USB4 Host Functional Requirements

USB4 hosts shall meet the following functional requirements:

- USB4 hosts with dual-role-data (DRD) support shall respond to USB PD Discover Identity command with both DFP and UFP VDOs.

5.2.2 USB4 Device Functional Requirements

USB4 devices shall meet the following functional requirements:

- USB4 devices shall respond to USB PD Discover Identity command with UFP VDOs.
- USB4 devices shall provide a USB interface exposing a USB Billboard Device Class when it cannot connect as a USB4 device within tUSB4Timeout.
- If the USB4 device additionally supports Alternate Modes, the device shall complete the USB4 discovery and entry process (successful or not) before falling back to USB 3.2 or USB 2.0 and exposing an appropriate USB Billboard Device Class.

5.2.3 USB4 Alternate Mode Support

The USB4 specification enables products to be designed to support Alternate Modes, specifically DisplayPort™ Alt Mode and Thunderbolt 3 Alt Mode. Unlike USB 3.2 and USB 2.0 hubs, this also includes supporting specific Alternate Modes on USB4 hubs.

5.2.3.1 USB4 Alternate Mode Support on Hosts

For USB4 hosts that implement DisplayPort Tunneling, DP Alt Mode with Multi-function support (DP_BR 1 channel signaling combined with USB 3.2 Gen 1x1 support) as defined by the DisplayPort Alt Mode specification shall be implemented on all of its USB Type-C DFPs.

The USB4 host shall support the first connected DisplayPort display on any of its USB Type-C ports. Support for subsequently connected DisplayPort displays is optional.

USB4 hosts may optionally implement TBT3 compatibility support as defined by the USB4 specification on its USB Type-C DFPs.

5.2.3.2 USB4 Alternate Mode Support on Hubs and USB4-based Docks

USB4 hubs and USB4-based docks shall implement DP Alt Mode with Multi-function support (DP_BR 1 channel signaling combined with USB 3.2 Gen 1x1 support) as defined by the DisplayPort Alt Mode specification on all of its USB Type-C DFPs.

USB4 hubs shall support the first connected DisplayPort display on any of its USB Type-C DFPs. Support for subsequently connected DisplayPort displays is optional.
USB4-based docks shall support the first connected display on any of its USB Type-C DFPs or non-USB display connectors (if present, collectively). Support for subsequently connected displays is optional.

USB4 hubs shall implement TBT3 compatibility support as defined by the USB4 specification on its USB Type-C DFPs. USB4-based docks shall implement TBT3 compatibility support as defined by the USB4 specification on its USB Type-C UFP and USB Type-C DFPs.

For USB4 hubs, downstream-facing ports shall not implement Alternate Modes that do not have a USB-IF Standard ID (SID) or Accessory Modes.

5.3 USB4 Power Requirements

USB4 requires that the power connection between the port partners be established and maintained using USB PD prior to and through-out USB4 operation. A USB4 port, prior to entering USB4 operation, shall operate as a USB 3.2 port with regard to power (See Section 4.6). USB4 does not use the USB device protocols defined in USB 2.0 and USB 3.2 for managing device power.

5.3.1 Source Power Requirements

For USB Type-C ports that support USB4 data bus operation, the following requirements shall be met.

- USB4 ports shall be minimally capable of supplying at least 7.5 W (i.e. 5 V @ 1.5 A) on Vbus to bus-powered USB4 devices.
- The minimum capability for powering bus powered devices on data-capable ports shall be independently met on each USB Type-C port of a multi-port host or hub.

5.3.2 Sink Power Requirements

For USB4 devices that rely on bus power to operate (independent of any charging needs), the following requirements shall be met.

- USB4 devices shall draw only up to 250 mA on Vbus when the Source advertises Default USB power (see Section 4.11.1) prior to a USB PD power contract being made between the device and its port partner.
 - USB4 devices may draw higher levels of power prior to a USB PD power contract being made if the Source advertises USB Type-C Current at either 1.5 A or 3.0 A.
- USB4 devices shall be minimally capable of operating with a Source that only delivers up to 7.5 W (i.e. 5 V @ 1.5 A).
- USB4 devices shall not enter into USB4 data bus operation until after a USB PD power contract has been established, and while in USB4 operation, the device shall adhere to USB PD power behavioral requirements at all times including appropriately responding to changes in Source capabilities.

In cases where the full functional capabilities or the highest performance of the USB4 device requires more than the power being offered by the host, the device shall be minimally capable of providing the user with basic functionality as expected for the type and listed functions of the device. This allows for making available a higher level of operation or performance when a higher level of power is supplied, e.g. 15 W for full functionality versus 7.5 W for basic functionality. In this case, the device shall expose a Billboard that indicates functionality is limited by the available power.
5.3.3 Device Power Management Requirements

For USB4, device power management is enabled using a combination of USB PD capabilities that operate in conjunction with the USB4 link states of the device’s UFP connection.

The connection between the device’s UFP and its DFP port partner can be put into a suspend state based on the value of the USB Suspend Supported Flag in the Source-Capabilities Message used in the USB PD explicit power contract.

When the USB Suspend Supported Flag is set by the Source, the Sink shall meet the Suspend power requirement when the USB4 link is in the CLd state. Prior to the entry of the link into CLd state, it is expected that the host will have placed all of the device’s functions into an appropriate suspend state.

Suspend power is defined based on the capabilities of the USB4 device:

- USB4 Device that is not capable of remote wake or has remote wake disabled: 25 mW
- USB4 Device that supports remote wake and has remote wake enabled: 50 mW

If the Source clears the USB Suspend Supported Flag, the Sink shall follow Explicit Contract power requirements regardless of the USB4 link state. For USB4, the use of USB PD zero negotiated current is not a valid Suspend entry method since it is not coordinated with the host operating system and the function device drivers.

5.4 USB4 Discovery and Entry Flow Requirements

This section provides the detailed requirements for USB4 discovery and entry. Additional requirements related to USB4 operation are in the USB4 Specification.

Prior to entering and during USB4 operation, the functional requirements of Chapter 4 shall be met including all functional interface and configuration channel (CC) requirements.

5.4.1 USB Type-C Initial Connection

For a USB4-capable port, prior to initiating USB4 cable and device discovery, a valid Source-to-Sink connection shall exist and the USB Type-C connection state machine of the port shall either be in the Attached.SRC or Attached.SNK state.

When two USB4 dual-role-data (DRD) products are connected together, e.g. two USB4 hosts, USB Type-C connection process will establish the initial data roles between the port partners.

Once the initial data roles are established, the USB Type-C connection will proceed to train the link for both USB 3.2 and USB 2.0. Once the USB4 DFP completes the training of the links, it shall hold off on enabling the USB 3.2 and USB 2.0 enumeration of the attached UFP to allow for the completion of the USB4 discovery and entry process. Once the USB4 discovery and entry process has completed, the DFP will enable USB device enumeration on the USB 3.2 (either via the USB4 SuperSpeed USB tunnel or natively depending on if the port connection is USB4 or USB 3.2, respectively) and USB 2.0 data paths that are established with its UFP port partner at that time.

5.4.2 USB Power Delivery Contract

Prior to initiating USB4 device discovery, the port partners shall negotiate a USB PD Explicit Contract.

During the process of establishing a stable USB PD Explicit Contract, the Source or Sink may have initiated power-role and VCONN swaps. Prior to moving on to USB4 discovery, the functional data role shall be properly established (e.g. a self-powered hub upstream facing
port is a DRP and comes up as a Source where DR_Swap is then required to the correct data role to the hub) and the DFP shall be the source of VCONN.

5.4.3 USB4 Discovery and Entry Flow

Figure 5-1 illustrates the basic flow model for **USB4** discovery and entry.

Figure 5-1 USB4 Discovery and Entry Flow Model

5.4.3.1 **USB4 Device Discovery (SOP)**

USB4 device discovery shall occur only after having a negotiated **USB PD** Explicit Contract.
USB4 device discovery involves the use of the USB PD Discover ID process between the DFP and its port partner (SOP).

5.4.3.2 USB4 Cable Discovery (SOP')

The DFP shall determine that the attached cable is USB4-compatible prior to entering into USB4 operation. In cases where the USB4 device is directly connected or has a captive cable, the USB4 device shall respond to USB4 cable discovery on SOP' as a captive passive cable and indicating the appropriate USB Signaling support.

Table 5-1 summarizes the list of cables that are intended to support USB4-compatible operation. Regarding Active Cables, this list does not include Optically-Isolated Active Cables (OIACs) which are to be handled as a special case given that these cables do not support USB 2.0 and power delivery over the cable (See Chapter 6).

Table 5-1 Certified Cables Where USB4-compatible Operation is Expected

<table>
<thead>
<tr>
<th>Cable</th>
<th>USB4 Operation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB Type-C Full-Featured Cables (Passive)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB 3.2 Gen1</td>
<td>20 Gbps</td>
<td>This cable will indicate support for USB 3.2 Gen1 (001b) in the USB Signaling field of its Passive Cable VDO response. Note: even though this cable isn’t explicitly tested, certified or logo’ed for USB 3.2 Gen2 operation, USB4 Gen2 operation will generally work.</td>
</tr>
<tr>
<td>USB 3.2 Gen2</td>
<td>20 Gbps</td>
<td>This cable will indicate support for USB 3.2 Gen2 (010b) in the USB Signaling field of its Passive Cable VDO response.</td>
</tr>
<tr>
<td>USB4 Gen3</td>
<td>40 Gbps</td>
<td>This cable will indicate support for USB4 Gen3 (011b) in the USB Signaling field of its Passive Cable VDO response.</td>
</tr>
</tbody>
</table>

Thunderbolt™ 3 Cables (Passive)		
TBT3 Gen2	20 Gbps	This cable will indicate support for USB 3.2 Gen1 (001b) or USB 3.2 Gen2 (010b) in the USB Signaling field of its Passive Cable VDO response.
TBT3 Gen3	40 Gbps	In addition to indicating support for USB 3.2 Gen2 (010b) in the USB Signaling field of its Passive Cable VDO response, this cable will indicate that it supports TBT3 Gen3 in the Discover Mode VDO response.

| **USB Type-C Full-Featured Cables (Active)** | 20 Gbps | This cable will indicate support for USB4 Gen2 (010b) in the USB Signaling field of its Active Cable VDO response. |
| **USB4 Gen3** | 40 Gbps | This cable will indicate support for USB4 Gen3 (011b) in the USB Signaling field of its Active Cable VDO response. |

Note:
1. SuperSpeed USB active cables do not support USB4-compatible operation.

Determining if the cable is USB4-compatible starts the use of the USB PD Discover ID process between the DFP and the attached cable (SOP'). If no response is received when the DFP issues a USB PD Discover ID command to the cable, then the USB4 discovery process shall be...
exit and the DFP shall proceed to establish a functional connection to its UFP port partner following traditional **USB 2.0** process.

USB 4-compatible support is generally determined based on the USB Signaling Support indicated in the cable VDO responses appropriate for the type of cable it is, passive or active, with compatible passive cables being those that indicate USB signaling support for Gen 1 or higher and with compatible active cables being those that indicate USB signaling support for Gen2 or higher.

When a passive cable is identified as a **USB 3.2** Gen2 cable and the DFP is Gen3 capable, the DFP needs to check further using **USB PD** Alternate Mode process to determine if the cable is a Thunderbolt 3 passive cable supporting Gen3.

Some existing Thunderbolt 3 active cables may support **USB 4** operation, such cables will indicate that it supports rounded data rates in the Discover Mode VDO response – discovery and use of this cable is optional.

5.4.3.2.1 Discovering Passive Cables

The **USB PD** specification defines the Passive Cable VDO responses to the Discover Identity Command sent by the DFP to a **USB 4**-compatible passive cable.

If the USB Signaling field [B2…0] in the Passive Cable VDO response is 011b (**USB 4** Gen3), the **USB 4** discovery process is complete and **USB 4** operation up to as high as 40 Gbps is supported. In Chapter 3 of this specification, these cable assemblies are those with the following cable references: **CC4G3-3** and **CC4G3-5** indicated in Table 3-1.

If the USB Signaling field [B2…0] in the Passive Cable VDO response is 000b (**USB 2.0** only), the **USB 4** discovery process will be exited and the DFP shall proceed to establish a functional connection to its UFP port partner following traditional USB 2.0 process.

If the USB Signaling field [B2…0] in the Passive Cable VDO response is either 010b (**USB 3.2** Gen2) or 001b (**USB 3.2** Gen1), the **USB 4** discovery process is complete if the DFP is limited to **USB 4** Gen2. In Chapter 3 of this specification, these cable assemblies are those with the following cable references: **CC3G2-3**, **CC3G2-5**, **CC3G1-3**, and **CC3G1-3** indicated in Table 3-1. Note that **USB 3.2** Gen1 cables, while not tested and certified to be used for **USB 3.2** Gen2 operation, are expected to work for **USB 4** Gen2 operation.

If the USB Signaling field [B2…0] in the Passive Cable VDO response is 010b (**USB 3.2** Gen2) but the DFP is capable of **USB 4** Gen3 operation, then the DFP shall use the **USB PD** Alternate Mode process to determine if the cable also can be identified as a TBT3 Gen3 cable. Refer to Section 5.4.3.2.3 for TBT3 cable discovery process. If the Cable Speed field of the Discover Modes VDO response is set to 011b, then the **USB 4** discovery process is complete and **USB 4** operation up to as high as Gen3 is supported using the TBT3 passive cable (see Table F-11).

5.4.3.2.2 Discovering Active Cables

The **USB PD** specification defines the Active Cable VDO responses to the Discover Identity Command sent by the DFP to a **USB 4**-compatible active cable.

If the USB Signaling Support field [B2…0] in the Active Cable VDO 1 response is 011b (**USB 4** Gen3), the **USB 4** discovery process is complete and **USB 4** operation up to as high as Gen3 is supported.

Optionally, discovery and use of existing TBT3 active cables that indicate support for rounded data rate operation is allowed if the active cable isn’t explicitly identified as **USB 4**-compatible.
Failure to identify that the attached active cable is USB4-compatible will result in exiting the USB4 discovery process and reverting to following traditional USB 3.2 and USB 2.0 process.

5.4.3.2.3 Process for Discovering Thunderbolt 3 Cables

The USB PD specification defines the process for discovering Alternate Mode-enabled cables. The following summarizes this process specific to discovering Thunderbolt 3 cables for purposes of determining USB4-compatibility. Prior to performing these steps, the USB PD Discover Identity process will have already been used to establish if the cable is passive or active.

The following steps are used for discovering Thunderbolt 3 cables and the cable’s capabilities using the USB PD Alternate Mode process.

1. DFP issues the Discover SVIDs command to the cable SOP’.
2. If the cable’s Discover SVID response indicates 0x8087 (Intel/TBT3) as one of its SVIDs, then proceed to next step, otherwise the cable is not a Thunderbolt 3 cable (see Section F.2.4).
3. DFP issues the Discover Modes command with its SVID set to 0x8087 to the cable’s SOP’.
4. If this discovery is part of the USB4-compatible passive cable discovery process, from the cable’s Discover Modes VDO responses (see Section F.2.6), extract the value in the Cable Speed field to complete the process.
5. If this discovery is part of the USB4-compatible active cable discovery process, from the cable’s Discover Modes VDO responses (see Section F.2.6), extract the value in the TBT_Rounded_Support field to complete the process. [Note: discovery and use of USB4-compatible TBT3 active cables is an optional feature that also would require use of USB PD Enter Mode command to enable the cable for USB4 operation.]

5.4.3.3 USB4 Operational Entry

USB4 operational entry shall occur only after having established that the attached cable, if present, and the port partner are USB4-capable.

USB4 operational entry involves the use of the USB PD Enter_USB Message process between the DFP and both the attached USB4-compatible cable and the USB4-capable port partner – sending this message is order specific: SOP’ first, SOP” second if present, and SOP third.

When using the USB PD Enter_USB Message for enabling USB4 operation, the DFP shall indicate 010b (USB4) in the USB Mode field of the Enter_USB Data Object. The remaining fields shall be set appropriately by the DFP based on the capabilities of the DFP and attached cable.

5.4.4 USB4 Post-Entry Operation

5.4.4.1 During USB4 Operation

While in USB4 operation, the following are allowed:

- The USB PD explicit power contract may be re-negotiated.
- Issue an USB PD Data_Reset command to change the mode of operation, e.g. from USB4 to USB 3.2 or an Alternate Mode.
- Enable Alternate Modes that do not reconfigure the port interface and operate in parallel with USB4.
5.4.4.2 Exiting USB4 Operation

The USB PD Data_Reset process causes USB data connections to be reset and Alternate Modes to be exited. This process does not change the existing power contract and data roles between the port partners. The Data_Reset process shall include the following steps:

- Issue a USB PD Data_Reset command to the SOP port partner to reset the data bus, reset the cable, and exit any Alternate Modes while preserving the power on VBUS.
- The tUSB4Timeout and tAMETimeout timers within the UFP shall be reset upon sending or receiving a USB PD Data_Reset command.
- Re-enter the USB4 Discovery and Entry process (Section 5.4.3).

5.5 USB4 Hub Connection Requirements

USB4 hub behavior with regard to managing its DFP connections has USB4-specific dependencies on the connection status and capabilities of its single UFP. Additionally, hubs have USB4-specific responsibilities for communicating the capabilities of the USB4 host to downstream-connected USB4 hubs. This section provides both requirements and guidance for USB4 hub port connection behavior.

5.5.1 USB4 Hub Port Initial Connection Requirements

The following requirements apply to all hub ports.

1. Run the USB Type-C Connection process,
2. Establish an initial USB PD explicit contract,
3. If desired, use PR_Swap to establish the preferred power role, and
4. Use DR_Swap to establish data role to be consistent with the port’s position in the USB tree if needed.

5.5.2 USB4 Hub UFP and Host Capabilities Discovery

The USB4 hub DFPs capabilities are ultimately based on the capabilities seen at its UFP (once it has established a connection to the host). If the USB4 hub’s UFP is connected to an upstream USB4 hub, then the capabilities over the connection between the two hubs may not initially represent the capabilities all the way back to the host.

The following summarizes the general principles regarding how UFP and host capabilities impact DFP connections.

- The downstream connection to a device or hub that is attached to the USB4 hub’s DFP is based on the capabilities of the hub.
- Once the USB4 hub’s UFP has established a connection, the hub’s capabilities are limited to the capabilities of that UFP connection.
- When the USB4 hub’s UFP connection indicates that a host is not present, once the hub is notified that a host becomes present, the hub will limit its capabilities as needed to match those of the host.
 - Any connections on the USB4 hub’s DFPs that existed prior to the host being present are adjusted to align with changes in capabilities if needed.
- Once a host becomes present in a USB4 tree, all intermediary hubs will update their connections to align with the host capabilities as the host present status is propagated to the downstream connected USB4 hubs.

The capabilities seen by the hub’s UFP are based on one of the following:
• An *USB PD* Enter_USB message is received which indicates the USB operation (*USB4*, *USB 3.2* or *USB 2.0*) and associated characteristics supported (*USB4* PCIe-supported, *USB4* DP supported, etc.) by the upstream port partner.

• An *USB PD* Enter Mode command is received to start a supported *Alternate Mode* (Thunderbolt 3, DisplayPort).

• No *USB PD* Enter_USB message is received within the *tUSB4Timeout* or *USB PD* Enter Mode message is received within the *tAMETimeout* indicating only *USB 3.2* and *USB 2.0* are available.

If the *USB4* hub’s UFP is connected to an upstream *USB4* hub, then the capabilities reported in the received *USB PD* Enter_USB message shall only be considered the host’s capabilities if the Host Present bit is set. If the Host Present bit is reset, then the hub shall wait for a subsequent *USB PD* Enter_USB message to be received with the Host Present bit set. Once the Host Present bit is set, the capabilities as represented in the *USB PD* Enter_USB message can be used as the host’s capabilities for the purpose of establishing final DFP connections.

If the *USB4* hub’s UFP receives an *USB PD* Enter_USB message which indicates the USB operation as either *USB 3.2* or *USB 2.0*, the *USB4* hub shall not wait for the completion of the *tUSB4Timeout* before proceeding to establish its UFP and DFP connections following *USB 3.2* or *USB 2.0* hub requirements, respectively.

5.5.3 Hub DFP Connection Requirements

5.5.3.1 Speculative Connections

When a device is attached to the DFP of a *USB4* hub prior to the hub’s UFP being connected and the host capabilities are known, the hub will speculatively connect to the attached device based on the following requirements.

- Use *USB PD* Discover ID and the *USB PD* Alternate Mode process to determine the full capabilities of the attached cable and device.

- Based on the discovered capabilities, establish the most capable connection based on the capabilities of the *USB4* hub’s DFP in the following priority order:
 1. *USB4*
 2. Thunderbolt 3 Alt Mode
 3. DP Alt Mode
 4. *USB 3.2*
 5. *USB 2.0*

- Inhibit port status notifications and data paths upstream from the *USB4* hub’s DFPs while waiting for the *USB4* hub’s UFP connection to be established.

5.5.3.2 Operational Connections

Once the *USB4* hub’s UFP connection is established and the host capabilities are determined (see Section 5.5.2), the hub shall evaluate each existing DFP connection based on the capabilities associated with the hub’s UFP connection and perform one of the following actions.

- If the DFP connection properly aligns with the capabilities of the UFP connection, enable the status notifications and data path for that port.

- If the DFP connection does not properly align with the capabilities of the UFP connection, the DFP connection shall do one of the following:
o If the UFP remains in USB4 and the DFP connection is with a downstream USB4 hub, send a revised USB PD Enter_USB message with the Host Present bit set.

o If the UFP changed to USB 3.2 or USB 2.0 and the DFP connection is with a downstream USB4 hub, the DFP shall be reset the connection using USB PD Data_Reset followed by sending a revised USB PD Enter_USB message indicating USB 3.2 or USB 2.0 and the Host Present bit set.

o Otherwise, the DFP shall enter the ErrorRecovery state to reset the connection and establish a new connection that aligns with the hub’s UFP capabilities.

5.5.4 Hub Ports Connection Behavior Flow Model

This section illustrates a number of connection flows that assume that the hub’s DFP connection is established prior to the hub’s UFP connection. In these cases, the host capabilities are unknown at the time that the hub’s DFP is connecting with the attached device. Given this, the initial connection established by the hub’s DFP is speculatively based only on the hub and device’s capabilities and may have to be revised once the host capabilities are known if there is a functional mismatch. When the hub’s UFP connection is fully established prior to devices appearing on the hub’s DFP, the connection can be established with full knowledge of the host’s capabilities – flows associated with this relationship are not illustrated.

For the illustrated flows in this section, the Source/Sink power roles remain as initially resolved by the CC connection state machine with no PR_Swap or DR_Swap activity.

All of the flows intend to minimize the total connection time for enabling the functionality of the device connected to the hub’s DFP. This is accomplished by establishing the highest functional connection based on mutual capabilities between the hub and the device even as the hub’s UFP capabilities are unknown or not ready for operation. If the speculatively established connection turns out to be valid once the hub’s UFP capabilities are established, then the DFP’s connection will be enabled as is. If the speculatively established connection turns out to be invalid, the DFP connection shall be reset and a connection that aligns with the hub’s UFP capabilities shall be established.
Figure 5-2 illustrates the connection flow model aligned across the combination of a USB4 host, hub and device. The expected result is the successful enabling of end-to-end USB4 operation.

Figure 5-2 USB4 Hub with USB4 Host and Device Connection Flow Alignment

In the illustrated flow, Cap Discovery includes all USB PD message exchanges needed between the DFP and its UFP port partner to discover the UFP’s USB capabilities along with TBT3-compatibility and DP Alt Mode capabilities. For the USB4 hub’s DFP, Cap Discovery is done on a speculative basis whenever it does not already know of the capabilities of the host that will eventually be connected via the hub’s UFP.

Upon completion of Cap Discovery between the hub’s DFP and its UFP port partner, the hub DFP will establish the highest functional connection and then wait for the hub UFP to complete its connection. Once the hub’s UFP connection is established, the host capabilities available is used to make a determination of what should be done to complete the hub DFP connection to the UFP port partner.

Host Cap is based on the resulting configuration (e.g. data bus protocol and speed) of the USB4 Hub’s UFP and the Host capabilities information received in the USB PD Enter_USB Message from its DFP port partner (see Section 5.5.2). The USB4 hub uses Host Cap to set the available capabilities of the hub’s DFPs.
Figure 5-3 illustrates the connection flow model aligned across the combination of a **USB 3.2** host, a **USB4** hub and a **USB4** device.

Figure 5-3 USB4 Hub with USB 3.2 Host and USB4 Device Host Connection Flow Model

In the flow above, once connected to a **USB 3.2** host, the Host Cap reflects that the hub can only support **USB 3.2** on its DFPs and the speculatively established **USB4** connection on the DFP is exited with the **USB4** hub now operating as a traditional **USB 3.2** hub.
Figure 5-4 illustrates the connection flow model aligned across the combination of a USB4 hub with a USB4 host and USB 3.2 device.

Figure 5-4 USB4 Hub with USB4 Host and USB 3.2 Device Connection Flow Model

While USB 3.2 devices won’t necessarily respond to the Discover ID (SOP), the USB4 hub’s DFP will attempt to discover the capabilities of the attached device.

In the flow above, after the USB4 connection of the hub’s UFP is established, the DFP connection remains valid with the USB 3.2 data path of the DFP being serviced by the USB4 Enhanced SuperSpeed tunnel.
Figure 5-5 illustrates the connection flow model aligned across the combination of a USB4 hub with a USB3.2 host and device.

Figure 5-5 USB4 Hub with USB 3.2 Host and Device Connection Flow Model

While USB 3.2 devices won’t necessarily respond to the Discover ID (SOP), the USB4 hub’s DFP will attempt to discover the capabilities of the attached device.

In the flow above, after the USB 3.2 connection of the hub’s UFP is established, the DFP connection remains valid with the USB4 hub now operating as a traditional USB 3.2 hub.

Figure 5-6 illustrates the connection flow model aligned across the combination of a USB4 host, USB4 hub and a DP Alt Mode device (operating in Multi-function mode). In this case,
the expected result is the enabling of the DP Alt Mode as bridged from USB4 DisplayPort tunneling.

Figure 5-6 USB4 Hub with USB4 Host and DP Alt Mode Device Connection Flow Model

In the flow above, after the USB4 connection of the hub’s UFP is established, the DFP connection remains valid with the DisplayPort and USB 3.2 data paths of the DFP being serviced by the USB4 DisplayPort and Enhanced SuperSpeed tunnels.
Figure 5-7 illustrates the connection flow model aligned across the combination of a USB 3.2 host, a USB4 hub and a DP Alt Mode device (operating in Multi-function mode). The expected result in this case is that the DP Alt Mode will not be enabled and a Billboard exposed by the device since the host doesn’t support USB4.

Figure 5-7 USB4 Hub with USB 3.2 Host and DP Alt Mode Device Connection Flow Model

In the flow above, after the USB 3.2 connection of the hub’s UFP is established, the DFP connection is no longer valid with the USB4 hub now operating as a traditional USB 3.2 hub. The hub’s DFP shall then reset the port which will lead to a USB 2.0 connection and the exposure of the Billboard device.

5.5.5 Connecting to Downstream USB4 Hubs

When a USB4 hub is attached on its DFP to the UFP of another USB4 hub, the USB4 hub shall use the Host Present bit of the USB PD Enter_USB message to inform the downstream hub if the USB4 capabilities listed in the message reflects the host’s capabilities or not. If an initial connection is made with the downstream hub with the Host Present bit reset in the USB PD Enter_USB message, the USB4 hub shall subsequently send a revised USB PD Enter_USB message with the Host Present bit set after its UFP has been fully established (see Section 5.5.2).

5.5.6 Fallback Functional Requirements for USB4 Hubs

When a USB4 hub is attached on its UFP to a non-USB4 DFP, the USB4 hub shall seamlessly fall back to functioning as and meeting the requirements for a USB 3.2 hub.
5.6 USB4 Device Connection Requirements

5.6.1 Fallback Mapping of USB4 Peripheral Functions to USB Device Class Types

USB4 peripheral devices provide functions based on data transferred over one or more of the protocol tunnels of USB4: Enhanced SuperSpeed USB, DisplayPort and PCI Express. For all peripheral functions that use the Enhanced SuperSpeed USB protocol tunnel, the mapping of those functions to USB device class specifications is clear but for those based on the other tunneled protocols, this mapping doesn’t apply since those functions don’t rely on USB device class drivers to operate.

Each function of a USB4 device shall be mapped to an equivalent USB device class when possible. USB4 devices that contain mapped USB device class functions shall support operation at USB 3.2 or USB 2.0 when connected to non-USB4 hosts. This requirement is exempted for those functions that rely on DisplayPort or PCIe tunnels for USB4 data transfer that don’t reasonably map to an existing USB device class, e.g. a PCIe graphics adapter.

The performance of the function when mapped to a lower speed connection is expected to scale appropriately while still providing the functional equivalent of the primary capabilities of the peripheral function.

Table 5-2 lists USB Device Class types and the mapping requirements for USB4 device peripheral functions as it relates to fallback when operating over USB 3.2 or USB 2.0.

Table 5-2 Fallback Mapping USB4 Peripheral Functions to USB Device Class Types

<table>
<thead>
<tr>
<th>Device Class Category</th>
<th>USB4 Peripheral Function Mapping</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Video</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Mass Storage</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Comms/Networking</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Printer</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>HID</td>
<td>Required</td>
<td>Only required when an equivalently HID subclasss or report usage is defined.</td>
</tr>
<tr>
<td>Media Transfer Protocol</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Smart Card</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Still Image Capture</td>
<td>Required</td>
<td>Only required in conjunction with providing associated display applications.</td>
</tr>
<tr>
<td>Monitor Device</td>
<td>Required</td>
<td></td>
</tr>
</tbody>
</table>

For all USB4 peripheral functions based on DisplayPort and PCIe protocol tunneling that do not map to USB device class equivalents when operating over USB 3.2 or USB 2.0, an appropriate USB Billboard Device Class shall be exposed to enable user notifications by the operating system of the host platform.
5.7 Parameter Values

5.7.1 Timing Parameters

Table 5-3 provides the timeout requirement for a device that supports USB4 to enable a USB Billboard Device Class interface when the device cannot connect as a USB4 device during the discovery and entry process (Section 5.4).

Table 5-3 USB Billboard Device Class Availability Following USB4 Device Entry Failure

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tUSB4Timeout</td>
<td>1000 ms The time between (1) a Sink attach or (2) the data connection is reestablished in the USB PD Data Reset process until the USB Billboard Device Class interface is exposed when USB4 device entry is not successful.</td>
</tr>
</tbody>
</table>
6 Active Cables

Active cables shall minimally support USB 3.2 Gen 2x1 and may support USB 3.2 Gen 1x2 or Gen 2x2. As multi-lane USB 3.2 and multi-lane USB 3.2 repeaters become common, all active cables will be required to support two lanes. Active cables shall support USB PD eMarkers and may support Alternate Modes and advertise them as defined in Section 6.7.

Short active cables supporting lengths up to 5 meters are designed to 'just work' like passive cables with no discernable difference from the user's perspective.

Optically Isolated Active Cables (OIC) support longer lengths up to 50 meters and provide electrical isolation between the two ends of the cable. OICs are targeted for Industrial, Machine Vision, Remote Sensor, Pro Video, and Medical applications. OICs do not 'just work' unlike short active cables. Long OICs may not function correctly with Hosts, Devices, and Hubs that are not compliant to the USB 3.2 Specification. Table 6-1 shows the limitations of OIC with short active cables. Legacy USB3 devices may require using an adapter between the device and the OIC. This adapter is defined in Section 6.6.4.3.1.

Since no power runs through an OIC, they can only be used to connect a Source DRD to a Source DRD or a Source DRD to a DFP. USB PD Revision 3 must be supported on both port partners for an OIC to function. Each cable plug of an OIC is locally powered from VCONN and/or optionally from VBUS. OICs shall function for USB 3.2 when VCONN only is provided and may optionally use VBUS if provided. OICs may require VBUS for Alternate Mode support. OICs have no functionality when either cable plug is connected to a Sink/UFP only device (Sink/UFP devices are unable to provide power to the cable plug). OICs require at least one end of the cable plug to be connected to a DRD (DRP and capable of accepting a DR_Swap to USB Device Role).

If a connection to a USB 2.0 Device is required at the end of an OIC, an adapter with a USB 3.2 to USB 2.0 transaction translator and VBUS/VCONN Source may be connected at the Device side of the cable to convert the USB 3.2 signals to USB 2.0 and provide power to the USB 2.0 Device and the OIC.

If an OIC supports Alternate Modes that require the use of SBUs, the SBUs shall be optically isolated.
Table 6-1 Comparison of Active Cables

<table>
<thead>
<tr>
<th></th>
<th>Short Active Cable</th>
<th>Optically Isolated Active Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB 3.2 Support</td>
<td>USB 3.2 Repeater</td>
<td>USB 3.2 Repeater</td>
</tr>
<tr>
<td>USB 2.0 Support</td>
<td>Passive Connection</td>
<td>No end-to-end electrical connection. An OIAC Legacy Adapter (Section 6.6.4.3.1) required for USB 2.0 support.</td>
</tr>
<tr>
<td>SBU Support</td>
<td>Passive Connection</td>
<td>Optional normative support in Alternate Modes only</td>
</tr>
<tr>
<td>USB PD Communication</td>
<td>All messages supported</td>
<td>Only a subset of messages is supported.</td>
</tr>
<tr>
<td>Bus Powered Devices</td>
<td>Supported</td>
<td>Not supported unless a VBUS/VCONN Source is connected between OIAC and Bus Powered Device. An OIAC Legacy Adapter (Section 6.6.4.3.1) is an example of a VBUS/VCONN Source.</td>
</tr>
<tr>
<td>End-to-End Electrical Connection</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>End-to-End Ground and VBUS Connections</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 6-2 Summary of Active Cable Features

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Length</th>
<th>USB PD</th>
<th>VBUS</th>
<th>VCONN Wiring</th>
<th>CC</th>
<th>USB 2.0 (All required)</th>
<th>SBU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>< 5 m</td>
<td>SOP’</td>
<td>3 A</td>
<td>Same as passive cable</td>
<td>Same as passive cable</td>
<td>Gen 1x1 Gen 2x1 Gen 1x2 Gen 2x2</td>
<td>Passive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOP” Optional</td>
<td>5 A</td>
<td>Same as passive cable</td>
<td>Same as passive cable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optically Isolated</td>
<td>USB 3.2 Latency¹</td>
<td>SOP’ Required</td>
<td>0 A</td>
<td>Local cable plug only</td>
<td>Optical</td>
<td>Not Allowed</td>
<td>Gen 1x1 Gen 2x1 Gen 1x2 Gen 2x2</td>
</tr>
</tbody>
</table>

Note 1: Length is set by the latency requirement in **USB 3.2**.

All active cables, regardless of length, shall be compliant with this specification, the **USB 3.2** including Appendix E, and the **USB 3.2** Active Cable CTS.

6.1 USB Type-C State Machine

OIAC cable plugs behave as Sinks on an initial cable connection. OIACs use **USB PD** Revision 3 to configure one plug as the DFP and one as the UFP as described in Section 6.2.1.
6.2 USB PD Requirements

This specification uses the USB Type-C® terminology for connection states and not the USB PD specification terminology.

Active cables shall be electronically marked and wired per Figure 6-1, Figure 6-2, or Figure 6-3.

- The temperature sensor shall be co-located with the repeater for accurate thermal reporting.
- An active cable that contains two repeaters shall support both SOP’ and SOP”.
- An active cable that only contains one repeater internal to the active able (not in the cable plugs) shall implement SOP’ and is not required to implement SOP”.

Figure 6-1 Electronically Marked Short Active Cable with SOP’ Only

![Diagram showing an electronically marked short active cable with SOP’ only](image)

Short active cables may optionally be electronically marked on both ends of the cable as illustrated in Figure 6-2.

Figure 6-2 Electronically Marked Short Active Cable with SOP’ and SOP”

![Diagram showing an electronically marked short active cable with SOP’ and SOP”](image)
Figure 6-3 Electronically Marked Optically Isolated Active Cable

6.2.1 Active Cable USB PD Requirements

Active cables shall support USB PD Revision 3, Version 1.2 or later. Active cables shall support USB PD Structured VDMs.

6.2.1.1 SOP’ and SOP” Requirements

Active cables shall respond to Discover_Identity and Get_Status on SOP’. When the SOP” Controller Present bit is set in the Active Cable VDO, they shall respond Get_Status on SOP” as well.

OIACs have a different definition for SOP”. SOP” is always the far-end cable plug relative to the message initiator.

6.2.1.2 Discovering Cable Characteristics

The USB PD Discover_Identity Command is used to discover the characteristics of the active cable. This command shall only be sent to SOP’. All active cables shall respond to the Discover_Identity Command with Active Cable VDOs that return information about the cable. Note the active cable shall respond using either USB PD Revision 2 or USB PD Revision 3 following the USB PD Interoperability rules.

6.2.1.3 Cable Status

The USB PD Get_Status Command is used to discover the current state of the active cable. Cable status shall be reported on SOP’ and shall also be reported on SOP” when the SOP” Controller Presence bit is set in the Active Cable VDO.

6.2.2 USB PD Messages for OIAC

The following sections outline the USB PD Messages for an OIAC.

6.2.2.1 USB PD Message Handling on Initial Connection

The OIAC shall not forward USB PD messages until after determining the DFP to UFP Connection in the Active State and the Active Cable is configured (Phase 3 complete).
OIAC shall process USB PD messages locally in the USB Type-C plug as defined in Table 6-3 on an initial connection before the disconnect/reconnect and data role establishment.

Table 6-3 OIAC USB PD Message Behavior on Initial Connection

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Transmitted Message</th>
<th>Received Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Messages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td>Normative</td>
<td>Normative</td>
</tr>
<tr>
<td>DR_Swap</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
</tr>
<tr>
<td>FR_Swap</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
</tr>
<tr>
<td>Get_Country_Codes</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
</tr>
<tr>
<td>Get_PPS_Status</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Get_Sink_Cap</td>
<td>Not Allowed</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Get_Sink_Cap_Extended</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Get_Source_Cap</td>
<td>Not Allowed</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Get_Source_Cap_Extended</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Get_Status</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
</tr>
<tr>
<td>GoodCRC</td>
<td>Normative</td>
<td>Normative</td>
</tr>
<tr>
<td>GotoMin</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
</tr>
<tr>
<td>Not_Supported</td>
<td>Normative</td>
<td>Normative</td>
</tr>
<tr>
<td>Ping</td>
<td>Not Allowed</td>
<td>Ignore</td>
</tr>
<tr>
<td>PR_Swap</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
</tr>
<tr>
<td>PS_RDY</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
</tr>
<tr>
<td>Reject</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
</tr>
<tr>
<td>Soft_Reset</td>
<td>Normative</td>
<td>Normative</td>
</tr>
<tr>
<td>Vconn_Swap</td>
<td>Not Allowed</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Wait</td>
<td>Normative</td>
<td>Ignore</td>
</tr>
<tr>
<td>Data Messages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source_Capabilities</td>
<td>Not Allowed</td>
<td>Normative</td>
</tr>
<tr>
<td>Request</td>
<td>Normative</td>
<td>Not Allowed</td>
</tr>
<tr>
<td>Get_Country_Info</td>
<td>Not Allowed</td>
<td>Not Supported</td>
</tr>
<tr>
<td>BIST</td>
<td>Not Allowed</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Sink_Capabilities</td>
<td>Normative</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Battery_Status</td>
<td>Not Allowed</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Alert</td>
<td>Not Allowed</td>
<td>Ignore</td>
</tr>
</tbody>
</table>

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
Table 6-3 OIAC USB PD Message Behavior on Initial Connection, cont.

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Local Cable Plug SOP</th>
<th>Local Cable Plug SOP'/SOP"</th>
<th>Local Cable Plug SOP</th>
<th>Local Cable Plug SOP'</th>
<th>Local Cable Plug SOP"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended Messages</td>
<td>Transmitted Message</td>
<td>Received Message</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery_Capabilities</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>Country_Codes</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>Country_Info</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>Firmware_Update_Request</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>Firmware_Update_Response</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>Get_Battery_Cap</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>Get_Battery_Status</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>Get_Manufacturer_Info</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>PPS_Status</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>Security_Response</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>Security_Request</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>Sink_Capabilities_Extended</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>Source_Capabilities_Extended</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>Status</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>Vendor Defined Messages</td>
<td>Transmitted Message</td>
<td>Received Message</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discover Identity</td>
<td>Normative</td>
<td>Not Allowed</td>
<td>NAK</td>
<td>Normative</td>
<td>NAK</td>
</tr>
<tr>
<td>Discover SVIDs</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>NAK</td>
<td>Conditional</td>
<td>NAK</td>
</tr>
<tr>
<td>Discover Modes</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>NAK</td>
<td>Conditional</td>
<td>NAK</td>
</tr>
<tr>
<td>Enter Mode</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>NAK</td>
<td>NAK</td>
<td>NAK</td>
</tr>
<tr>
<td>Exit Mode</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>NAK</td>
<td>NAK</td>
<td>NAK</td>
</tr>
<tr>
<td>Attention</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Ignore</td>
<td>NAK</td>
<td>NAK</td>
</tr>
</tbody>
</table>

6.2.2.2 USB PD Message Handling in the Active State

There are some USB PD SOP and SOP" messages that invalid in an OIAC, therefore the next two sections explicitly define all USB PD messages that do not traverse the cable either because the message is targeted to SOP' or are invalid and all USB PD messages that do traverse the cable to SOP" and SOP.

6.2.2.2.1 USB PD Messages Which Do Not Traverse the Cable in the Active State

The USB PD messages which do not traverse the OIAC when Active are defined in Table 6-4. Section 6.2.2.2.2 describes the messages which traverse the OIAC in Active.
Table 6-4 OIAC USB PD Messages Which Do Not Traverse in Active State

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Cable Plug SOP Transmitted Message</th>
<th>Cable Plug SOP’/SOP” Transmitted Message</th>
<th>Cable Plug SOP Received Message</th>
<th>Cable Plug SOP’/SOP” Received Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Messages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accept</td>
<td>Normative</td>
<td>Normative</td>
<td>Ignore¹</td>
<td></td>
</tr>
<tr>
<td>FR_Swap</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Reject</td>
<td>Ignore¹</td>
</tr>
<tr>
<td>Get_PPS_Status</td>
<td>Not Supported</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore¹</td>
</tr>
<tr>
<td>Get_Sink_Cap</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Normative³</td>
<td>Ignore¹</td>
</tr>
<tr>
<td>Get_Sink_Cap_Extended</td>
<td>Not Supported</td>
<td>Not Allowed</td>
<td>Normative³</td>
<td>Ignore¹</td>
</tr>
<tr>
<td>Get_Source_Cap</td>
<td>Normative</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore¹</td>
</tr>
<tr>
<td>Get_Source_Cap_Extended</td>
<td>Normative</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore¹</td>
</tr>
<tr>
<td>GoodCRC</td>
<td>Normative</td>
<td>Normative</td>
<td>Normative</td>
<td>Normative²/Ignore¹</td>
</tr>
<tr>
<td>GotoMin</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Ignore</td>
<td>Ignore¹</td>
</tr>
<tr>
<td>Ping</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Ignore</td>
<td>Ignore¹</td>
</tr>
<tr>
<td>PR_Swap</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore¹</td>
</tr>
<tr>
<td>PS_RDY</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Normative</td>
<td>Ignore¹</td>
</tr>
<tr>
<td>Reject</td>
<td>Normative</td>
<td>Not Allowed</td>
<td>Normative</td>
<td>Ignore¹</td>
</tr>
<tr>
<td>Soft_Reset</td>
<td>Normative</td>
<td>Not Allowed</td>
<td>Normative</td>
<td>Ignore¹</td>
</tr>
<tr>
<td>Vconn_Swap</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore¹</td>
</tr>
<tr>
<td>Wait</td>
<td>Normative⁴</td>
<td>Not Allowed</td>
<td>Normative</td>
<td>Ignore¹</td>
</tr>
<tr>
<td>Data Messages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source_Capabilities</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Normative</td>
<td>Ignore¹</td>
</tr>
<tr>
<td>Request</td>
<td>Normative</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore¹</td>
</tr>
<tr>
<td>BIST</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Normative²/Ignore¹</td>
</tr>
<tr>
<td>Sink_Capabilities</td>
<td>Normative</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore¹</td>
</tr>
<tr>
<td>Extended Messages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPS_Status</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore¹</td>
</tr>
<tr>
<td>Sink_Capabilities_Extended</td>
<td>Normative</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore¹</td>
</tr>
<tr>
<td>Source_Capabilities_Extended</td>
<td>Not Allowed</td>
<td>Not Allowed</td>
<td>Not Supported</td>
<td>Ignore¹</td>
</tr>
</tbody>
</table>

Note:
1. SOP" message may be dropped and not forwarded across the cable.
2. Normative for SOP’ and Ignore for SOP".
3. See Section 6.4.2.
4. See Section 6.2.2.5.

6.2.2.2.2 USB PD Messages Which Do Traverse the Cable in the Active State

All USB PD SOP messages defined in Table 6-5 are forwarded across the cable on SOP. The messages are sent by the Initiator, forwarded optically through the cable, and then driven on CC from the far side cable plug to the Receiver. The timing of the message forwarding is defined in Table 6-6. The GoodCRC is generated locally to the cable plug and returned within tTransmit on a valid Message. The OIAC shall be able to handle messages received with a minimum spacing of tInterFrameGap.
The message Initiator expects a response within tSenderResponse and will perform error recovery if no response is received within this time unless the message is a Firmware_Update_Request/Response or a Security_Request/Response. The message Receiver responds within tReceiverResponse unless there is an error. The OIAC shall decide to respond locally or forward the message, send the message across the fiber, and drive the message on the far side plug CC pin within tForward as shown in Figure 6-4 unless the message is Firmware_Update_Request/Response or a Security_Request/Response. The USB PD handler shall forward the messages addressed to SOP defined in Table 6-4. The USB PD Handler shall only forward to the far-end plug any message addressed to SOP which are defined below:

- Firmware_Update_Request, Firmware_Update_Response
- Security_Request, Security_Response
- Status
- Enter Mode, Exit Mode, Attention (if the Alternate Modes are supported by the OIAC)

The OIAC shall not forward USB PD messages until it completes Phase 3. The cable plug shall send no response if a GoodCRC is not received from the Responder.

Some implementations may implement local copies of the SOP information on the local cable plug and use an internal mechanism to send/receive responses.
Table 6-5 OIAC USB PD Messages Addressed to SOP Which Traverse the OIAC in the Active State

<table>
<thead>
<tr>
<th>Message Type</th>
<th>SOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Messages</td>
<td></td>
</tr>
<tr>
<td>DR_Swap</td>
<td>Normative</td>
</tr>
<tr>
<td>Get_Country_Codes</td>
<td>Normative</td>
</tr>
<tr>
<td>Get_Status</td>
<td>Normative</td>
</tr>
<tr>
<td>Not_Supported</td>
<td>Normative</td>
</tr>
<tr>
<td>Wait</td>
<td>Normative</td>
</tr>
<tr>
<td>Data Messages</td>
<td></td>
</tr>
<tr>
<td>Get_Country_Info</td>
<td>Normative</td>
</tr>
<tr>
<td>Battery_Status</td>
<td>Normative</td>
</tr>
<tr>
<td>Alert</td>
<td>Normative</td>
</tr>
<tr>
<td>Extended Messages</td>
<td></td>
</tr>
<tr>
<td>Battery_Capabilities</td>
<td>Normative</td>
</tr>
<tr>
<td>Country_Codes</td>
<td>Normative</td>
</tr>
<tr>
<td>Country_Info</td>
<td>Normative</td>
</tr>
<tr>
<td>Firmware_Update_Request</td>
<td>Normative</td>
</tr>
<tr>
<td>Firmware_Update_Response</td>
<td>Normative</td>
</tr>
<tr>
<td>Get_Battery_Cap</td>
<td>Normative</td>
</tr>
<tr>
<td>Get_Battery_Status</td>
<td>Normative</td>
</tr>
<tr>
<td>Get_Mfr_Info</td>
<td>Normative</td>
</tr>
<tr>
<td>Manufacturer_Info</td>
<td>Normative</td>
</tr>
<tr>
<td>Security_Request</td>
<td>Normative</td>
</tr>
<tr>
<td>Security_Response</td>
<td>Normative</td>
</tr>
<tr>
<td>Status</td>
<td>Normative</td>
</tr>
<tr>
<td>Vendor Defined Messages</td>
<td></td>
</tr>
<tr>
<td>Discover Identity</td>
<td>Normative</td>
</tr>
<tr>
<td>Discover SVIDs</td>
<td>Normative</td>
</tr>
<tr>
<td>Discover Modes</td>
<td>Normative</td>
</tr>
<tr>
<td>Enter Mode</td>
<td>Normative</td>
</tr>
<tr>
<td>Exit Mode</td>
<td>Normative</td>
</tr>
<tr>
<td>Attention</td>
<td>Normative</td>
</tr>
</tbody>
</table>
Table 6-6 OIAC USB PD Message Timing

<table>
<thead>
<tr>
<th>Timer</th>
<th>Value (Min)</th>
<th>Value (Max)</th>
<th>Units</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>tDRSwapWait</td>
<td>100</td>
<td></td>
<td>ms</td>
<td>Time to wait if WAIT received before sending another DR_Swap. Defined in the USB PD Specification.</td>
</tr>
<tr>
<td>tForward</td>
<td>4</td>
<td></td>
<td>ms</td>
<td>Time to forward SOP Message one direction in OIAC.</td>
</tr>
<tr>
<td>tTransmit</td>
<td>195</td>
<td></td>
<td>µs</td>
<td>Time to send the GoodCRC. Defined in the USB PD Specification.</td>
</tr>
<tr>
<td>tInterFrameGap</td>
<td>25</td>
<td></td>
<td>µs</td>
<td>Time from the end of last bit of a Frame until the start of the first bit of the next Preamble. Defined in the USB PD Specification.</td>
</tr>
<tr>
<td>tSenderResponse</td>
<td>24</td>
<td>30</td>
<td>ms</td>
<td>Time for SOP Initiator to receive response. Defined in the USB PD Specification.</td>
</tr>
<tr>
<td>tBootupCRCHoldoff</td>
<td>50</td>
<td></td>
<td>ms</td>
<td>Hold off on GoodCRC until ready to respond with Operational RDO in Phase 3.</td>
</tr>
</tbody>
</table>

Note: The USB PD specification revision shall take precedence over this table if any discrepancies exist.
6.2.2.3 USB PD Reset Handling
The USB PD Reset handling by OIAC is defined in Table 6-7.

The OIAC shall:

1. Detect the Hard Reset ordered set
2. Forward it to the remote plug and remote port
3. Reset its state machine.

<table>
<thead>
<tr>
<th>Ordered Sets</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Reset</td>
<td>Resets port partners at each end of the cable and the cable itself</td>
</tr>
<tr>
<td>Cable Reset</td>
<td>OIAC shall ignore a Cable reset</td>
</tr>
</tbody>
</table>

A Hard Reset signal can occur at any time during normal operation of the cable and also during the cable initialization. This signal will take precedence over the initialization state machine and immediately forward the Hard Reset Message to the remote plug, using an internal cable message.

6.2.2.4 Internal Cable Messages
All SOP” and SOP messages shall be forwarded or terminated as defined in Section 6.2.2 and will not be further described in this section.

The messages defined in this section provide informative guidance on internal messages for OIACs. The actual definition and implementation of each message is left to the implementer.

In this section and Section 6.3, there is a defined Master/Slave Plug for USB PD communication at time of manufacture. These designations are completely internal to the cable, but are used to simplify the cable initialization and internal messaging.

6.2.2.4.1 MSG_Keep_Alive
A low duty cycle message that is meant to inform the remote cable plug that the local cable plug is still operational.

A simple example is that the only the master plug will send MSG_Keep_Alive and the slave must respond with MSG_Keep_Alive_ACK. Each end will have its own timeout for MSG_Keep_Alive and MSG_Keep_Alive_ACK.

6.2.2.4.2 MSG_Keep_Alive_ACK
Acknowledgement message to the MSG_Keep_Alive.

A simple example is that the only the master plug will send MSG_Keep_Alive and the slave must respond with MSG_Keep_Alive_ACK. Each end will have its own timeout for MSG_Keep_Alive and MSG_Keep_Alive_ACK.

6.2.2.4.3 MSG_Port_Capabilities
This message contains all relevant local port capabilities including but not limited to:
- Chunked/Unchunked capability
- DRD/DFP/UFP capabilities

6.2.2.4 MSG_Cable_Config
This message contains the final cable configuration based on known system capabilities.
It will contain both relevant ports' capabilities and the final DFP/UFP roles for the system.
This message will also serve as the signal in Phase 2 for the cable plug to start the reboot process.

6.2.2.4.5 MSG_Release_Remote_SourceCap_GoodCRC
This is a synchronization message to attempt to bring up both ports at the same time.
It is used in Phase 3 and is the signal to release the GoodCRC message to the Source Capabilities message from the attached port. At the beginning of Phase 3, after each plug has been rebooted, and depending on the final DFP/UFP role, each plug should wait for MSG_Release_Remote_SourceCap_GoodCRC before it is allowed to release a GoodCRC in response to a Source Capabilities message from the port.

6.2.2.4.6 MSG_DR_Swap_Init
Initial DR_Swap sent by the Master Plug to Slave plug to perform a DR_Swap.

6.2.2.4.7 MSG_DR_Swap_Reject
This is message from the slave plug to report that the initial DR_Swap was rejected by its attached port.
This is needed by the master plug to attempt to re-configure the cable such that the slave port can remain a DFP. This is part of the DR_Swap test in Phase 1, shown in the state diagram transition from M3 to M4 (or M3 to M5). It is also possible that this may be needed in Phase 3, if the Slave port rejects the DR_Swap.

6.2.2.4.8 MSG_DR_Swap_Accept
This is message from the slave plug to report that the initial DR_Swap was accepted by its attached port.
This is needed by the master plug to continue (M3 → M6 transition) in Phase 1 in the cable initialization.

6.2.2.4.9 MSG_Force_Detach
This message is to request the remote plug to disconnect from its attached port. The disconnect method can be done by raising the voltage on the CC line to above $v_{Rd-Connect}$ or removing R_d.
This will cause the remote port to remove V_{CONN} from the remote plug all the circuitry should be powered down, therefore resetting any action taken by the plug on the CC line to cause the disconnect.

6.2.2.4.10 MSG_Hard_Reset
This message is to forward a Hard_Reset signal to the remote plug and port.
An internal Hard Reset message should be responded to with an Acknowledgement.
6.2.2.4.11 MSG_Acknowledgement

This message is to acknowledge that a message was received.

This message has been explicitly defined in a few specific cases but can be used more broadly.

6.2.2.5 Data Role Swap in Active State

OIACs shall support Data Role Swaps on SOP. Each OIAC plug discovers its plug port partner and determines if it is capable of a Data Role Swap during the initialization process described in Section 6.3. OIAC cable plugs generate internal messages to communicate the DR_Swap, Accept, Reject, and Wait to the far side of the cable.

- The flow of a successful DR_Swap is shown in Figure 6-5.
- The flow of a Responder rejecting a DR_Swap is shown in Figure 6-6.
- The flow of a Responder issuing a Wait to a DR_Swap is shown in Figure 6-7. Note: The USB PD Wait and Retry timers shall follow all timing requirements in USB PD.
- The flow of an Initiator rejecting a cable plug DR_Swap due to an Accept from the Responder is shown in Figure 6-8.
- The flow of an Initiator issuing a Wait to a cable plug DR_Swap due to an Accept from the Responder is shown in Figure 6-9. Note: This does not follow the USB PD Wait timing, because a Hard Reset is initiated

Figure 6-5 OIAC Successful Data Role Swap
Figure 6-6 OIAC Rejected Data Role Swap

Figure 6-7 OIAC Wait Data Role Swap
Figure 6-8 OIAC Initiator Reject Data Role Swap
6.2.3 Short Active Cable Behaviors in Response to Power Delivery Events

Each cable plug of the short active cable shall be capable of communicating on SOP' and SOP" if reported in the Discover_Identity Command.

6.2.3.1 Data Role Swap

Short active cables are transparent to the USB PD Data Role swap.

6.2.3.2 Power Role Swap

Short active cables shall maintain USB 3.2 signaling during a USB PD Power Role swap. The source of VCONN is not affected by a Power Role Swap.

6.2.3.3 VCONN Swap

Short active cables shall maintain USB 3.2 signaling during a USB PD VCONN swap. During a VCONN Swap, the original VCONN Source continues to supply VCONN for some time after the new VCONN Source begins to supply VCONN. This ensures that VCONN is never dropped.

6.2.3.4 Fast Role Swap

Short active cables will drop USB 3.2 signaling as a side-effect of a Fast Role Swap if VCONN is not maintained during the Fast Role Swap.

6.3 OIAC Connection Flow and State Diagrams

This section defines the connection state diagrams for the OIAC.
OIAC plug defined at time of manufacture as either a Master or Slave for USB PD communication. This in no way indicates the plug has more or less capability, rather it allows for a consistent behavior when making the initial end to end connection.

The OIAC communicates using USB PD with its plug partners to determine the partner capabilities. The OIAC performs a series of connect/disconnects to establish the correct UFP/DFP data role for the cable plug. The possible combinations for Master Port, Slave Port, and cable plugs is defined in Table 6-8.

The connection and establishment of data roles is performed in three phases.

Table 6-8 Port and Plug Capabilities

<table>
<thead>
<tr>
<th>Host/Device Port Capabilities</th>
<th>Cable Configuration</th>
<th>Host/Device Port Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master Plug Role</td>
<td>Slave Plug Role</td>
</tr>
<tr>
<td>DRD</td>
<td>DFP</td>
<td>UFP</td>
</tr>
<tr>
<td>DFP</td>
<td>UFP</td>
<td>DFP</td>
</tr>
<tr>
<td>DRD</td>
<td>DFP</td>
<td>UFP</td>
</tr>
<tr>
<td>DFP</td>
<td>Billboard</td>
<td>DFP</td>
</tr>
<tr>
<td>Any</td>
<td>Billboard if possible</td>
<td>UFP</td>
</tr>
<tr>
<td>UFP</td>
<td>Billboard if possible</td>
<td>Any</td>
</tr>
</tbody>
</table>

6.3.1 OIAC Connection Flow – Discovery – Phase 1

The OIAC cable plugs discover the capabilities of their port partners in the Discovery Phase.
6.3.2 OIAC Connection Flow – Reboot – Phase 2

The OIAC cable plugs forward the capabilities of their plug partners and perform disconnect/reconnect.

- Master will always start with repeating sending “MSG_Cable_Config” to slave to start reboot.
- Slave Reboot.
- Slave sees ”MSG_Cable_Config” and holds off on SourceCap GoodCRC until it is allowed to release it.

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
• Slave send “MSG_Cable_Config” to the master.
• Master Reboots.
• Master see “MSG_Cable_Config” and holds off on SourceCap GoodCRC until it is allowed to release it.

Figure 6-11 OIAC Reboot – Phase 2
Phase 2 – Reboot Both Ends + Share Info

6.3.3 OIAC Connection Flow – Configuration – Phase 3

The OIAC master plug determines DFP/UFP roles for the master and slave plugs. The master release the PLUG to be configured as the DFP and initiates a DR_Swap. The side that issues the DR_Swap send a DR_Swap and releases the other side SourceCap GoodCRC.
Figure 6-12 OIAC Master Plug Configure as DFP – Phase 3

<table>
<thead>
<tr>
<th>Host/Device Port</th>
<th>Cable Master Plug</th>
<th>Cable Slave Plug</th>
<th>Host/Device Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRD</td>
<td>DFP</td>
<td>UFP</td>
<td>DRD</td>
</tr>
<tr>
<td>DFP</td>
<td>UFP</td>
<td>DFP</td>
<td>DRD</td>
</tr>
<tr>
<td>DRD</td>
<td>DFP</td>
<td>UFP</td>
<td>DFP</td>
</tr>
<tr>
<td>DFP</td>
<td>Billboard</td>
<td>DFP</td>
<td></td>
</tr>
<tr>
<td>Any</td>
<td>Billboard if Possible</td>
<td>UFP</td>
<td></td>
</tr>
<tr>
<td>UFP</td>
<td>Billboard if Possible</td>
<td>Any</td>
<td></td>
</tr>
</tbody>
</table>

Phase 3
(Master Plug → DFP)

1. Establish PD Contract
2. DR_Swap with Local Port
3. Release Remote SourceCap GoodCRC
4. Cable configured

End Phase 3

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
Figure 6-13 OIAC Master Plug Configure as UFP – Phase 3

<table>
<thead>
<tr>
<th>Host/Device Port</th>
<th>Cable</th>
<th>Host/Device Port</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master Plug</td>
<td>Slave Plug</td>
</tr>
<tr>
<td>DRD</td>
<td>DFP</td>
<td>UFP</td>
</tr>
<tr>
<td>DFP</td>
<td>UFP</td>
<td>DFP</td>
</tr>
<tr>
<td>DRD</td>
<td>DFP</td>
<td>UFP</td>
</tr>
<tr>
<td>DFP</td>
<td>Billboard</td>
<td>DFP</td>
</tr>
<tr>
<td>Any</td>
<td>Billboard if Possible</td>
<td>UFP</td>
</tr>
<tr>
<td>UFP</td>
<td>Billboard if Possible</td>
<td>Any</td>
</tr>
</tbody>
</table>

Phase 3
(Master Plug → UFP)

- **Port**
 - DFP
- **Master Plug**
 - UFP
- **Slave Plug**
 - DFP

1. **Wait for SourceCap GoodCRC Release**
2. **Establish PD Contract**
3. **DR_Swap with Local Port**
4. **Release Remote SourceCap GoodCRC**

Cable configured

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
Figure 6-14 OIAC Master Plug No Connection Possible Billboard – Phase 3

<table>
<thead>
<tr>
<th>Host/Device Port</th>
<th>Cable</th>
<th>Host/Device Port</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master Plug</td>
<td>Slave Plug</td>
</tr>
<tr>
<td>DRD</td>
<td>DFP</td>
<td>UFP</td>
</tr>
<tr>
<td>DFP</td>
<td>UFP</td>
<td>DFP</td>
</tr>
<tr>
<td>DRD</td>
<td>DFP</td>
<td>UFP</td>
</tr>
<tr>
<td>DFP</td>
<td>Billboard</td>
<td></td>
</tr>
<tr>
<td>Any</td>
<td>Billboard if Possible</td>
<td>UFP</td>
</tr>
<tr>
<td>UFP</td>
<td>Billboard if Possible</td>
<td>Any</td>
</tr>
</tbody>
</table>

Phase 3 (Billboard/no connection)

- **Master**: If possible send billboard
 - Go to lowest power state
- **Slave**: If possible send billboard
 - Go to lowest power state

6.3.4 OIAC Connection State Diagram Master

The following sections detail a possible OIAC state diagram for the Master Plug.
Figure 6-15 OIAC Master Plug State Diagram Part 1 (Phase 1 and 2)

Phase 1

- **Initial Vconn Power**
 - No Connection
 - Slave Plug
 - Initial Timeout

Master Initial FD Contract

- Action on Entry:
 - Release SourceCap
 - GoodCRC with Local Port
 - Evaluate attached Port's DRD Capability
 - Respond to Source Cap with RDO
 - (1) Use Default RDO

Master Port Capability (DRD)

- Slave Port Capability (DRD/DFP)

Slave Port Capabilities Received

- Master Port Capability (DFP)
 - Slave Port Capability (DRD)

Master Port Capabilities

- Local DR Swap Test
 - Issue DR_Swap to Local Port
 - Slave DR & DR_SWAP Reject
 - MSG_DR_SWAP_Reject
 - MSG_DR_SWAP_Accept

Remote DR Swap Test

- Action on Entry:
 - Send DR_Swap_Init to Remote Plug
 - Send "BB-DFP" to Remote Plug
 - MSG_DR_SWAP_Init

State M0

- Master Port (DFP)
- Slave Port (DFP)

Remote Handshake

- Action on Event:
 - USB Attached OK
 - USB 3.2 State Machine: RTSSM x5 disabled (Hold it here)
 - Wait for "MSG_Cable_Config" or "Timeout"
 - Action on Exit

State M1

- Master Port (DFP)
- Slave Port (DFP)

Phase 2

- **Timeout**

Remote Plug

- Final Config
 - Remote Port Capabilities
 - DRD/DFP/UFP
 - Local Port Capabilities
 - DRD/DFP/UFP

Master Port Capability

- Slave Port Capability (DRD)

Slave Port Capabilities

- Master Port Capability (DFP)

Remote Port Capabilities

- Remote DFP & DR_SWAP Reject
- DR_SWAP_Accept

Local Port Capabilities

- Local Plug
- Remote Plug

Error USB Billboard

- "Invalid Configuration"
- Present USB Billboard if DFP
 - Send "BB-DFP" to Remote Plug

Reboot Sequence

- Disable HS path (Don't allow data thru)
 - Put USB in high-Z
 - Send REPEATED MSG_Cable_Config to Remote Plug

Receive MSG_Cable_Config

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
Figure 6-16 OIAC Master Plug State Diagram Part 2 (Phase 3)

“Master” Plug State Diagram – Part 2

Master Plug State Diagram – Part 2

Phase 3

Master Plug (DFP)

Slave Plug (UFP)

Active USB PD Contract 1

- **Action on Entry:**
 - Release SourceCap GoodCRC with Local Port (2)
 - Evaluate attached Port’s DRD Capability (Bit 25 of Source Cap)
 - Respond to Source Cap with RDO (5v0A)
 - Optionally remove Ra

State M8

DR Swap

- **Action on Entry:**
 - Issue DR_Swap to Local Port

State M9

Receiving MSG_Cable_Config

Master Plug (UFP)

Slave Plug (DFP)

Active USB PD Contract 2

- **Action on Entry:**
 - Release Remote SourceCap GoodCRC 1

State M10

State M11

MSG_DR_SWAP

- **Reject**

State M12

Release Remote SourceCap GoodCRC 2

- **Action on Entry:**
 - Release Remote SourceCap GoodCRC

State M13

Error - USB2 Billboard + Complete RESET

- Invalid Configuration
- Present USB2 Billboard
- Send Hard Reset to Remote Plug
- Wait for ACK (not for WatchDog, assume ACK received)

State M13

Error - USB2 Billboard + Complete RESET

- Billboard – “Internal Cable Communication unresponsive, Unplug both Cable ends to Reset.”

State M13

No ACK

State M14

Final System Configuration Verification

- **Action on Entry:**
 - Compare all values in MSG_Cable_Config with local Port

State M15

Port and Cable Config MisMatch

State M16

Port and Cable Config Match
6.3.4.1 Detached State (M0)
The plug is in Detached (M0) when no power is applied. The plug transitions to Remote Handshake (M1) when VCONN is applied.

6.3.4.2 Remote Handshake State (M1)
The plug is waiting for the “Timeout” timer expiration or a “MSG_Cable_Config” message from the slave plug.

Recommended Timeout time = ~100ms

The Timeout time is dependent on the duty cycle of the Slave Plug’s Repeat Port Capabilities messages and the maximum cable latency.

The plug starts in the USB 3.2 RTSSM eSS.Disabled and remains in eSS.Disabled until cable initialization is complete at the end of Phase 3.

6.3.4.2.1 Entry to Remote Handshake
The plug enters Attached.SNK followed by entry to Remote Handshake (M1).

6.3.4.2.2 Exit from Remote Handshake
The plug transitions to:

- **Master Initial PD Contract** (M2) when the “Timeout” timer has expired,
- **Active USB PD Contract 1** (M8) upon receipt of a “MSG_Cable_Config” message when the Master Plug resolves to a DFP and the Slave Plug will resolve to a UFP, or
- **Release Remote Source_Cap GoodCRC 1** (M10) upon receipt of a “MSG_Cable_Config” message when the Master Plug resolves to a UFP and the Slave Plug will resolve to a DFP.

6.3.4.3 Master Initial PD Contract State (M2)
When the plug is in Master Initial PD Contract, the plug has established an initial USB PD contract and evaluated its local port’s DRD capability.

6.3.4.3.1 Entry to Master Initial DP Contract
On Entry to Master Initial PD Contract, the plug shall:

1. Send a GoodCRC in response to a Source Capabilities message from the local attached port
2. Evaluate the local attached port’s DRD capability (Bit 25 of the Source Capabilities message)
3. Respond to the Source Capabilities message with the “default” RDO specified in Table 6-10.

6.3.4.3.2 Exit from Master Initial DP Contract
The OIAC plug shall transition to:

- **Local DR Swap Test** (M3) upon receipt of a MSG_Port_Capabilities where the Master Port is a DRD and the Slave Port is either a DRD or DFP,
- **Remote DR Swap Test** (M4) upon receipt of a MSG_Port_Capabilities where the Master Port is a DFP and the Slave Port is DRD, or
6.3.4.4 Local DR Swap Test State (M3)
The Local DR Swap Test is a test to ensure that the Master Port that is defined as a DRD will accept a DR_Swap request.

6.3.4.4.1 Entry to Local DR Swap Test
On entry to Local DR Swap Test, the plug shall issue a DR_Swap request to its local port.

If the local port responds to the DR Swap with "Wait," then the plug shall follow the tDRSwapWait timer and retry up to 3 times, after which it will error out and transition to state Error – USB2 Billboard (M5).

6.3.4.4.2 Exit from Local DR Swap Test
The OIAC plug shall transition to:

- Remote DR Swap Test (M4) upon receipt of a Reject and the Slave port reported that it is a DRD,
- Error – USB2 Billboard (M5) upon receipt of a Reject and the Slave port reported that it is a DFP, or
- Reboot Sequence (M6) upon receipt of an Accept.

6.3.4.5 Remote DR Swap Test State (M4)
The Remote DR Swap Test is a test to ensure that the Slave Port that is defined as a DRD will accept a DR_Swap request.

6.3.4.5.1 Entry to Remote DR Swap Test
On entry to Remote DR Swap Test, the plug shall issue a DR_Swap_Init to the remote plug.

6.3.4.5.2 Exit from Remote DR Swap Test
The OIAC plug shall transition to:

- Reboot Sequence (M6) upon receipt of a MSG_DR_Swap_Accept, or
- Error – USB2 Billboard (M5) upon receipt of a MSG_DR_Swap_Reject.

6.3.4.6 Error – USB2 Billboard (M5)
The plug presents a Billboard indicating an Invalid Configuration is present. For example: “Error: A DFP only device connected to one of the plugs.”

6.3.4.6.1 Entry to Error – USB2 Billboard
On entry Error – USB2 Billboard, the plug shall issue present a Billboard message over USB 2.0 and then power down to its lowest possible state.

6.3.4.6.2 Exit from Error – USB2 Billboard
The only means of exiting this Error state, is either from a Reset that disconnects VCONN power or a disconnect event which also disconnects VCONN power.

6.3.4.7 Reboot Sequence State (M6)
When the plug is in the Reboot Sequence, it will disable the High Speed Data path and start to initiate a remote plug reboot.
6.3.4.7.1 Entry to Reboot Sequence

On entry to Reboot Sequence, the plug shall:

1) Disable the HS path by changing the SS RX termination to High-Z;
2) Determine and store the final System Configuration for this link.

 a. The System Configuration will contain:
 i. Host/Device Port information
 ii. Final Master/Slave Plug roles
 1. If coming from State M3
 a. Master Plug \rightarrow DFP (DR_Swap)
 b. Slave Plug \rightarrow UFP
 2. If coming from State M4
 a. Master Plug \rightarrow UFP
 b. Slave Plug \rightarrow DFP (DR_Swap)
 3. If coming from State M9
 a. Master Plug \rightarrow UFP
 b. Slave Plug \rightarrow DFP (DR_Swap)

 3) Continuously send "MSG_Cable_Config" message to the remote plug.

6.3.4.7.2 Exit from Reboot Sequence

The OIAC plug shall transition to the Force Detach (M7) when a “MSG_Cable_Config” message is received that matches the final configuration that the Master Plug sent to the Slave Plug.

6.3.4.8 Force Detach State (M7)

The plug shall transition to SRC.Open on both CC and VCONN and maintain this state for at least \texttt{tSRCDisconnect}.

6.3.4.8.1 Entry to Force Detach

On entry to Force Detach, the plug shall raise the voltage on the CC-wire above \texttt{vRd-Connect}.

6.3.4.8.2 Exit from Force Detach

The plug transitions to Detached upon exit from Force Detach.

6.3.4.9 Active USB PD Contract 1 State (M8)

Active USB Contract 1 is where OIAC Master Plug creates at USB PD contract with the local port.

6.3.4.9.1 Entry to Active USB PD Contract 1

The OIAC plug shall follow the steps listed below:

1. Begin responding to USB PD messages from its port partner with GoodCRCs.
2. Evaluate b25 in the Fixed 5V PDO in the Source Capabilities message to check if its port partner is a DRD.
3. Request for a 5 V @ 0 A power contract.
4. May remove Ra to save power.
6.3.4.9.2 Exit from Active USB PD Contract 1
The plug transitions to the **DR Swap** (M9) when it receives an Accept followed by a PS_RDY message from its port partner.

6.3.4.10 DR Swap State (M9)
The **DR Swap** is used to set the final data role of the OIAC’s Master Plug and signal to the OIAC Slave Plug to complete its configuration.

6.3.4.10.1 Entry to DR Swap
The OIAC plug shall issue a DR_Swap to its port partner.

If the local port responds to the DR_Swap with "Wait," then the plug shall follow the tDRSwapWait timer and retry up to 3 times, after which it will error out and transition to state **Error - USB2 Billboard** (M5).

6.3.4.10.2 Exit from DR Swap
If the DR_Swap message is responded to with:

- An Accept, it shall transition to the **Release Remote Source_Cap GoodCRC 2 State** (M12), or
- A Reject it shall transition to the **Error - USB2 Billboard + Complete Reset** (M13).

6.3.4.11 Release Remote Source_Cap GoodCRC 1 State (M10)
The OIAC is waiting to for Release_Remote_Source_Cap_GoodCRC to better synchronize the power on of the two OIAC plug ends.

6.3.4.11.1 Entry to Release Remote Source_Cap GoodCRC 1
The OIAC plug shall release the Remote SourceCap GoodCRC.

6.3.4.11.2 Exit from Release Remote Source_Cap GoodCRC 1
The OIAC plug shall transition to:

- **Active USB PD Contract 2 State** (M11), when a “MSG_Release_Remote_SourceCap_GoodCRC” message is received, or
- **Error - USB2 Billboard + Complete Reset** (M13) upon receipt of a MSG_DR_Swap_Reject.

6.3.4.12 Active USB PD Contract 2 State (M11)
Active USB Contract 2 is where OIAC Master Plug creates at **USB PD** contract with the local port and should end with viable link.

6.3.4.12.1 Entry to Active USB PD Contract 2
The OIAC plug shall follow the steps listed below:

1. Begin responding to USB PD messages from its port partner with GoodCRCs.
2. Request a 5 V @ 0 A power contract.
3. May remove Ra to save power.

6.3.4.12.2 Exit from Active USB PD Contract 2
The plug shall transition to **Final System Configuration Verification** (M13) for final system verification.
6.3.4.13 Release Remote Source_Cap GoodCRC 2 State (M12)

OIAC Source Plug configuration is completed and the USB 3.2 begins looking for a connection.

6.3.4.13.1 Entry to Release Remote Source_Cap GoodCRC 2

The OIAC plug shall release the Remote SourceCap GoodCRC.

6.3.4.13.2 Exit from Release Remote Source_Cap GoodCRC 2

The plug shall transition to Final System Configuration Verification (M13) for final system verification.

6.3.4.14 Error – USB2 Billboard + Complete Reset (M13)

The plug presents a Billboard indicating an Invalid Configuration is present. For example: “Error: An invalid configuration occurred. Full link will be reset.”

6.3.4.14.1 Entry to Error – USB2 Billboard + Complete Reset (M13)

On entry Error – USB2 Billboard + Complete Reset, the plug shall:

1) Present a USB2 Billboard message
2) Send a MSG_Hard_Reset to the remote Plug
3) Wait for Hard Reset Ack from Remote Plug (Unless entry is from an expired WatchDog Timer, in which case, go directly to M13-B)

Recewed ACK (State M13-B):

4) Send Hard Reset to the Local Port

Did NOT receive ACK (State M13-C):

5) Present USB2 Billboard Message: “Error: Internal Cable Communication Error. Unplug both cable ends to reset.”

6.3.4.14.2 Exit from Error – USB2 Billboard + Complete Reset (M13 B/C)

The only means of exiting this Error state, is either from a Reset that disconnects VCONN power or a disconnect event which also disconnects VCONN power from each port.

6.3.4.14.3 WatchDog Timer Entry

A watchdog timer should be implemented for internal cable messages that require a response. The watchdog timer will also provide an entry to an Error State (M13) if the far end plug is unresponsive for any reason.

There are a few states where the watchdog timer shall NOT be implemented including but not limited to M2, where it is possible that only a single end of the OIAC is connected and M6, where the reboot sequence can take a few seconds.

6.3.4.15 Final System Configuration Verification (M14)

Final System Configuration Verification is used to do one final check there were no unforeseen changes the local port and the final cable configuration defined by the master plug.

6.3.4.15.1 Entry to Final System Configuration Verification

The OIAC plug shall check all values in the MSG_Cable_Config match that of the current local port's configuration.
6.3.4.15.2 Exit from Final System Configuration Verification

The plug shall transition to:

- *Rx.Detect*, and start far-end receiver termination detection and the *USB 3.2* RTSSM State Machine after a successful match of the MSG_Cable_Config and the local port’s configuration, or

- *Error - USB2 Billboard + Complete RESET* (State M14) after unsuccessful match of the MSG_Cable_Config and the local port’s configuration.

6.3.5 OIAC Connection State Diagram Slave

The following sections details a possible OIAC state diagram for the Slave Plug.
6.3.5.1 Detached State (S0)
The plug is in Detached (S0) when no power is applied. The plug transitions to Remote Handshake (S1) when VCONN is applied.

6.3.5.2 Remote Handshake State (S1)
The plug is waiting for the “Timeout” timer expiration or a “MSG_Cable_Config” message from the master plug.

Recommended Timeout time = ~100ms

The Timeout time is dependent on the duty cycle of the Master Plug’s Repeat MSG_Cable_Config messages and the maximum cable latency.

6.3.5.2.1 Entry to Remote Handshake
The plug enters Attached.SNK followed by entry to Remote Handshake (S1).

The plug starts in the USB 3.2 RTSSM eSS.Disabled and remains in eSS.Disable until cable initialization is complete at the end of Phase 3.

6.3.5.2.2 Exit from Remote Handshake
The plug transitions to:

* Slave Initial PD Contract (S2) when the “Timeout” timer has expired, or
* Send Repeated Cable Config (S5) upon receipt of a “MSG_Cable_Config” message.

6.3.5.3 Slave Initial DP Contract (S2)
The plug takes the following actions in the order defined:

1. Send a GoodCRC in response to a Source Capabilities message from the local attached port.
2. Evaluate the local attached port's DRD Capability (Bit 25 of the Source Capabilities message).
3. Send the initial RDO (5 V/0 A) and negotiate an explicit power contract.
4. Send “MSG_Port_Capabilities” to the master plug. The plug shall continue to send “MSG_Port_Capabilities” until it exits this state.

6.3.5.3.1 Entry to Slave Initial DP Contract
The plug enters Slave Initial PD Contract (S2) upon “Timeout” timer expiration.

6.3.5.3.2 Exit from Slave Initial DP Contract
The plug transitions to:

* DR Swap (S3) upon receipt of a “DR_Swap_Init” message from the master plug, or
* Force Detach (S4) upon receipt of a “MSG_Cable_Config” message from the master plug.

6.3.5.4 DR Swap (S3)
The plug determines if a DR_Swap can be performed with the local attached port or the master plug configured itself.

6.3.5.4.1 Entry to DR Swap
Upon entry into DR Swap (S3) the plug shall:
1. Send DR_Swap message to the local attached port.
2. Send MSG_DR_Swap_Accept when the plug receives Accept message from the local attached port.
3. Send MSG_DR_Swap_Reject when the plug receives Reject message from the local attached port.

If the local port responds to the DR Swap with “Wait,” then the plug shall follow the tDRSwapWait timer and retry up to 3 times, after which it will error out and transition to state **Error – USB2 Billboard (S7)**.

6.3.5.4.2 Exit from DR Swap

The plug shall transition to:

- **Error – USB2 Billboard (S7)** upon rejection of the local attached port DR_Swap, or
- **Force Detach (S4)** upon receipt of a “MSG_Cable_Config” message from the master plug.

6.3.5.5 Force Detach (S4)

The plug shall transition to **SRC.Open** on both CC and VCONN and maintain this state for at least tSRCDisconnect.

6.3.5.5.1 Entry to Force Detach

The plug enters **Force Detach (S4)** upon receipt of a “MSG_Cable_Config” message from the master plug.

6.3.5.5.2 Exit from Force Detach

The plug transitions to **Detached (S0)** upon exit from **Force Detach**.

6.3.5.6 Send Repeated Cable Config (S5)

The plug repeatedly sends “MSG_Cable_Config” messages in this state to inform the master plug of the configuration of the local attached port.

6.3.5.6.1 Entry to Send Repeated Cable Config

The plug enters **Repeated Cable Config (S5)** upon receipt of a “MSG_Cable_Config” message from the master plug.

6.3.5.6.2 Exit from Send Repeated Cable Config

The plug transitions to **Phase 3 PD Contract (S6)** upon receipt of a “Release SourceCap GoodCRC” message from the master port.

6.3.5.7 Phase 3 PD Contract (S6)

The plug performs the following actions in this state:

1. Send a GoodCRC in response to a Source Capabilities message from the local attached port.
2. Evaluate the attached local attached port’s DRD Capability (Bit 25 of the Source Capabilities message).
3. Send the initial RDO (5 V/0 A) in response to the Source Capabilities message and negotiate an explicit power contract.
6.3.5.7.1 Entry to Phase 3 PD Contract
The plug enters **Phase 3 PD Contract** upon receipt of a “Release SourceCap GoodCRC” message from the master plug.

6.3.5.7.2 Exit from Phase 3 PD Contract
The plug transitions to:
- **Final System Configuration Verification** (S10) for final system verification upon determination the master plug is acting as a DFP and it is acting as a UFP, or
- **Phase 3 DR Swap** (S8) upon determination the master plug is acting as a UFP and it is acting as a DFP.

6.3.5.8 Error – USB2 Billboard (S7)
The plug presents a Billboard indicating an Invalid Configuration is present. For example: “Error: A DFP only device connected to one of the plugs.”

6.3.5.8.1 Entry to Error – USB2 Billboard
The plug transitions to this state upon rejection of a DR_Swap by the local attached port.

6.3.5.8.2 Exit from Error – USB2 Billboard
The only means of exiting this Error state, is either from a Reset that disconnects VCONN power or a disconnect event which also disconnects VCONN power.

6.3.5.9 Phase 3 DR Swap State (S8)
The plug issues a DR_Swap with its local attached port in this state.

6.3.5.9.1 Entry to Phase 3 DR Swap
The plug enters **Phase 3 DR Swap** upon determination the master plug is connected as a UFP and the slave plug should connect as a DFP.

6.3.5.9.2 Exit from Phase 3 DR Swap
The plug shall transition to:
- **Final System Configuration Verification** (S10) for final system verification after successful completion of the DR_Swap with the local attached port, or
- **Error – USB2 Billboard** (S7) after unsuccessful completion of the DR_Swap with the local attached port.

6.3.5.10 Error – USB2 Billboard + Complete RESET (S9)
The plug presents a Billboard indicating an Invalid Configuration is present. For example: “Error: An invalid configuration occurred. Full link will be reset.”

6.3.5.10.1 Entry to Error – USB2 Billboard + Complete RESET
On entry **Error – USB2 Billboard + Complete RESET**, the plug shall:
1. Present a USB2 Billboard message.
2. Send Hard_Reset to the Local Plug.

6.3.5.10.2 Exit from Error – USB2 Billboard + Complete RESET
The only means of exiting this Error state, is either from a Reset that disconnects VCONN power or a disconnect event which also disconnects VCONN power.
6.3.5.10.3 WatchDog Timer Entry
A watchdog timer should be implemented for internal cable messages that require a response. The watchdog timer will also provide an entry to an Error State (M13) if the far end plug is unresponsive for any reason.

There are a few states where the watchdog timer shall NOT be implemented including but not limited to S5, where the reboot sequence can take a few seconds.

6.3.5.11 Final System Configuration Verification (S10)
The Final System Configuration Verification is used to one final check there were no unforeseen changes the local port and the final cable configuration defined by the master plug.

6.3.5.11.1 Entry to Final System Configuration Verification
The OIAC plug shall check all values in the MSG_Cable_Config match that of the current local port's configuration.

6.3.5.11.2 Exit from Final System Configuration Verification
The plug shall transition to:

- **Rx.Detect**, and start far-end receiver termination detection and the USB 3.2 RTSSM State Machine after a successful match of the MSG_Cable_Config and the local port's configuration, or

- **Error – USB2 Billboard + Complete RESET** (State S9) after unsuccessful match of the MSG_Cable_Config and the local port's configuration.

6.4 Active Cable Power Requirements

6.4.1 VBUS Requirements
Short active cables shall meet the limits of the IR Drop on VBUS and ground defined in Section 4.4.1.

Short active cables shall provide VBUS and support at least 3 A and optionally 5 A current.

6.4.2 OIAC VBUS Requirements
The OIAC cable plugs have two power contracts. The first contract is defined at first connection of the cable. The second contract is after the data role establishment in the Active state.

6.4.2.1 OIAC VBUS Requirements on Initial Connection
The OIAC cable plugs shall negotiate a power contract with their plug partners as defined in this section on Initial Connection. The USB PD Sink Capabilities PDO presented by the OIAC cable plug (SOP) on Initial Connection is defined in Table 6-9. The Sink RDO (SOP) before data role establishment is defined in Table 6-10.

The OIAC cable plug (SOP) shall wait tTypeCSinkWaitCap after VBUS is presented before issuing a Hard Reset to restart sending of the Source_Capabilities.
Table 6-9 OIAC Sink_Capabilities PDO (SOP) on Initial Connection

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>B31..30</td>
<td>00b</td>
<td>Fixed Supply</td>
</tr>
<tr>
<td>B29</td>
<td>0b</td>
<td>Not Dual-Role Power</td>
</tr>
<tr>
<td>B28</td>
<td>0b</td>
<td>Not higher capability</td>
</tr>
<tr>
<td>B27</td>
<td>0b</td>
<td>Not unconstrained power</td>
</tr>
<tr>
<td>B26</td>
<td>X</td>
<td>USB Communications Capable – Don’t care</td>
</tr>
<tr>
<td>B25</td>
<td>X</td>
<td>Dual-Role Data – Don’t care</td>
</tr>
<tr>
<td>B24..23</td>
<td>00b</td>
<td>Fast Role Swap not supported</td>
</tr>
<tr>
<td>B22..20</td>
<td>000b</td>
<td>Reserved</td>
</tr>
<tr>
<td>B19..10</td>
<td>0001100100b</td>
<td>5V in 50mV units</td>
</tr>
<tr>
<td>B9..0</td>
<td>Design defined</td>
<td>Operational current in 10mA units</td>
</tr>
</tbody>
</table>

Table 6-10 OIAC Sink_Capabilities_Extended PDO (SOP) on Initial Connection

<table>
<thead>
<tr>
<th>Offset</th>
<th>Field</th>
<th>Size</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>VID</td>
<td>2</td>
<td>Numeric</td>
<td>Vendor ID (assigned by the USB-IF)</td>
</tr>
<tr>
<td>2</td>
<td>PID</td>
<td>2</td>
<td>Numeric</td>
<td>Product ID (assigned by the manufacturer)</td>
</tr>
<tr>
<td>4</td>
<td>XID</td>
<td>4</td>
<td>Numeric</td>
<td>Value provided by the USB-IF assigned to the product</td>
</tr>
<tr>
<td>8</td>
<td>FW Version</td>
<td>1</td>
<td>Numeric</td>
<td>Firmware version number</td>
</tr>
<tr>
<td>9</td>
<td>HW Version</td>
<td>1</td>
<td>Numeric</td>
<td>Hardware version number</td>
</tr>
<tr>
<td>10</td>
<td>SKEDB Version</td>
<td>1</td>
<td>Numeric</td>
<td>SKEDB Version (not the specification Version): Version 1.0 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Values 0 and 2-255 are Reserved and shall not be used.</td>
</tr>
<tr>
<td>11</td>
<td>Load Step</td>
<td>1</td>
<td>Bit Field</td>
<td>0x00</td>
</tr>
<tr>
<td>12</td>
<td>Sink Load</td>
<td>2</td>
<td>Bit field</td>
<td>0x00</td>
</tr>
<tr>
<td></td>
<td>Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Compliance</td>
<td>1</td>
<td>Bit Field</td>
<td>0x00</td>
</tr>
<tr>
<td>15</td>
<td>Touch Temp</td>
<td>1</td>
<td>Value</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Battery Info</td>
<td>1</td>
<td>Byte</td>
<td>0x00</td>
</tr>
<tr>
<td>17</td>
<td>Sink Modes</td>
<td>1</td>
<td>Bit field</td>
<td>0x00</td>
</tr>
<tr>
<td>18</td>
<td>Sink Minimum PDP</td>
<td>1</td>
<td>Byte</td>
<td>0x00</td>
</tr>
<tr>
<td>19</td>
<td>Sink Operational</td>
<td>1</td>
<td>Byte</td>
<td>0x00</td>
</tr>
<tr>
<td></td>
<td>PDP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Sink Maximum PDP</td>
<td>1</td>
<td>Byte</td>
<td>0x00</td>
</tr>
</tbody>
</table>
Table 6-11 OIAC Sink RDO (SOP) on Initial Connection

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>B31</td>
<td>0b</td>
<td>Reserved</td>
</tr>
<tr>
<td>B20..28</td>
<td>001b</td>
<td>Object Position</td>
</tr>
<tr>
<td>B27</td>
<td>0b</td>
<td>No GiveBack flag</td>
</tr>
<tr>
<td>B26</td>
<td>0b</td>
<td>No Capabilities Mismatch</td>
</tr>
<tr>
<td>B25</td>
<td>1b</td>
<td>USB Communication Capable</td>
</tr>
<tr>
<td>B24</td>
<td>1b</td>
<td>No USB Suspend</td>
</tr>
<tr>
<td>B23</td>
<td>0b</td>
<td>Unchunked Extended Messages Not Supported</td>
</tr>
<tr>
<td>B22..20</td>
<td>000b</td>
<td>Reserved</td>
</tr>
<tr>
<td>B19..10</td>
<td>0</td>
<td>Operating Current in 10 mA units</td>
</tr>
<tr>
<td>B9..0</td>
<td>0</td>
<td>Maximum current in 10 mA units</td>
</tr>
</tbody>
</table>

6.4.3 USB PD Rules in Active State

The OIAC cable plugs shall negotiate a power contract with their plug partners as defined in this section in the Active State. The OIAC shall follow the message applicability rules defined in Table 6-3 until entry to the Active State.

The minimum USB PD Sink Capabilities PDO presented by the OIAC cable plug (SOP) is defined in Table 6-12. The OIAC may request additional Sink Capabilities (higher voltages and currents) for performance optimization. The minimum Sink RDO is provided as an example in Table 6-13. The OIAC shall function when receiving the minimum Source PDO.

The OIAC cable plug (SOP) shall wait tTypeCSinkWaitCap after VBUS is presented before issuing a Hard Reset to restart sending of the Source Capabilities.

Table 6-12 OIAC Active Sink RDO (SOP)

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>B31</td>
<td>0b</td>
<td>Reserved</td>
</tr>
<tr>
<td>B20..28</td>
<td>As required</td>
<td>Object Position</td>
</tr>
<tr>
<td>B27</td>
<td>0b</td>
<td>No GiveBack flag</td>
</tr>
<tr>
<td>B26</td>
<td>0b</td>
<td>No Capabilities Mismatch</td>
</tr>
<tr>
<td>B25</td>
<td>1b</td>
<td>USB Communication Capable</td>
</tr>
<tr>
<td>B24</td>
<td>1b</td>
<td>USB Suspend</td>
</tr>
<tr>
<td>B23</td>
<td>As reported from remote end</td>
<td>Unchuncked Extended Messages</td>
</tr>
<tr>
<td>B22..20</td>
<td>000b</td>
<td>Reserved</td>
</tr>
<tr>
<td>B19..10</td>
<td>Design Defined</td>
<td>Operating Current in 10 mA units(^1)</td>
</tr>
<tr>
<td>B9..0</td>
<td>Design Defined</td>
<td>Maximum current in 10 mA units(^1)</td>
</tr>
</tbody>
</table>

Note 1: Thermal design must be considered.
Table 6-13 OIAC Sink_Capabilities PDO (SOP) in Active

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>B31..30</td>
<td>00b</td>
<td>Fixed Supply</td>
</tr>
<tr>
<td>B29</td>
<td>0b</td>
<td>Not Dual-Role Power</td>
</tr>
<tr>
<td>B28</td>
<td>0b</td>
<td>Not higher capability</td>
</tr>
<tr>
<td>B27</td>
<td>0b</td>
<td>Not unconstrained power</td>
</tr>
<tr>
<td>B26</td>
<td>1b</td>
<td>USB Communications Capable</td>
</tr>
<tr>
<td>B25</td>
<td>As reported from Remote End</td>
<td>Dual-Role Data1</td>
</tr>
<tr>
<td>B24..23</td>
<td>00b</td>
<td>Fast Role Swap not supported</td>
</tr>
<tr>
<td>B22..20</td>
<td>000b</td>
<td>Reserved</td>
</tr>
<tr>
<td>B19..10</td>
<td>001100100b</td>
<td>5 V in 50 mV units</td>
</tr>
<tr>
<td>B9..0</td>
<td>Design defined</td>
<td>Operational current in 10 mA units2</td>
</tr>
</tbody>
</table>

Notes: 1. Reflection of far side connection; 2. Thermal design must be considered.

6.4.4 VCONN Requirements

Active Cables shall:

- Meet the VCONN sink requirement defined in Table 4-6 and Table 6-19.
- Connect VCONN as shown in Figure 2-1 or Figure 2-2.

Short Active Cables shall be capable of being powered from VCONN from only one port.

OIAC shall be powered from VCONN from each port.

6.5 Mechanical

All active cables shall meet the mechanical requirements defined in the Section 3.8.

6.5.1 Thermal

6.5.1.1 Thermal Shutdown

All active cables shall implement a temperature sensor and place the USB 3.2 signals in the eSS.Disabled state when the plug skin temperature reaches the maximum defined in Table 6-14. Active cables shall indicate they are in thermal shutdown if queried via the USB PD Get_Status command.

OIACs shall billboard in shutdown. For example: “Error: The Optical Cable has experienced a thermal shutdown.”

The Thermal Shutdown is cleared by the following events:

- Disconnect
- USB PD Hard Reset

6.5.1.2 Maximum Skin Temperature

Active cable plug’s skin temperature shall not exceed a maximum operating temperature of 30 °C above the ambient temperature for a plastic/rubber housing and 15 °C for a metal housing in any operating mode.
6.5.1.3 Thermal Reporting

Active cables shall implement reporting their maximum internal operating temperature in the USB PD Discover_ID Command. Active cables shall implement reporting their current internal operating temperature in the USB PD Get_Status Command on SOP’ and SOP” when supported. Active cables shall update their reported Internal Temperature at least every 500 ms.

The plug’s Internal Temperature is reported in °C and shall be monotonic. It is not the plug’s skin temperature, but cable manufacturers shall correlate the maximum internal operating temperature with the maximum plug skin temperature to ensure shutdown when the maximum plug skin temperature is reached.

Sources and/or Sinks may take action to reduce VBUS current to reduce the cable plug internal operating temperature to below the reported maximum operating temperature. It is recommended Sources and/or Sinks poll the plug’s Internal Temperature every 2 seconds.

<table>
<thead>
<tr>
<th>Table 6-14 Cable Temperature Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Requirements</td>
</tr>
<tr>
<td>Maximum Internal to Skin Temperature Offset</td>
</tr>
<tr>
<td>Maximum Internal Operating Temperature</td>
</tr>
<tr>
<td>Maximum Skin Temperature Plastic/Rubber</td>
</tr>
<tr>
<td>Maximum Skin Temperature Metal</td>
</tr>
</tbody>
</table>

Note 1: IEC 69950-1 reduced by 5 °C

6.5.2 Plug Spacing

Active cables will support the USB Type-C vertical and horizontal spacing defined Section 3.10.2 when functioning in USB 3.2 x1 operation. However, this spacing may impose thermal constraints. Appendix D provides system design guidance to minimize the thermal impact due to connector spacing. It is recommended that products designed for USB 3.2 x2 operation with multiple adjacent USB Type-C connectors follow the design guidance in Appendix D to minimize the likelihood the active cable will go into thermal shutdown.

6.6 Electrical Requirements

6.6.1 Shielding Effectiveness Requirement

All active cables shall meet the shielding effectiveness requirement defined in Section 3.7.7 and Figure 3-65.

6.6.2 Low Speed Signal Requirement

6.6.2.1 CC Channel Requirements

Active cables shall meet the Low-Speed Signal Requirements in Section 3.7.2.4.

6.6.2.2 SBU Requirements

6.6.2.2.1 Short Active Cables

Short active cables SBU wires shall meet the requirements defined in Table 6-15 and shall meet the crosstalk requirements both near-end and far-end between the low speed signals as defined in Section 3.7.2.4.
SBU{s} have no guaranteed performance when VCONN is not provided to the cable. The Host or Device shall not provide any signal beyond what is defined in Table 6-15 when VCONN has not been provided.

Table 6-15 Summary of Active Cable Features

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>zCable_SBU</td>
<td>Cable characteristic impedance on the SBU wires</td>
<td>32</td>
<td>53</td>
<td>Ω</td>
</tr>
<tr>
<td>tCableDelay_SBU</td>
<td>Cable propagation delay on the SBU wire</td>
<td>26</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>rCable_SBU</td>
<td>DC resistance of SBU wires in the cable in USB</td>
<td>40</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>vCable_SBU</td>
<td>Cable voltage swing on SBU wires</td>
<td>-0.3</td>
<td>4.0</td>
<td>V</td>
</tr>
<tr>
<td>Insertion Loss</td>
<td>Cable insertion Loss</td>
<td>5 @ 0.5 MHz</td>
<td>12 @ 10 MHz</td>
<td>15 @ 50 MHz</td>
</tr>
<tr>
<td>iCableSBU</td>
<td>Maximum end-to-end current</td>
<td>-25</td>
<td>+25</td>
<td>mA</td>
</tr>
</tbody>
</table>

Note 1: Measurement referenced to 50 Ohms.

6.6.2.2.2 Optically Isolated Cables

OIACs are not required to support SBU1/2 for USB 3.2 support. SBU{s} are not usable until the cable has entered an Alternate Mode. OIACs which choose to support SBU signals shall meet the requirements of the Alternate Mode(s) they support. Definition of the SBU requirements for Alternate Modes is outside the scope of this document.

6.6.3 USB 2.0

The USB 2.0 support depends on the type of active cable.

6.6.3.1 Short Active Cables

Short active cables shall meet the USB 2.0 requirements defined in Section 3.7.2.4 and 3.7.2.6.

Note: Active Cables greater than 5m report the number of hub hops consumed in the Active Cable VDO{s}.

6.6.3.2 Optically Isolated Active Cables

OIACs forward USB 3.2 and do not forward USB 2.0. The OIAC will take action to reset the link when the USB Device drops from USB 3.2 to USB 2.0.

During the initial connection the OIAC shall present as a USB 2.0 DFP and provide a 15K Ohm pull down on the D+/D– pins on both ends of the cable. The cable plug shall not issue a USB 2.0 Reset in this state.

The OIAC cable plug shall issue a USB 2.0 Reset upon detecting a USB 2.0 connection on D+/D– (LS, FS, or HS USB 2.0 connection). The cable plug shall issue a USB 2.0 Bus Reset by pulling D+ and D– low for at least 50 ms.
The OIAC shall implement a tDisableCount counter to determine how many times the cable has transitioned from **USB 3.2** to **USB 2.0**. The tDisableCount counter shall be reset to zero on either condition:

- Power on Reset of the OIAC, or
- Successful transition to **USB 3.2** U0.

The OIAC shall present and latch a **USB 2.0** billboard when tDisableCount counter reaches three.

6.6.4 **USB 3.2**

Active cables shall meet the requirements in this section regardless of length. Active cables shall incorporate AC-coupling from the plug to repeater on both the **USB 3.2** TX and RX signals. Active cables shall provide a discharge path for discharging the AC-coupling capacitors in the cable on unplug per **USB 3.2**.

6.6.4.1 **USB 3.2** Active Cable Architectures

Active cables may have the combinations of re-timers and re-drivers as illustrated in Figure 6-18. Active cables without at least one re-timer are out of scope. Active cables without re-timers connected to TP3 are out of scope. Active cables shall support the features defined in Table 6-2.

Figure 6-18 Active Cable Topologies

[Diagram of active cable topologies including various configurations with re-timers and re-drivers.]
6.6.4.2 USB 3.2 Power-on and Rx.Detect

Active cables shall present a high impedance to ground of $Z_{RX-HIGH\text{-}IMP\text{-}DC\text{-}POS}$ when not powered. Active cables shall present a high impedance to ground of $Z_{RX-HIGH\text{-}IMP\text{-}DC\text{-}POS}$ at initial power-on. The active cable shall perform far-end receiver termination detection on both cable ends upon receiving VCONN. Upon detecting a far-end low-impedance receiver termination ($R_{RX\text{-}DC}$), the active cable shall enable its low-impedance receiver termination ($R_{RX\text{-}DC}$) to mirror the presence of the Host/Device. The active cable shall perform far-end receiver termination detection for Repeaters per USB 3.2 including in low power states U2/U3.

An active cable shall complete power-on and far-end receiver termination detection through the cable within $t_{FWD\text{-}RX\text{-}DETECT}$.

Table 6-16 Active Cable Power-on Requirements

<table>
<thead>
<tr>
<th>Name</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z_{RX-HIGH\text{-}IMP\text{-}DC\text{-}POS}$</td>
<td>Per USB 3.2</td>
<td>Per USB 3.2</td>
<td></td>
</tr>
<tr>
<td>$R_{RX\text{-}DC}$</td>
<td>Per USB 3.2</td>
<td>Per USB 3.2</td>
<td></td>
</tr>
<tr>
<td>$t_{FWD\text{-}RX\text{-}DETECT}$</td>
<td>42¹</td>
<td>Ms</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: 84 ms – (2 * 12 ms + 18 ms) worst case.

Active cables including OIACs shall reflect the receiver terminations across the cable to replicate the behavior of a passive cable.

6.6.4.3 USB 3.2 U0 Delay

All active cables shall meet the USB 3.2 delay defined in Table 6-17.
Table 6-17 OIAC Maximum USB 3.2 U0 Delay

<table>
<thead>
<tr>
<th>USB 3.2 Gen</th>
<th>Cable Maximum U0 Delay</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen1</td>
<td>3000 ns</td>
<td>Active cables with USB 3.2 Gen1 latency larger than 125 ns may not function correctly when used in conjunction with host, devices, and hubs which do not support the extended timers required in the USB 3.1 Specification Revision 1.0 (July 26, 2013) and USB 3.1 Pending_HP_Timer ECN.</td>
</tr>
<tr>
<td>Gen2</td>
<td>3000 ns</td>
<td>Active cables with USB 3.2 Gen2 latency larger than 305 ns may not function correctly when used in conjunction with host, devices, and hubs which do not support the extended timers required in the USB 3.1 Specification Revision 1.0 (July 26, 2013) and USB 3.1 Pending_HP_Timer ECN.</td>
</tr>
</tbody>
</table>

6.6.4.3.1 OIAC Legacy Adapter

Table 6-18 defines the all scenarios in which an OIAC will not function without an OIAC legacy adapter between the OIAC and the Legacy Device, Hub, or Host.

The OIAC Adapter requires the following capabilities:

1. USB Type-C DRP/Source on the upward facing port connected to the OIAC,
2. **USB PD** on the upward facing port connected to the OIAC,
3. **USB 3.2** Hub incorporating the Pending_HP_Timer ECN, and
4. Optional: **USB 2.0** to **USB 3.2** transaction translator on the downstream facing port (only needed if connecting to **USB 2.0**-only devices, hubs, or hosts).

Table 6-18 Usages for OIAC That Require an Adapter or Hub

<table>
<thead>
<tr>
<th>Connector</th>
<th>Power Role</th>
<th>Data Role</th>
<th>USB PD</th>
<th>USB 3.2 Generation</th>
<th>USB 2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB Type-C</td>
<td>Sink only</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>UFP only</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>DRP</td>
<td>UFP only</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DRD</td>
<td>No USB PD</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USB PD R2/R3</td>
<td>USB 3.2 without the Pending_HP_Timer ECN</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>USB 2.0 only</td>
</tr>
<tr>
<td>Any non-USB Type-C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
6.6.4.4 USB 3.2 U-State Power Requirements

Active cables shall meet the V\textsubscript{CONN} power requirements in Table 6-19. These requirements are for the entire cable not just a cable plug.

Table 6-19 USB 3.2 U-State Requirements

<table>
<thead>
<tr>
<th>State</th>
<th>Maximum Power Consumption V\textsubscript{CONN}</th>
<th>Target Power Consumption V\textsubscript{CONN}</th>
<th>Power Consumption Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>U0</td>
<td>1.0 W single-lane 1.5 W dual-lane</td>
<td></td>
<td>Applies to POLLING.LFPS, TRAINING, and RECOVERY states.</td>
</tr>
<tr>
<td>U1</td>
<td>(\leq U0) power</td>
<td></td>
<td>Forwarding LFPS is required</td>
</tr>
<tr>
<td>U2</td>
<td>(\leq U1) power</td>
<td></td>
<td>Forwarding LFPS is required</td>
</tr>
<tr>
<td>U3</td>
<td>5 mW</td>
<td>2 mW</td>
<td>eMarker in sleep.</td>
</tr>
<tr>
<td>Rx.Detect</td>
<td>5 mW</td>
<td>2 mW</td>
<td>Rx.Detect period may be lengthened when no USB 3.2 terminations have been detected.</td>
</tr>
</tbody>
</table>
| eSS.Disabled | 5 mW | 1 mW | USB 3.2 is disabled.
eMarker in sleep. |

Note: Ra must be completely removed or very high impedance to meet the power requirements in U3, Rx.Detect, and eSS.Disabled.

6.6.4.5 USB 3.2 U-State Exit Latency

Active cables shall meet the U-state exit latency defined in USB 3.2 Appendix E.

6.6.4.6 USB 3.2 Signal Swing

An active cable transmitter only has to drive 8.5 dB insertion loss at 5 GHz to the Host/Device controller receiver for USB 3.2 Gen2, if the transmitter is located in the cable plug next to the receiving port.
A Host/Device controller transmitter must drive a total loss of 23 dB at 5 GHz to the far side for USB 3.2 Gen2. The difference in loss budget allows the active cable transmitter swing to be reduced. An active cable receiver can assume a larger receiver swing than in the Host/Device for the same reason.

Figure 6-20 defines the SuperSpeed electrical test points and is copied from the USB 3.2 specification. Figure 6-21 indicates the test points and test equipment connections.

Figure 6-20 SuperSpeed USB Electrical Test Points

Figure 6-21 SuperSpeed USB Compliance Test Setup

6.6.4.6.1 TP1 – Active Cable Input Stressed Source

The active cable input stressed source is generated at TP1 per Table 6-20 for amplitude and per Table 6-21 for jitter. SSC shall be present in the stressed signal at TP1. Table 6-20 is a subset of the USB 3.2 Table 6-18. Table 6-21 is a subset of USB 3.2 Table 6-28.
discrepancy exists between this specification and the USB 3.2 specification, the USB 3.2 specification shall take precedence.

The maximum swing with the maximum de-emphasis and pre-shoot shall be tested with the minimum loss compliance test board. The minimum swing with the minimum de-emphasis and pre-shoot shall be tested with the maximum loss compliance test board. The input jitter composition is the same for both the minimum and maximum swing stressed sources.

The active cable shall function over the range of parameter in USB 3.2 Table 6-17 and Table 6-20.

Table 6-20 Active Cable USB 3.2 Stressed Source Swing, TP1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Gen1 (5.0 GT/s)</th>
<th>Gen2 (10 GT/s)</th>
<th>Units</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{TX\text{-DIFF.PP}}$</td>
<td>Differential p-p TX voltage swing</td>
<td>0.8 (min) 1.2 (max)</td>
<td>0.8 (min) 1.2 (max)</td>
<td>V</td>
<td>Nominal is 1 V p-p</td>
</tr>
<tr>
<td>$V_{TX\text{-DE-RATIO}}$</td>
<td>TX de-emphasis</td>
<td>USB 3.2 Table 6-17</td>
<td>-3.1 ± 1.0</td>
<td>dB</td>
<td>Nominal is 3.5 dB for Gen1 operation. gen2 transmitter equalization requirements are described in USB 3.2 Section 6.7.5.2.</td>
</tr>
<tr>
<td>$V_{PRESHOOT}$</td>
<td>TX Preshoot</td>
<td>USB 3.2 Table 6-17</td>
<td>2.2 ± 1.0</td>
<td>dB</td>
<td>Gen2 transmitter equalization requirements are described in USB 3.2 Section 6.7.5.2.</td>
</tr>
</tbody>
</table>

Table 6-21 Active Cable USB 3.2 Stressed Source Jitter, TP1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Gen1 (5.0 GT/s)</th>
<th>Gen2 (10 GT/s)</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>Tolerance corner</td>
<td>4.9</td>
<td>7.5</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>I_{Rj}</td>
<td>Random Jitter</td>
<td>0.0121</td>
<td>0.0100</td>
<td>UI rms</td>
<td>1</td>
</tr>
<tr>
<td>$J_{Pj,p-p}$</td>
<td>Random Jitter peak-peak at 10^{-12}</td>
<td>0.17</td>
<td>0.14</td>
<td>UI p-p</td>
<td>1,4</td>
</tr>
<tr>
<td>$J_{Pj,100kHz}$</td>
<td>Sinusoidal Jitter</td>
<td>2</td>
<td>4.76</td>
<td>UI p-p</td>
<td>1,2,3</td>
</tr>
<tr>
<td>$J_{Pj,1MHz}$</td>
<td>Sinusoidal Jitter</td>
<td>1</td>
<td>2.03</td>
<td>UI p-p</td>
<td>1,2,3</td>
</tr>
<tr>
<td>$J_{Pj,2MHz}$</td>
<td>Sinusoidal Jitter</td>
<td>0.5</td>
<td>0.87</td>
<td>UI p-p</td>
<td>1,2,3</td>
</tr>
<tr>
<td>$J_{Pj,4MHz}$</td>
<td>Sinusoidal Jitter</td>
<td>N/A</td>
<td>0.37</td>
<td>UI p-p</td>
<td>1,2,3</td>
</tr>
<tr>
<td>$J_{Pj,10MHz}$</td>
<td>Sinusoidal Jitter</td>
<td>0.2</td>
<td>0.17</td>
<td>UI p-p</td>
<td>1,2,3</td>
</tr>
<tr>
<td>$J_{Pj,50MHz}$</td>
<td>Sinusoidal Jitter</td>
<td>N/A</td>
<td>0.17</td>
<td>UI p-p</td>
<td>1,2,3</td>
</tr>
</tbody>
</table>

Notes:
1. All parameters measured at TP1. The test point is shown in Figure 6-20 and Figure 6-21.
2. Due to time limitations at compliance testing, only a subset of frequencies can be tested. However, the RX is required to tolerate J_{Pj} at all frequencies between the compliance test points.
3. During the RX tolerance test, SSC is generated by test equipment and present at all times. Each J_{Pj} source is then added and tested to the specification limit one at a time.
4. Random jitter is also present during the RX tolerance test.
5. The JTOL specs for Gen2 comprehend jitter peaking with re-timers in the system and has a 25 dB/decade slope.
6.6.4.6.2 TP2 – Active Cable Input (Informative)

The values in Table 6-22 indicate the informative input signal swings at TP2 for an active cable. Table 6-22 is included to provide guidance beyond the normative requirements of Table 6-20 and Table 6-21. An active cable can be fully compliant with the normative requirements of this specification and not meet all the values in Table 6-22. Similarly, an active cable that meets all the values in Table 6-22, is not guaranteed to be in fully compliance with the normative part of this specification.

Table 6-22 Active Cable USB 3.2 Input Swing at TP2 (Informative)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Gen1 (5.0 GT/s)</th>
<th>Gen2 (10 GT/s)</th>
<th>Units</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTX-DIFF-PP</td>
<td>Differential p-p TX voltage swing</td>
<td>250 (min) 1000 (max)</td>
<td>250 (min) 850 (max)</td>
<td>mV</td>
<td>Nominal is 550 mV p-p</td>
</tr>
<tr>
<td>VTX-DE-RATIO</td>
<td>TX de-emphasis</td>
<td>0 (min) 4.0 (max)</td>
<td>2.1 (min) 4.1 (max)</td>
<td>dB</td>
<td>There is no de-emphasis requirement for Gen1.</td>
</tr>
<tr>
<td>VPRESHEOOT</td>
<td>TX Preshoot</td>
<td>NA</td>
<td>1.2 (min) 3.2 (max)</td>
<td>dB</td>
<td>Applicable to USB 3.2 Gen2 operation only.</td>
</tr>
</tbody>
</table>

6.6.4.6.3 TP3 – Active Cable Output (Informative)

The values in Table 6-23 indicate the informative output signal swings at TP3 for an active cable. Table 6-23 is included to provide guidance beyond the normative requirements of Table 6-20 and Table 6-21. An active cable can be fully compliant with the normative requirements of this specification and not meet all the values in Table 6-23. Similarly, an active cable that meets all the values in Table 6-23, is not guaranteed to be in full compliance with the normative part of this specification.

Table 6-23 Active Cable USB 3.2 Output Swing at TP3 (Informative)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Gen1 (5.0 GT/s)</th>
<th>Gen2 (10 GT/s)</th>
<th>Units</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTX-DIFF-PP</td>
<td>Differential RX peak-to-peak voltage</td>
<td>300 (min) 850 (max)</td>
<td>300 (min) 850 (max)</td>
<td>mV</td>
<td>Measured after the RX EQ function Nominal is 0.5 V p-p</td>
</tr>
<tr>
<td>VTX-DE-RATIO+GEN1</td>
<td>TX de-emphasis</td>
<td>0 (min) 4.0 (max)</td>
<td>NA</td>
<td>dB</td>
<td>No pre-shoot allowed</td>
</tr>
<tr>
<td>VTX-DE-RATIO + VPRESHEOOT-GEN2</td>
<td>TX de-emphasis + TX Preshoot</td>
<td>NA</td>
<td>0 (min) 3.0 (max)</td>
<td>dB</td>
<td>Sum of the de-emphasis and pre-shoot. There is no de-emphasis and pre-shoot requirement.</td>
</tr>
</tbody>
</table>

6.6.4.6.4 TP4 – Active Cable Output

The active cable transmitter output is defined at TP4 for both high and low loss channels. The requirements for TP4 are defined in the USB 3.2 specification Table 6-20. The input signal for the test shall be applied at TP1 as defined in the USB 3.2 specification.

The low loss test board shall be used to test the maximum output swing. The maximum loss test board shall be used to test the minimum output swing. Jitter must be met with both test boards.
The active cable bit-error-rate shall be tested at TP4 and meet or exceed a BER of 10^{-12}. The error detector used shall have the ability to remove SKP ordered sets.

6.6.5 Return Loss
Return loss is defined in the [USB 3.2](https://www.usb.org) specification.

6.7 Active Cables That Support Alternate Modes
Active cables may support [Alternate Modes](https://www.usb.org). Active cables that support [Alternate Modes](https://www.usb.org) shall be discoverable via [USB PD](https://www.usb.org). They shall use the standard [USB PD](https://www.usb.org) mechanisms to discover, enter and exit [Alternate Modes](https://www.usb.org).

6.7.1 Discover SVIDs
Active cables that support an [Alternate Mode](https://www.usb.org) shall report support for SVIDs on SOP’ only.

6.7.2 Discover Modes
Active cables that support an [Alternate Mode](https://www.usb.org) shall report support for Modes on SOP’ only.

6.7.3 Enter/Exit Modes
Enter and *Exit* mode shall be communicated on SOP’ and on SOP” when the SOP” Controller Present bit is set in the Active Cable. It is recommended that *Enter Mode* be sent initially to SOP’ and then SOP” if supported and then SOP. It is recommended *Exit Mode* be sent initially to SOP and then to SOP” if supported and then SOP’.

6.7.4 Power in Alternate Modes
The power dissipation in an active cable’s [Alternate Mode](https://www.usb.org) shall maintain the plug’s Maximum Skin Temperature below the requirement defined in Table 6-14.

[Alternate Modes](https://www.usb.org) should reduce power in active cables in sleep states for best user experience.
A Audio Adapter Accessory Mode

A.1 Overview

Analog audio headsets are supported by multiplexing four analog audio signals onto pins on the USB Type-C® connector when in the Audio Adapter Accessory Mode. The four analog audio signals are the same as those used by a traditional 3.5 mm headset jack. This makes it possible to use existing analog headsets with a 3.5 mm to USB Type-C adapter. The audio adapter architecture allows for an audio peripheral to provide up to 500 mA back to the system for charging.

An analog audio adapter could be a very basic USB Type-C adapter that only has a 3.5 mm jack or it could be an analog audio adapter with a 3.5 mm jack and a USB Type-C receptacle to enable charge-through. The analog audio headset shall not use a USB Type-C plug to replace the 3.5 mm plug.

A USB host that implements support for USB Type-C Analog Audio Adapter Accessory mode shall also support USB Type-C Digital Audio (TCDA) with nominally equivalent functionality and performance. A USB device that implements support for USB Type-C Analog Audio Adapter Accessory mode should also support TCDA with nominally equivalent audio functionality and performance.

A.2 Detail

An analog audio adapter shall use a captive cable with a USB Type-C plug or include an integrated USB Type-C plug.

The analog audio adapter shall identify itself by presenting a resistance to GND of $\leq R_a$ on both A5 (CC) and B5 (VCONN) of the USB Type-C plug. If pins A5 and B5 are shorted together, the effective resistance to GND shall be less than $R_a/2$.

A DFP that supports analog audio adapters shall detect the presence of an analog audio adapter by detecting a resistance to GND of less than R_a on both A5 (CC) and B5 (VCONN).

Table A-1 shows the pin assignments at the USB Type-C plug that shall be used to support analog audio.
Table A-1 USB Type-C Analog Audio Pin Assignments

<table>
<thead>
<tr>
<th>Plug Pin</th>
<th>USB Name</th>
<th>Analog Audio Function</th>
<th>Location on 3.5 mm Jack</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5</td>
<td>CC</td>
<td></td>
<td>Connected to digital GND with resistance ≤ Ra. System uses for presence detect.</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>VCONN</td>
<td></td>
<td>Connected to digital GND with resistance ≤ Ra. System uses for presence detect.</td>
<td></td>
</tr>
<tr>
<td>A6/B6</td>
<td>Dp</td>
<td>Right Ring 1</td>
<td>Analog audio right channel A6 and B6 shall be shorted together in the adapter.</td>
<td></td>
</tr>
<tr>
<td>A7/B7</td>
<td>Dn</td>
<td>Left Tip</td>
<td>Analog audio left channel A7 and B7 shall be shorted together in the adapter.</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>SBU1</td>
<td>Mic/AGND Ring 2</td>
<td>Analog audio microphone (OMTP & YD/T) or Audio GND (CTIA).</td>
<td></td>
</tr>
<tr>
<td>B8</td>
<td>SBU2</td>
<td>AGND/Mic Sleeve</td>
<td>Audio GND (OMTP & YD/T or analog audio microphone (CTIA).</td>
<td></td>
</tr>
<tr>
<td>A1/A12</td>
<td>GND</td>
<td></td>
<td>Digital GND (DGND) used as the ground reference and current return for CC1, CC2, and VBUS.</td>
<td></td>
</tr>
<tr>
<td>B1/B12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4/A9</td>
<td>VBUS</td>
<td></td>
<td>Not connected unless the audio adapter uses this connection to provide 5 V @ 500 mA for charging the system's battery.</td>
<td></td>
</tr>
<tr>
<td>B4/B9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td>Other pins shall not be connected.</td>
<td></td>
</tr>
</tbody>
</table>

The analog audio signaling presented by the headset on the 3.5 mm jack is expected to comply with at least one of the following:

- The traditional American headset jack pin assignment, with the jack sleeve used for the microphone signal, supported by CTIA-The Wireless Association
- “Local Connectivity: Wired Analogue Audio” from the Open Mobile Terminal Forum (OMTP) forum
- “Technical Requirements and Test Methods for Wired Headset Interface of Mobile Communication Terminal” (YT/D 1885-2009) from the China Communications Standards Association

When in the Audio Adapter Accessory Mode, the system shall not provide VCONN power on either CC1 or CC2. Failure to do this may result in VCONN being shorted to GND when an analog audio peripheral is present.

The system shall connect A6/B6, A7/B7, A8 and B8 to an appropriate audio codec upon entry into the Audio Adapter Accessory Mode. The connections for A8 (SBU1) and B8 (SBU2) pins are dependent on the adapter’s orientation. Depending on the orientation, the microphone and analog ground pins may be swapped. These pins are already reversed between the two major standards for headset jacks and support for this is built into the headset connection of many codecs or can be implemented using an autonomous audio headset switch. The system shall work correctly with either configuration.

A.3 Electrical Requirements

The maximum ratings for pin voltages are referenced to GND (pins A1, A12, B1, and B12). The non-GND pins on the plug shall be isolated from GND on the USB Type-C connector and shall be isolated from the USB plug shell. To minimize the possibility of ground loops...
between systems, AGND shall be connected to GND only within the system containing the USB Type-C receptacle. Both the system and audio device implementations shall be able to tolerate the Right, Left, Mic, and AGND signals being shorted to GND. The current provided by the amplifier driving the Right and Left signals shall not exceed ±150 mA per audio channel, even when driving a 0 Ω load.

Table A-2 shows allowable voltage ranges on the pins in the USB Type-C plug that shall be met.

Table A-2 USB Type-C Analog Audio Pin Electrical Parameter Ratings

<table>
<thead>
<tr>
<th>Plug Pin</th>
<th>USB Name</th>
<th>Analog Audio Function</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A6/B6</td>
<td>Dp</td>
<td>Right</td>
<td>-3.0</td>
<td>3.0</td>
<td>V</td>
<td>A6 and B6 shall be shorted together in the analog audio adapter</td>
</tr>
<tr>
<td>A7/B7</td>
<td>Dn</td>
<td>Left</td>
<td>-3.0</td>
<td>3.0</td>
<td>V</td>
<td>A7 and B7 shall be shorted together in the analog audio adapter</td>
</tr>
<tr>
<td>A8</td>
<td>SBU1</td>
<td>Mic/AGND</td>
<td>-0.4</td>
<td>3.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>B8</td>
<td>SBU2</td>
<td>AGND/Mic</td>
<td>-0.4</td>
<td>3.3</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

The maximum voltage ratings for Left and Right signals are selected to encompass a 2 Vrms sine wave (2.828 V\text{p} = 5.657 V\text{pp} = 6 dBV) which is a common full-scale voltage for headset audio output.

Headset microphones operate on a positive bias voltage provided by the system’s audio codec and AC-couple the audio signal onto it. Some headsets may produce an audio signal level up to 0.5 Vrms (0.707 V\text{p} = 1.414 V\text{pp} = -6 dBV) but this is biased so that the voltage does not swing below GND. The bias voltage during operation is typically around 1.25 V but it varies quite a bit depending on the specifics of the manufacturer’s design, therefore the maximum voltage rating for the SBU pins is selected to allow a variety of existing solutions.

While one SBU pin carries the Mic signal, the other SBU pin serves as AGND carrying the return current for Left, Right, and Mic. If we assume a worst-case headset speaker impedance of 16 Ω per speaker, then the worst-case return current for the speakers is ±0.2 A. If we assume that the worst-case resistance from the AGND pin to GND within the USB Type-C system is 1 Ω (due to FET R\text{ON} within the signal multiplexer, contact, and trace resistances), then the voltage of the AGND pin with respect to USB Type-C GND can vary between ±0.2 V. The minimum voltage rating for the SBU pins has been selected to allow for this scenario with some additional margin to account for Mic signal return current and tolerances.

The system shall exhibit no more than -48 dB linear crosstalk between the Left and Right audio channels and exhibit no more than -51 dB linear crosstalk from the Left or Right channel to the Mic channel. Crosstalk measurements shall be made using a measurement adapter plug that supports USB Type-C analog audio connections according to Table A-1. In the measurement adapter, the Left and Right channels are terminated with 32 Ω resistors to AGND, the Mic channel is terminated with 2k Ω resistor to AGND; AGND is connected to USB Type-C Plug Pin A8, and the Mic channel is connected to USB Type-C Plug Pin B8.

Crosstalk shall be measured by using the system to drive a sine wave signal to the Left output channel and zero signal to the Right output channel. The system shall configure the Mic channel according to the default Mic operating mode supported by the system. AC voltage levels at the Left, Right and Mic channels are measured across the corresponding termination resistors using a third-octave filter at the sine signal frequency. Left – Right
crosstalk is reported as ratio of the Right channel voltage to the Left channel voltage expressed in decibels. Similarly, the Left – Mic crosstalk is reported. The measurements shall be conducted at 31.5, 63, 125, 250, 500, 1000, 2000, 4000, 8000 and 16000 Hz frequencies. The measurements shall be repeated so that the sine wave signal is driven to the Right channel and Right – Left and Right – Mic crosstalk results are obtained. Both USB Type-C plug orientations shall be measured.

A.4 Example Implementations

A.4.1 Passive 3.5 mm to USB Type-C Adapter – Single Pole Detection Switch

Figure A-1 illustrates how a simple 3.5 mm analog audio adapter can be made. In this design, there is an audio plug that contains a single-pole detection switch that is used to completely disconnect the CC and VCONN pins from digital GND when no 3.5 mm plug is inserted. This has the effect of triggering the USB Type-C presence detect logic upon insertion or removal of either the 3.5 mm plug or the audio adapter itself.

Figure A-1 Example Passive 3.5 mm to USB Type-C Adapter

A.4.2 3.5 mm to USB Type-C Adapter Supporting 500 mA Charge-Through

Figure A-2 illustrates a 3.5 mm analog audio adapter that supports charge-through operation. Charging power comes into the adapter through a USB Type-C receptacle and is routed directly to the adapter’s USB Type-C plug, which is plugged into the device being charged. This design is limited to providing 500 mA of charge-through current since it has no way to advertise greater current-sourcing capability. The USB Type-C receptacle presents Rd on both of its CC pins because a CC pull-down must be present for the receptacle to indicate that it wants to consume VBUS current. USB Type-C systems that support analog audio should ensure that charging is not interrupted by insertion or removal of the 3.5 mm audio plug and that audio is not interrupted by insertion or removal of the cable connected.
to the audio adapter’s USB Type-C receptacle by using the system’s presence detection logic monitoring the states of both the CC1 and CC2 pins and VBUS.

Figure A-2 Example 3.5 mm to USB Type-C Adapter Supporting 500 mA Charge-Through

B Debug Accessory Mode

B.1 Overview

This appendix covers the functional requirements for the USB Type-C® Debug Accessory Mode (DAM), Debug and Test System (DTS), and Target System (TS). The USB Type-C connector is ideal for debug of closed-chassis, form-factor devices. Debug covers many areas, ranging from detailed JTAG Test Access Port (TAP)-level debug in a lab to high-level debug of software applications in production. Lab debug requires early debug access to hardware registers soon after reset, whereas software debug uses kernel debuggers, etc. to access software state. Debug Accessory Mode in USB Type-C enables debug of closed-chassis, form-factor devices by re-defining the USB Type-C ports for debug purposes.

Basic debug requirements are defined as a standard feature, and additional debug features may be added as per vendor specifications.

B.2 Functional

The USB Type-C Debug Accessory Mode follows a layered structure as shown in Figure B-1, defining the minimum physical layer for Attach, Detection and Power. Orientation detection is optional normative. The transport layer is left proprietary and is not covered in this document.

Figure B-1 USB Type-C Debug Accessory Layered Behavior

1. **Attach Detection and Power**
 - **Rp/Rd, Vbus, Pin Safe States**
 - **Mandatory Normative**

2. **Orientation Detection**
 - **Rp or Rd value**
 - **Optional Normative**

3. **Transport**
 - **USB PD Protocol, USB 2.0/3.1, Proprietary**
 - **Not Covered**

B.2.1 Signal Summary

Figure B-2 shows the pin assignments of the DTS plug that are used to support DAM. The pins highlighted in yellow are those available to be configured for debug signals. Both CC1 and CC2 are used for current advertisement and optional orientation detection.

![Figure B-2 DTS Plug Interface](image)

The DTS and TS must follow the USB Safe State as defined in the USB PD specification at all times (whether in DAM or not).

B.2.2 Port Interoperability

Table B-1 summarizes the expected results when interconnecting a DTS Source, Sink or DRP port to a TS Source, Sink or DRP port.

<table>
<thead>
<tr>
<th>DTS Source</th>
<th>DTS Sink</th>
<th>DTS DRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS Sink</td>
<td>Functional</td>
<td>Non-functional<sup>1</sup></td>
</tr>
<tr>
<td>TS Sink w/</td>
<td>Functional</td>
<td>Non-functional<sup>1</sup></td>
</tr>
<tr>
<td>Accessory Support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS DRP</td>
<td>Functional</td>
<td>Functional</td>
</tr>
<tr>
<td>TS Source</td>
<td>Non-functional<sup>1</sup></td>
<td>Functional</td>
</tr>
</tbody>
</table>

¹ In the cases where no function results, neither port shall be harmed by this connection. Following the USB Safe State ensures this.

B.2.3 Debug Accessory Mode Entry

The typical flow for the configuration of the interface in the general case of a DTS to a TS is as follows:

1. Detect a valid connection between the DTS (Source, Sink, or DRP) and TS (Source, Sink, or DRP)
2. Optionally determine orientation of the plug in the receptacle
3. Optionally establish USB PD communication over CC for advanced power delivery negotiation and Alternate Modes. USB PD communication is allowed only if the optional orientation of the plug is determined.
4. Establish test access connections with the available USB Type-C signals

The DTS DRP will connect as either a Source or a Sink, but its state diagram gives preference to the Source role.
B.2.3.1 Detecting a Valid DTS-to-TS Connection

The general concept for setting up a valid connection between a DTS and TS is based on being able to detect the typical USB Type-C termination resistances. However, detecting a Debug Accessory Mode connection requires that both CC pins must detect a pull-up \((R_p) \) or pull-down \((R_d) \) termination. A USB Type-C Cable does not pass both CC wires so a receptacle to receptacle Debug Accessory Mode connection cannot be detected.

A DTS is only allowed to connect to a TS that is presenting either \(R_p/R_p \) or \(R_d/R_d \). Otherwise, the TS does not support Debug Accessory Mode.

To detect either an \(R_p/R_p \) or \(R_d/R_d \), the DTS must be a captive cable or a direct-attach device with a USB Type-C plug and the TS must have a USB Type-C receptacle.

B.2.4 Connection State Diagrams

This section provides reference connection state diagrams for CC-based behaviors of the DTS. The TS connection state diagrams are found in Section 4.5.2.

Refer to Section B.2.4.1 for the specific state transition requirements related to each state shown in the diagrams.

Refer to Section B.2.4.3 for a description of which states are mandatory for each port type and a list of states where USB PD communication is permitted.

Figure B-3 illustrates a connection state diagram for a DTS Source.

Figure B-3 Connection State Diagram: DTS Source
Figure B-4 illustrates a connection state diagram for a simple DTS Sink.

Figure B-4 Connection State Diagram: DTS Sink
Figure B-5 illustrates a connection state diagram for a DTS DRP.

Figure B-5 Connection State Diagram: DTS DRP

- **ErrorRecovery**: Directed from any state
- **Disabled**: Directed from any state
- **UnattachedDeb.SNK**: Directed from any state
- **UnattachedDeb.SRC**: Directed from any state
- **AttachedDeb.SNK**: Directed from any state
- **AttachedDeb.SRC**: Directed from any state
- **TryDeb.SRC**: Directed from any state
- **TryWaitDeb.SNK**: Directed from any state
- **AttachWaitDeb.SRC**: Directed from any state
- **AttachWaitDeb.SNK**: Directed from any state
- **Debug Toggle**: Directed from any state
- **Dead Battery**: Directed from any state
- **TS Detected**: Directed from any state
- **TS Removed**: Directed from any state
- **tDRPTry and TS not Detected**: Directed from any state
- **tTryCCDebounce and VBUS Detected**: Directed from any state
- **tPDDebounce**: Directed from any state
- **tCCDebounce**: Directed from any state

B.2.4.1 Connection State Machine Requirements

The DTS state machine requirements follow those outlined in Section 4.5.2.2 for the general USB Type-C state machines with the additional following states defined.

Note, VCONN shall not be driven by any DTS or TS port in any state.

B.2.4.1.1 Exiting From ErrorRecovery State

This state appears in Figure B-3, Figure B-4, and Figure B-5.

The ErrorRecovery state is where the DTS cycles its connection by removing all terminations from the CC pins for tErrorRecovery, followed by transitioning to the appropriate UnattachedDeb.SNK or UnattachedDeb.SRC state based on DTS type.

The DTS should transition to the ErrorRecovery state from any other state when directed.

A DTS may choose not to support the ErrorRecovery state. If the ErrorRecovery state is not supported, the DTS shall be directed to the Disabled state if supported. If the Disabled state is not supported, the DTS shall be directed to either the UnattachedDeb.SNK or UnattachedDeb.SRC states.
A DTS Sink shall transition to UnattachedDeb.SNK after tErrorRecovery.

A DTS Source shall transition to UnattachedDeb.SRC after tErrorRecovery.

A DTS DRP shall transition to UnattachedDeb.SRC after tErrorRecovery.

B.2.4.1.2 UnattachedDeb.SNK State

This state appears in Figure B-4 and Figure B-5.

When in the UnattachedDeb.SNK state, the DTS is waiting to detect the presence of a TS Source.

A DTS with a dead battery shall enter this state while unpowered.

B.2.4.1.2.1 UnattachedDeb.SNK Requirements

The DTS shall not drive VBUS.

Both CC pins shall be independently terminated to ground through Rd.

B.2.4.1.2.2 Exiting from UnattachedDeb.SNK State

The DTS shall transition to AttachWaitDeb.SNK when a TS Source connection is detected, as indicated by the SNK.Rp state on both of its CC pins.

A DTS DRP shall transition to UnattachedDeb.SRC within tDRPTransition after the state of one or both CC pins is SNK.Open for tDRP - dcSRC.DRP · tDRP, or if directed.

B.2.4.1.3 AttachWaitDeb.SNK State

This state appears in Figure B-4 and Figure B-5.

When in the AttachWaitDeb.SNK state, the DTS has detected the SNK.Rp state on both CC pins and is waiting for VBUS.

B.2.4.1.3.1 AttachWaitDeb.SNK Requirements

The requirements for this state are identical to UnattachedDeb.SNK.

B.2.4.1.3.2 Exiting from AttachWaitDeb.SNK State

A DTS Sink shall transition to UnattachedDeb.SNK when the state of one or both CC pins is SNK.Open for at least tPDDebounce.

A DTS DRP shall transition to UnattachedDeb.SRC when the state of one or both CC pins is SNK.Open for at least tPDDebounce.

A DTS Sink shall transition to AttachedDeb.SNK when neither CC pin is SNK.Open after tCCDebounce and VBUS is detected.

A DTS DRP shall transition to TryDeb.SRC when neither CC pin is SNK.Open after tCCDebounce and VBUS is detected.

B.2.4.1.4 AttachedDeb.SNK State

This state appears in Figure B-4 and Figure B-5.

When in the AttachedDeb.SNK state, the DTS is attached and operating as a DTS Sink.
B.2.4.1.4.1 AttachedDeb.SNK Requirements

This mode is for debug only

The port shall not drive VBUS.

The port shall provide an RD as specified in Table 4-15 on both CC pins if orientation is not needed. See Section B.2.6 for orientation detection.

The port shall monitor to detect when VBUS is removed.

If the DTS needs to establish a USB PD communications, it shall do so only after entry to this state. In this state, the DTS takes on the initial USB PD role of UFP/Sink.

The DTS shall connect the debug signals for DebugAccessoryMode operation only after entry to this state.

The DTS may follow the DAM Sink Power Sub-State behavior specified in Section 4.5.2.3.

B.2.4.1.4.2 Exiting from AttachedDeb.SNK State

A DTS shall transition to UnattachedDeb.SNK when VBUS is no longer present

B.2.4.1.5 UnattachedDeb.SRC State

This state appears in Figure B-3 and Figure B-5.

When in the UnattachedDeb.SRC state, the DTS is waiting to detect the presence of a TS Sink

B.2.4.1.5.1 UnattachedDeb.SRC Requirements

The DTS shall not drive VBUS.

The DTS shall source current on both CC pins independently.

The DTS shall provide a unique Rp value on each CC pin as specified in Section 4.5.2.3.

B.2.4.1.5.2 Exiting from UnattachedDeb.SRC State

The DTS shall transition to AttachWaitDeb.SRC when the SRC.Rd state is detected on both CC pins.

A DTS DRP shall transition to UnattachedDeb.SNK within tDRPTransition after dcSRC.DRP · tDRP, or if directed.

B.2.4.1.6 AttachWaitDeb.SRC State

This state appears in Figure B-3 and Figure B-5.

The AttachWaitDeb.SRC state is used to ensure that the state of both of the CC pins is stable after a TS Sink is connected.

B.2.4.1.6.1 AttachWaitDeb.SRC Requirements

The requirements for this state are identical to UnattachedDeb.SRC.

B.2.4.1.6.2 Exiting from AttachWaitDeb.SRC State

The DTS shall transition to AttachedDeb.SRC when VBUS is at vSafe0V and the SRC.Rd state is detected on both of the CC pins for at least tCCDebounce.
A DTS Source shall transition to Unattached Deb.SRC and a DTS DRP to Unattached Deb.SNK when the SRC.Open state is detected on either of the CC pins.

B.2.4.1.7 Attached Deb.SRC State

This state appears in Figure B-3 and Figure B-5.

When in the Attached Deb.SRC state, the DTS is attached and operating as a DTS Source.

B.2.4.1.7.1 Attached Deb.SRC Requirements

The DTS shall provide a unique \(R_p \) value on each CC pin as specified in Section B.2.4.2.

The DTS shall supply \(V_{\text{BUS}} \) current at the level it advertises. See Section B.2.6.1.1 for advertising current level.

The DTS shall supply \(V_{\text{BUS}} \) within \(t_{V_{\text{BUS}} \text{ON}} \) of entering this state, and for as long as it is operating as a power source.

If the DTS needs to establish USB PD communications, it shall do so only after entry to this state. The DTS shall not initiate any USB PD communications until \(V_{\text{BUS}} \) reaches \(v_{\text{Safe5V}} \). In this state, the DTS takes on the initial USB PD role of DFP/Source.

The DTS shall connect the debug signals for Debug Accessory Mode operation only after entry to this state.

B.2.4.1.7.2 Exiting from Attached Deb.SRC State

A DTS Source shall transition to Unattached Deb.SRC when the SRC.Open state is detected on either CC pin.

A DTS DRP shall transition to Unattached Deb.SNK when SRC.Open is detected on either CC pin.

A DTS shall cease to supply \(V_{\text{BUS}} \) within \(t_{V_{\text{BUS}} \text{OFF}} \) of exiting Attached Deb.SRC.

B.2.4.1.8 Try Deb.SRC State

This state appears in Figure B-5.

When in the Try Deb.SRC state, the DTS DRP is querying to determine if the TS is also a DRP, to favor the DTS taking the Source role.

B.2.4.1.8.1 Try Deb.SRC Requirements

The DTS shall not drive \(V_{\text{BUS}} \).

The DTS shall source current on both CC pins independently.

The DTS shall provide a unique \(R_p \) value on each CC pin as specified in Section B.2.4.2.

B.2.4.1.8.2 Exiting from Try Deb.SRC State

The DTS shall transition to Attached Deb.SRC when the SRC.Rd state is detected on both CC pins for at least \(t_{\text{TryCCDebounce}} \).

The DTS shall transition to Try Wait Deb.SNK after \(t_{\text{DRPtry}} \) if the state of both CC pins is not SRC.Rd.
B.2.4.1.9 TryWaitDeb.SNK State

This state appears in Figure B-5.

When in the TryWaitDeb.SNK state, the DTS has failed to become a DTS Source and is waiting to attach as a DTS Sink.

B.2.4.1.9.1 TryWaitDeb.SNK Requirements

The DTS shall not drive V_{BUS}.

Both CC pins shall be independently terminated to ground through R_d.

B.2.4.1.9.2 Exiting from TryWaitDeb.SNK State

The DTS shall transition to AttachedDeb.SNK when neither CC pin is SNK.Open after $t_{CCDebounce}$ and V_{BUS} is detected.

The DTS shall transition to UnattachedDeb.SNK when the state of one of the CC pins is SNK.Open for at least $t_{PDDebounce}$ or if V_{BUS} is not detected within $t_{PDDebounce}$.

B.2.4.2 Power Sub-State Requirements

B.2.4.2.1 TS Sink Power Sub-State Requirements

When in the DebugAccessory.SNK state and the DTS Source is supplying default V_{BUS}, the TS Sink shall operate in one of the sub-states shown in Figure B-6. The initial TS Sink Power Sub-State is PowerDefaultDeb.SNK. Subsequently, the TS Sink Power Sub-State is determined by the DTS Source’s USB Type-C current advertisement determined by the R_p value on each CC pin as shown in Table B-2. The TS Sink in the attached state shall remain within the TS Sink Power Sub-States until either V_{BUS} is removed or a USB PD contract is established with the Source.

The TS Sink is only required to implement TS Sink Power Sub-State transitions if the TS Sink wants to consume more than default USB current.

Note, a TS Source will not use the values in Table B-2. A TS Source will present the same R_p on each CC pin using the standard R_p value for the desired current advertisement.
Table B-2 Rp/Rp Charging Current Values for a DTS Source

<table>
<thead>
<tr>
<th>Mode of Operation</th>
<th>CC1</th>
<th>CC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default USB Power</td>
<td>Rp for 3 A</td>
<td>Rp for 1.5 A</td>
</tr>
<tr>
<td>USB Type-C Current @ 1.5 A</td>
<td>Rp for 1.5 A</td>
<td>Rp for Default</td>
</tr>
<tr>
<td>USB Type-C Current @ 3 A</td>
<td>Rp for 3 A</td>
<td>Rp for Default</td>
</tr>
</tbody>
</table>

B.2.4.2.2 PowerDefaultDeb.SNK Sub-State

This sub-state supports DAM Sinks consuming current within the lowest range (default) of Source-supplied current.

B.2.4.2.2.1 PowerDefaultDeb.SNK Requirements

The port shall draw no more than the default USB power from VBUS. See Section 4.6.2.1.

If the DTS Sink wants to consume more than the default USB power, it shall monitor vRd on both CC pins to determine if more current is available from the Source.

B.2.4.2.2.2 Exiting from PowerDefaultDeb.SNK

For any change on CC indicating a change in allowable power, the DAM Sink shall not transition until the new vRd voltages on each CC pin have been stable for at least tRpValueChange.

For vRd voltages on the CC pins indicating 1.5 A mode, the DAM Sink shall transition to the Power1.5Deb.SNK Sub-State.
For v_{RD} voltages on the CC pins indicating 3 A mode, the DAM Sink shall transition to the Power3.0Deb.SNK Sub-State.

B.2.4.2.3 **Power1.5Deb.SNK Sub-State**

This sub-state supports DAM Sinks consuming current within the two lower ranges (default and 1.5 A) of DAM Source-supplied current.

B.2.4.2.3.1 **Power1.5Deb.SNK Requirements**

The DAM Sink shall draw no more than 1.5 A from V_{BUS}.

The DAM Sink shall monitor both v_{RD} voltages while it is in this sub-state.

B.2.4.2.3.2 **Exiting from Power1.5Deb.SNK**

For any change on the CC pins indicating a change in allowable power, the DAM Sink shall not transition until the new v_{RD} voltages on both CC pins have been stable for at least $t_{RpValueChange}$.

For v_{RD} voltages on the CC pins indicating Default USB Power mode, the port shall transition to the PowerDefaultDeb.SNK Sub-State and reduce its power consumption to the new range within $t_{SinkAdj}$.

For v_{RD} voltages on the CC pins indicating 3 A mode, the port shall transition to the Power3.0Deb.SNK Sub-State.

B.2.4.2.4 **Power3.0Deb.SNK Sub-State**

This sub-state supports DAM Sinks consuming current within all three ranges (default, 1.5 A and 3.0 A) of DAM Source-supplied current.

B.2.4.2.4.1 **Power3.0Deb.SNK Requirements**

The port shall draw no more than 3.0 A from V_{BUS}.

The port shall monitor both v_{RD} voltages while it is in this sub-state.

B.2.4.2.4.2 **Exiting from Power3.0Deb.SNK**

For any change on the CC pins indicating a change in allowable power, the port shall not transition until the new v_{RD} voltages on both CC pins have been stable for at least $t_{RpValueChange}$.

For v_{RD} voltages on the CC pins indicating Default USB Power mode, the port shall transition to the PowerDefaultDeb.SNK Sub-State and reduce its power consumption to the new range within $t_{SinkAdj}$.

For v_{RD} voltages on the CC pins indicating 1.5 A mode, the DAM Sink shall transition to the Power1.5Deb.SNK Sub-State.

B.2.4.2.5 **DTS Sink Power Sub-State Requirements**

A DTS Sink follows the same power sub-states defined in Section 4.5.2.22. The TS Source will be advertising current with a standard R_{P} value that is the same for each CC pin. If optional orientation detection is performed, the DTS Sink will only be able to determine the R_{P} value from the CC pin that is set for USB PD communication.
B.2.4.3 Connection States Summary

Table B-3 defines the mandatory and optional states for each type of port. For states allowing USB PD communication, DAM connections requiring USB PD communication shall determine orientation by the steps described in Section B.2.6.

Table B-3 Mandatory and Optional States

<table>
<thead>
<tr>
<th></th>
<th>DTS Source</th>
<th>DTS SINK</th>
<th>DTS DRP</th>
<th>USB PD Communication and/or Debug Signal Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>UnattachedDeb.SNK</td>
<td>N/A</td>
<td>Mandatory</td>
<td>Mandatory</td>
<td>Not Permitted</td>
</tr>
<tr>
<td>AttachWaitDeb.SNK</td>
<td>N/A</td>
<td>Mandatory</td>
<td>Mandatory</td>
<td>Not Permitted</td>
</tr>
<tr>
<td>AttachedDeb.SNK</td>
<td>N/A</td>
<td>Mandatory</td>
<td>Mandatory</td>
<td>Permitted</td>
</tr>
<tr>
<td>UnattachedDeb.SRC</td>
<td>Mandatory</td>
<td>N/A</td>
<td>Mandatory</td>
<td>Not Permitted</td>
</tr>
<tr>
<td>AttachWaitDeb.SRC</td>
<td>Mandatory</td>
<td>N/A</td>
<td>Mandatory</td>
<td>Not Permitted</td>
</tr>
<tr>
<td>AttachedDeb.SRC</td>
<td>Mandatory</td>
<td>N/A</td>
<td>Mandatory</td>
<td>Permitted</td>
</tr>
<tr>
<td>TryDeb.SRC</td>
<td>N/A</td>
<td>N/A</td>
<td>Mandatory</td>
<td>Not Permitted</td>
</tr>
<tr>
<td>TryWaitDeb.SNK</td>
<td>N/A</td>
<td>N/A</td>
<td>Mandatory</td>
<td>Not Permitted</td>
</tr>
</tbody>
</table>

B.2.5 DTS Port Interoperability Behavior

This section describes interoperability behavior between DTS ports and TS ports.

B.2.5.1 DTS Port to TS Port Interoperability Behaviors

The following sub-sections describe typical port-to-port interoperability behaviors for the various combinations of DTS and TS Sources, Sinks and DRPs as presented in Table B-1.

B.2.5.1.1 DTS Source to TS Sink Behavior

The following describes the behavior when a DTS Source is connected to a TS Sink.

1. DTS Source and TS Sink in the unattached state
2. DTS Source transitions from UnattachedDeb.SRC to AttachedDeb.SRC through AttachWaitDeb.SRC
 - DTS Source detects the TS Sink’s pull-downs on both CC pins and enters AttachWaitDeb.SRC. After tCCDebounce it then enters AttachedDeb.SRC
 - DTS Source turns on VBUS
3. TS Sink transitions from Unattached.SNK to DebugAccessory.SNK through AttachWait.SNK
 - TS Sink in Unattached.SNK detects the DTS Source’s pull-ups on both CC pins and enters AttachWait.SNK. After that state persists for tCCDebounce and it detects VBUS, it enters DebugAccessory.SNK
4. While the DTS Source and TS Sink are in the attached state:
 - DTS Source adjusts both Rp values as needed for offered current
• TS Sink detects and monitors \(v_{Rd}\) on the CC pins for available current on \(V_{BUS}\) and performs any orientation required
• DTS Source monitors both CC pins for detach and when detected on either pin, enters UnattachedDeb.SRC
• TS Sink monitors \(V_{BUS}\) for detach and when detected, enters Unattached.SNK

B.2.5.1.2 DTS Source to TS DRP Behavior
The following describes the behavior when a DTS Source is connected to a TS DRP.

1. DTS Source and TS DRP in the unattached state
 • TS DRP alternates between Unattached.SRC and Unattached.SNK
2. DTS Source transitions from UnattachedDeb.SRC to AttachedDeb.SRC through AttachWaitDeb.SRC
 • DTS Source detects the TS DRP’s pull-downs on both CC pins and enters AttachWaitDeb.SRC. After \(t_{CCDebounce}\) it then enters AttachedDeb.SRC
 • DTS Source turns on \(V_{BUS}\)
3. TS DRP transitions from Unattached.SNK to DebugAccessory.SNK through AttachWait.SNK
 • TS DRP in Unattached.SNK detects the DTS Source’s pull-ups on both CC pins and enters AttachWait.SNK. After that state persists for \(t_{CCDebounce}\) and it detects \(V_{BUS}\), it enters DebugAccessory.SNK
4. While the DTS Source and TS DRP are in their respective attached states:
 • DTS Source adjusts both \(R_p\) values as needed for offered current
 • TS DRP detects and monitors \(v_{Rd}\) on both CC pins for available current on \(V_{BUS}\) and performs any orientation required
 • DTS Source monitors both CC pins for detach and when detected, enters UnattachedDeb.SRC
 • TS DRP monitors \(V_{BUS}\) for detach and when detected, enters Unattached.SNK (and resumes toggling between Unattached.SNK and Unattached.SRC)

B.2.5.1.3 DTS Sink to TS Source Behavior
The following describes the behavior when a DTS Sink is connected to a TS Source.

1. TS Source and DTS Sink in the unattached state
2. TS Source transitions from Unattached.SRC to UnorientedDebugAccessory.SRC through AttachWait.SRC
 • TS Source detects the DTS Sink’s pull-downs on both CC pins and enters AttachWait.SRC. After \(t_{CCDebounce}\) it enters UnorientedDebugAccessory.SRC
 • TS Source turns on \(V_{BUS}\)
3. DTS Sink transitions from UnattachedDeb.SNK to AttachedDeb.SNK through AttachWaitDeb.SNK
 • DTS Sink in UnattachedDeb.SNK detects the TS Source’s pull-ups on both CC pins and enters AttachWaitDeb.SNK.
 • DTS Sink in AttachWaitDeb.SNK detects that the pull-ups on both CC pins persist for \(t_{CCDebounce}\) and it detects \(V_{BUS}\). It enters AttachedDeb.SNK
 • DTS sink determines advertised current from \(v_{Rd}\) on either CC pin.
4. If orientation supported, DTS Sink adjusts R_d on the non-CC communication pin as needed for orientation detection.

5. If orientation supported, TS Source detects change in v_Rd of one of the CC pins and transitions from UnorientedDebugAccessory.SRC to OrientedDebugAccessory.SRC and performs any orientation required.

6. While the TS Source and DTS Sink are in the attached state:
 - If orientation is supported, DTS sink determines any change in advertised current from v_Rd of the CC pin that has been set as the CC communication pin.
 - TS Source monitors both CC pins for detach and when detected, enters Unattached.SRC.
 - DTS Sink monitors V_{BUS} for detach and when detected, enters UnattachedDeb.SNK.

B.2.5.1.4 DTS Sink to TS DRP Behavior
The following describes the behavior when a DTS Sink is connected to a TS DRP.

1. DTS Sink and TS DRP in the unattached state
 - TS DRP alternates between Unattached.SRC and Unattached.SNK.

2. TS DRP transitions from Unattached.SRC to UnorientedDebugAccessory.SRC through AttachWait.SRC
 - TS DRP in Unattached.SRC detects both CC pull-downs of DTS Sink in UnattachedDeb.SNK and enters AttachWait.SRC.
 - TS DRP in AttachWait.SRC detects that the pull-downs on both CC pins persist for $t_{CCDebounce}$. It then enters UnorientedDebugAccessory.SRC and turns on V_{BUS}.

3. DTS Sink transitions from UnattachedDeb.SNK to AttachedDeb.SNK through AttachWaitDeb.SNK.
 - DTS Sink in UnattachedDeb.SNK detects the TS DRP’s pull-ups on both CC pins and enters AttachWaitDeb.SNK. After that state persists for $t_{CCDebounce}$ and it detects V_{BUS}, it enters AttachedDeb.SNK.
 - DTS sink determines advertised current from v_Rd on either CC pin.

7. If orientation is supported, DTS Sink adjusts R_d on the non-CC communication pin as needed for orientation detection.

8. If orientation supported, TS DRP detects change in v_Rd on one of the CC pins and transitions to OrientedDebugAccessory.SRC and performs the required orientation.

9. While the TS DRP and DTS Sink are in the attached state:
 - If orientation is supported, DTS sink determines any change in advertised current from v_Rd of the CC pin that has been set as the CC communication pin.
 - TS DRP monitors both CC pins for detach and when detected, enters Unattached.SNK.
 - DTS Sink monitors V_{BUS} for detach and when detected, enters UnattachedDeb.SNK.

B.2.5.1.5 DTS DRP to TS Sink Behavior
The following describes the behavior when a DTS DRP is connected to a TS Sink.

1. DTS DRP and TS Sink in the unattached state
• DTS DRP alternates between UnattachedDeb.SRC and UnattachedDeb.SNK

2. DTS DRP transitions from UnattachedDeb.SRC to AttachedDeb.SRC through AttachWaitDeb.SRC
 - DTS DRP in UnattachedDeb.SRC detects both of the CC pull-downs of TS Sink enters AttachWaitDeb.SRC
 - DTS DRP in AttachWaitDeb.SRC detects that the pull-downs on both CC pins persist for tCCDebounce. It then enters AttachedDeb.SRC
 - DTS DRP turns on VBUS

3. TS Sink transitions from Unattached.SNK to DebugAccessory.SNK through AttachWait.SNK
 - TS Sink in Unattached.SNK detects the DTS DRP's pull-ups on both CC pins and enters AttachWait.SNK
 - TS Sink in AttachWait.SNK detects that the pull-ups on both CC pins persist for tCCDebounce and it detects VBUS. It enters DebugAccessory.SNK

4. While the DTS DRP and TS Sink are in their respective attached states:
 - DTS DRP adjusts Rp as needed for offered current
 - TS Sink detects and monitors vRd on the CC pins for available current on VBUS and performs any orientation required
 - DTS DRP monitors both CC pins for detach and when detected, enters UnattachedDeb.SNK
 - TS Sink monitors VBUS for detach and when detected, enters Unattached.SNK

B.2.5.1.6 DTS DRP to TS DRP Behavior

The following describes the behavior when a DTS DRP is connected to TS DRP.
Case #1:

1. Both DRPs in the unattached state
 - DTS DRP alternates between UnattachedDeb.SRC and UnattachedDeb.SNK
 - TS DRP alternate between Unattached.SRC and Unattached.SNK

2. DTS DRP transitions from UnattachedDeb.SRC to AttachWaitDeb.SRC
 - DTS DRP in UnattachedDeb.SRC detects both CC pull-downs of TS DRP in Unattached.SNK and enters AttachWaitDeb.SRC

3. TS DRP transitions from Unattached.SNK to AttachWait.SNK
 - TS DRP in Unattached.SNK detects both CC pull-ups of DTS DRP and enters AttachWait.SNK

4. DTS DRP transitions from AttachWaitDeb.SRC to AttachedDeb.SRC
 - DTS DRP in AttachWaitDeb.SRC continues to see both CC pull-downs of TS DRP for tCCDebounce, enters AttachedDeb.SRC and turns on VBUS

5. TS DRP transitions from AttachWait.SNK to DebugAccessory.SNK
 - TS DRP detects DTS DRP's pull-ups on both CC pins for tCCDebounce and detects VBUS and enters DebugAccessory.SNK
 - TS DRP detects and monitors vRd on the CC pins for available current on VBUS and performs any orientation required

6. While the TS DRP and DTS DRP are in the attached state:
- TS DRP monitors VBUS for detach and when detected, enters Unattached.SNK
- DTS DRP monitors both CC pins for detach and when detected, enters UnattachedDeb.SNK

Case #2:

1. Both DRPs in the unattached state
 - DTS DRP alternates between UnattachedDeb.SRC and UnattachedDeb.SNK
 - TS DRP alternate between Unattached.SRC and Unattached.SNK
2. DTS DRP transitions from UnattachedDeb.SNK to AttachWaitDeb.SNK
 - DTS DRP in UnattachedDeb.SNK detects both CC pull-ups of TS DRP in Unattached.SRC and enters AttachWaitDeb.SNK
3. TS DRP transitions from Unattached.SRC to UnorientedDebugAccessory.SRC through AttachWait.SRC
 - TS DRP in Unattached.SRC detects both CC pull-downs of DTS DRP and enters AttachWait.SRC
 - TS DRP in AttachWait.SRC continues to see both CC pull-downs of TS DRP for tCCDebounce, enters UnorientedDebugAccessory.SRC and turns on VBUS
4. DTS DRP transitions from AttachWaitDeb.SNK to TryDeb.SRC
 - DTS DRP in AttachWaitDeb.SNK continues to see both CC pull-ups of TS DRP for tCCDebounce and detects VBUS, enters TryDeb.SRC
5. TS DRP transitions from UnorientedDebugAccessory.SRC to Unattached.SNK
 - TS DRP in UnorientedDebugAccessory.SRC detects the removal of both CC pull-downs of DTS DRP and enters Unattached.SNK
6. TS DRP transitions from Unattached.SNK to AttachWait.SNK
 - TS DRP in Unattached.SNK detects both CC pull-ups of DTS DRP and enters AttachWait.SNK
7. DTS DRP transitions from TryDeb.SRC to AttachedDeb.SRC
 - DTS DRP in TryDeb.SRC detects both CC pull-downs of TS DRP for tTryCCDebounce and enters AttachedDeb.SRC
 - DTS DRP turns on VBUS
8. TS DRP transitions from AttachWait.SNK to DebugAccessory.SNK
 - TS DRP detects DTS DRP’s pull-ups on both CC pins for tCCDebounce and detects VBUS and enters DebugAccessory.SNK
9. While the DTS DRP and TS DRP are in their respective attached states:
 - DTS DRP adjusts Rp as needed for offered current
 - TS DRP detects and monitors vRd on the CC pins for available current on VBUS and performs any orientation required
 - DTS DRP monitors both CC pins for detach and when detected, enters UnattachedDeb.SNK
 - TS DRP monitors VBUS for detach and when detected, enters Unattached.SNK

B.2.5.1.7 DTS DRP to TS Source Behavior
The following describes the behavior when a DTS DRP is connected to TS Source.
1. DTS DRP and TS Source in the unattached state
 • DTS DRP alternates between UnattachedDeb.SRC and UnattachedDeb.SNK
 • TS Source in Unattached.SRC

2. DTS DRP transitions from UnattachedDeb.SNK to AttachWaitDeb.SNK
 • DTS DRP in UnattachedDeb.SNK detects pull-ups on both CC pins and enters AttachWaitDeb.SNK

3. TS Source transitions from Unattached.SRC to UnorientedDebugAccessory.SRC through AttachWait.SRC
 • TS Source in Unattached.SRC detects both CC pull-downs of DTS DRP and enters AttachWait.SRC
 • TS Source in AttachWait.SRC continues to see both CC pull-downs of DTS DRP for tCCDebounce, enters UnorientedDebugAccessory.SRC and turns on VBUS

4. DTS DRP transitions from AttachWaitDeb.SNK to TryDeb.SRC
 • DTS DRP in AttachWaitDeb.SNK continues to see both CC pull-ups of TS DRP for tCCDebounce and detects VBUS, enters TryDeb.SRC

5. TS Source transitions from UnorientedDebugAccessory.SRC to Unattached.SRC
 • TS Source in UnorientedDebugAccessory.SRC detects the removal of both CC pull-downs of DTS DRP and enters Unattached.SRC

6. DTS DRP transitions from TryDeb.SRC to TryWaitDeb.SNK
 • After tDRPTry, DTS DRP does not see pull-downs on both CC pin and enters TryWaitDeb.SNK

7. TS Source transitions from Unattached.SRC to UnorientedDebugAccessory.SRC
 • TS Source in Unattached.SRC detects pull-downs on both CC pins and enters AttachWait.SRC
 • TS Source continues to detect pull-downs on both CC pins for tCCDebounce and enters UnorientedDebugAccessory.SRC and outputs VBUS

8. DTS DRP transitions from TryWaitDeb.SNK to AttachedDeb.SNK
 • DTS DRP sees pull-ups on both CC pins for tCCDebounce and detects VBUS and enters AttachedDeb.SNK
 • If orientation required, DTS DRP adjusts Rd on the non-CC communication pin as needed for orientation detection

9. If orientation supported, TS Source detects change in vRd on one of the CC pins and transitions to OrientedDebugAccessory.SRC and performs the required orientation.

10. While the TS Source and DTS DRP are in the attached state:
 • If orientation is supported, DTS DRP determines any change in advertised current from vRd of the CC pin that has been set as the CC communication pin.
 • TS Source monitors both CC pins for detach and when detected, enters Unattached.SRC
 • DTS DRP monitors VBUS for detach and when detected, enters UnattachedDeb.SNK
B.2.5.2 DTS Port to non-DAM TS Port Interoperability Behaviors

The following sub-sections describe the non-functional port-to-port interoperability behaviors for the various combinations of DTS and TS Sources, Sinks, and DRPs that do not support DAM.

B.2.5.2.1 DTS Source to non-DAM TS Sink Behavior

The following describes the behavior when a DTS Source is connected to a non-DAM TS Sink.

1. DTS Source and TS Sink in the unattached state

2. DTS Source transitions from UnattachedDeb.SRC to AttachedDeb.SRC through AttachWaitDeb.SRC
 - DTS Source detects the non-DAM TS Sink’s pull-downs on both CC pins and enters AttachWaitDeb.SRC. After tCCDebounce it then enters AttachedDeb.SRC
 - DTS Source turns on VBUS

3. Non-DAM TS Sink transitions from Unattached.SNK to AttachWait.SNK.
 - Non-DAM TS Sink in Unattached.SNK detects the DTS Source’s pull-ups on both CC pins and enters AttachWait.SNK.
 - Non-DAM TS Sink continues to detect pull-ups on both CC pins and stays in AttachWait.SNK because it does not support DAM (will not enter Attached.SNK because it does not detect SNK.Open on either pin)

4. While the DTS Source and non-DAM TS Sink are in their final state:
 - DTS Source adjusts Rp as needed for offered current
 - Non-DAM TS Sink may draw USB default current from DTS Source as permitted by Section 4.5.2.2 but will not enter DAM
 - DTS Source monitors both CC pins for detach and when detected, enters UnattachedDeb.SRC
 - Non-DAM TS Sink monitors both CC pins for detach and when detected, enters Unattached.SNK

B.2.5.2.2 DTS Source to non-DAM TS DRP Behavior

The following describes the behavior when a DTS Source is connected to a non-DAM TS DRP.

1. DTS Source and non-DAM TS DRP in the unattached state
 - Non-DAM TS DRP alternates between Unattached.SRC and Unattached.SNK

2. DTS Source transitions from UnattachedDeb.SRC to AttachedDeb.SRC through AttachWaitDeb.SRC
 - DTS Source detects the non-DAM TS Sink’s pull-downs on both CC pins and enters AttachWaitDeb.SRC. After tCCDebounce it then enters AttachedDeb.SRC
 - DTS Source turns on VBUS

3. Non-DAM TS DRP transitions from Unattached.SNK to AttachWait.SNK.
 - Non-DAM TS DRP in Unattached.SNK detects the DTS Source’s pull-ups on both CC pins and enters AttachWait.SNK.
 - Non-DAM TS DRP continues to detect pull-downs on both CC pins and stays in AttachWait.SNK because it does not support DAM (will not enter Attached.SNK because it does not detect SNK.Open on either pin)

4. While the DTS Source and non-DAM TS DRP are in their final state:
DTS Source adjusts Rp as needed for offered current

Non-DAM TS DRP may draw USB default current from DTS Source as permitted by Section 4.5.2.2 but will not enter DAM

DTS Source monitors both CC pins for detach and when detected, enters UnattachedDeb.SRC

Non-DAM TS DRP monitors both CC pins for detach and when detected, enters Unattached.SRC

B.2.5.2.3 DTS Sink to non-DAM TS Source Behavior

The following describes the behavior when a DTS Sink is connected to a non-DAM TS Source.

1. Non-DAM TS Source and DTS Sink in the unattached state

2. Non-DAM TS Source transitions from Unattached.SRC to AttachWait.SRC
 - Non-DAM TS Source detects the DTS Sink's pull-downs on both CC pins and enters AttachWait.SRC.
 - Non-DAM TS Source continues to detect pull-downs on both CC pins and stays in AttachWait.SRC because it does not support DAM (will not enter Attached.SRC because it does not detect SRC.Rd on only one CC pin)

3. DTS Sink transitions from UnattachedDeb.SNK to AttachWaitDeb.SNK.
 - DTS Sink in UnattachedDeb.SNK detects the non-DAM TS Source's pull-ups on both CC pins and enters AttachWaitDeb.SNK.
 - DTS Sink remains in AttachWaitDeb.SNK because it does not detect VBUS.

4. While the non-DAM TS Source and DTS Sink are in their final state:
 - Non-DAM TS Source monitors both CC pins for detach and when detected, enters Unattached.SRC.
 - DTS Sink monitors VBUS for attach and both CC pins for detach and enters UnattachedDeb.SNK when both CC pins go to SNK.Open

B.2.5.2.4 DTS Sink to non-DAM TS DRP Behavior

The following describes the behavior when a DTS Sink is connected to a non-DAM TS DRP.

1. DTS Sink and non-DAM TS DRP in the unattached state
 - Non-DAM TS DRP alternates between Unattached.SRC and Unattached.SNK.
 - DTS Sink in UnattachedDeb.SNK.

2. Non-DAM TS DRP transitions from Unattached.SRC to AttachWait.SRC
 - Non-DAM TS DRP detects the DTS Sink’s pull-downs on both CC pins and enters AttachWait.SRC.
 - Non-DAM TS DRP continues to detect pull-downs on both CC pins and stays in AttachWait.SRC because it does not support DAM (will not enter Attached.SRC because it does not detect SRC.Rd on only one CC pin)

3. DTS Sink transitions from UnattachedDeb.SNK to AttachWaitDeb.SNK.
 - DTS Sink in UnattachedDeb.SNK detects the non-DAM TS DRP’s pull-ups on both CC pins and enters AttachWaitDeb.SNK.
 - DTS Sink remains in AttachWaitDeb.SNK because it does not detect VBUS.

4. While the non-DAM TS DRP and DTS Sink are in their final state:
- Non-DAM TS DRP monitors both CC pins for detach and when detected, enters Unattached.SNK
- DTS Sink monitors VBUS for attach and both CC pins for detach and enters UnattachedDeb.SNK when both CC pin go to SNK.Open

B.2.5.2.5 DTS DRP to non-DAM TS Sink Behavior

The DTS DRP to non-DAM TS Sink behavior follows the flow in Section B.2.5.2.1.

B.2.5.2.6 DTS DRP to non-DAM TS DRP Behavior

The DTS DRP to non-DAM TS DRP behavior follows the flows in Section B.2.5.2.2 and Section B.2.5.2.4 depending on the role forced by the non-DAM TS DRP

B.2.5.2.7 DTS DRP to non-DAM TS Source Behavior

The following describes the behavior when a DTS DRP is connected to non-DAM TS Source.

1. DTS DRP and non-DAM TS Source in the unattached state
 - DTS DRP alternates between UnattachedDeb.SRC and UnattachedDeb.SNK
 - Non-DAM TS Source in Unattached.SRC
2. DTS DRP transitions from UnattachedDeb.SNK to AttachWaitDeb.SNK
 - DTS DRP in UnattachedDeb.SNK detects pull-ups on both CC pins and enters AttachWaitDeb.SNK
3. Non-DAM TS Source transitions from Unattached.SRC to AttachWait.SRC
 - Non-DAM TS Source in Unattached.SRC detects pull-downs on both CC pins and enters AttachWait.SRC
 - Non-DAM TS Source continues to detect pull-downs on both CC pins and stays in AttachWait.SRC because it does not support DAM (will not enter Attached.SRC because it does not detect SRC.Rd on only one CC pin)
 - DTS Sink remains in AttachWaitDeb.SNK because it does not detect VBUS
4. While the non-DAM TS Source and DTS DRP are in their final state:
 - Non-DAM TS Source monitors both CC pins for detach and when detected, enters Unattached.SRC
 - DTS DRP monitors VBUS for attach and both CC pins for detach and enters UnattachedDeb.SRC when both CC pin go to SNK.Open

B.2.5.2.8 DTS Sink to non-DAM TS Sink with Accessory Support Behavior

The following describes the behavior when a DTS Sink is connected to a non-DAM USB Type-C TS Sink with Accessory Support.

1. DTS Sink and non-DAM TS Sink with Accessory Support ("non-DAM TS Sink" for the remainder of this flow) in the unattached state
 - Non-DAM TS Sink alternates between Unattached.SNK and Unattached.Accessory
 - DTS Sink in UnattachedDeb.SNK
2. Non-DAM TS Sink transitions from Unattached.Accessory to AttachWait.Accessory
 - Non-DAM TS Sink detects the DTS Sink’s pull-downs on both CC pins and enters AttachWait.Accessory
• Non-DAM TS Sink continues to detect pull-downs on both CC pins and enters USB Type-C Debug Accessory Mode

3. DTS Sink transitions from UnattachedDeb.SNK to AttachWaitDeb.SNK.
• DTS Sink in UnattachedDeb.SNK detects the non-DAM TS Sink’s pull-ups on both CC pins and enters AttachWaitDeb.SNK
• DTS Sink remains in AttachWaitDeb.SNK because it does not detect VBUS

4. While the non-DAM TS DRP and DTS Sink are in their final state:
• Non-DAM TS Sink monitors both CC pins for detach and when detected, enters Unattached.SNK
• DTS Sink monitors both CC pins for detach and enters UnattachedDeb.SNK when both CC pins go to SNK.Open

B.2.6 Orientation Detection

Orientation detection is optional normative. A USB Type-C port supporting Debug Accessory Mode is not required to perform orientation detection. If orientation detection is required, this method shall be followed.

B.2.6.1 Orientation Detection using Rd and/or Rp Values

In this optional normative flow, the DTS shall always initiate an orientation detection sequence, independent of its role as Source, Sink, or DRP. This means that the TS must detect this orientation sequence and perform multiplexing to orient and connect the port signals to the proper channels as well as determine the proper CC pin for USB-PD communication.

B.2.6.1.1 Orientation Detection with DTS as a Source

When the DTS is presenting an Rp, it shall present asymmetric Rp values (Rp1/Rp2) on CC1/CC2 to indicate orientation to the TS. The DTS as a source shall indicate a weaker resistive value on CC2. Table B-2 shows the values of Rp resistance on each CC pin to indicate orientation and advertise the USB Type-C current available on VBUS. See Table 4-24 for the Rp resistance ranges.

Once the TS sink enters the DebugAccessory.SNK state, after the vRd on both CC pins is stable for tRpValueChange, it will orient its signal multiplexer based on the detected orientation indicated by the relative voltages of the CC pins. The CC pin with the greater voltage is the plug CC pin, which establishes the orientation of the DTS plug in the TS receptacle and also indicates the USB-PD CC communication wire. The TS Sink cannot perform USB-PD communication or connect any orientation-sensitive debug signals until orientation is determined.

B.2.6.1.2 Orientation Detection with DTS as a Sink

When the DTS is a sink, it shall follow a two-step approach.

1. The DTS sink shall present Rd/Rd on the CC pins of the debug accessory plug. This will put the system into debug accessory mode

2. Once the DTS sink enters AttachedDeb.SNK state, it shall present a resistance to GND of ≤ Ra on B5 (CC2)

The asymmetric signaling is detected by the TS Source in the UnorientedDebugAccessory.SRC state. Once Detected, the TS Source will move to the OrientedDebugAccessory.SRC. Once the TS source enters the OrientedDebugAccessory.SRC state, after the SRC.Ra level is detected on one of the CC pins, it will orient its signal
multiplexor based on the detected orientation indicated by the relative voltages of the CC pins. The CC pin with the greater voltage is the plug CC pin, which establishes the orientation of the DTS plug in the TS receptacle and also indicates the USB-PD CC communication wire. The TS Source cannot perform USB-PD communication or connect any orientation-sensitive debug signals until orientation is determined.

B.3 Security/Privacy Requirements:

Debug port(s) typically provide system access beyond the normal operation of USB hardware and protocol. Additional protection against unintended use is needed. The design must incorporate appropriate measures to prohibit unauthorized access or modification of the unit under test and to prevent exposure of private user data on the unit under test. The method of protection is not explicitly defined in this specification.

The vendor shall assert as part of USB compliance certification that:

- The device has met the requirement to protect the system’s security and user’s privacy in its vendor-specific implementation of the port, and
- The device requires the user to take an explicit action to authorize access to or modification of the unit.
C USB Type-C Digital Audio

C.1 Overview

One of the goals of USB Type-C® is to help reduce the number of I/O connectors on a host platform. One connector type that could be eliminated is the legacy 3.5 mm audio device jack. While USB Type-C does include definition of an analog audio adapter accessory (see Appendix A), that solution requires a separate adapter that can be readily lost and the host implementation in support of analog audio is technically challenging. To best serve the user experience, a simplified USB Type-C digital audio solution based on native USB protocol is simpler/more interoperable with both the host platform and audio device being connected directly without the need for adapters and operates seamlessly through existing USB topologies (e.g. through hubs and docks).

This appendix is for the optional normative definition of digital audio support on USB Type-C-based products. Any USB Audio Class product, having either a USB Type-C plug or receptacle, and whether it is a host system, typically an audio source, and an audio device, typically an audio sink, shall meet the requirements of this appendix in addition to all other applicable USB specification requirements.

C.2 USB Type-C Digital Audio Specifications

USB Type-C Digital Audio (TCDA), when implemented per this specification, shall be compliant with either the USB Audio Device Class 1.0, 2.0 or 3.0 specifications as listed below. While allowed, basing a TCDA on USB Audio Device Class 1.0 is not recommended. Given the number of benefits in terms of audio profile support, simplified enumeration and configuration, and improved low-power operation, use of the USB Audio Device Class 3.0 is strongly recommended.

USB Audio Device Class 1.0 including:
- USB Device Class Definition for Audio Devices, Release 1.0
- USB Device Class Definition for Audio Data Formats, Release 1.0
- USB Device Class Definition for Audio Terminal Types, Release 1.0

USB Audio Device Class 2.0 including:
- USB Device Class Definition for Audio Devices, Release 2.0
- USB Device Class Definition for Audio Data Formats, Release 2.0
- USB Device Class Definition for Audio Terminal Types, Release 2.0

USB Audio Device Class 3.0 including:
- USB Device Class Definition for Audio Devices, Revision 3.0
- USB Device Class Definition for Audio Data Formats, Release 3.0
- USB Device Class Definition for Audio Terminal Types, Release 3.0
- USB Device Class Definition for Basic Audio Functions, Release 3.0

USB Audio Device Class 3.0 specifications now include the definition of basic audio function profiles (Basic Audio Device Definition, BADD). TCDA devices based on USB Audio Device Class 3.0 will implement one of the defined profiles. TCDA-capable hosts based on USB Audio Device Class 3.0 will recognize and typically implement all of the profiles that are relevant to the capabilities and usage models for the host.

TCDA devices shall fall into one of the following two configurations:
a traditional VBUS-powered USB device that has a USB Type-C receptacle for use with a standard USB Type-C cable, or

• a **VCONN-Powered USB Device** (VPD) that has a captive cable with a USB Type-C plug (including thumb drive style products).

USB Type-C plug-based TCDA devices shall not be implemented as a variant of the USB Type-C Analog Audio Adapter Accessory (Appendix A).
D Thermal Design Considerations for Active Cables

D.1 Introduction

USB Type C® active cables use active circuitry to realize a longer link than passive cables and to maintain the electrical performance at high speed data transmission (USB 3.2 Gen2 single-lane or USB 3.2 Gen1 or Gen2 dual-lane). The additional power dissipation due to active components in the plug over-mold, creates a thermal challenge to passively dissipate power from its active components off limited outer surface area of cable over-mold. Furthermore, the VBUS current, up to 5 A for power delivery, generates joule heat from the conductors along VBUS and GND lines, including copper wires, solder joints, contact pins inside connectors and copper traces on paddle board.

This appendix provides some case studies to show the thermal impacts of certain factors affecting the maximum over-mold surface temperature TS such as IC power inside over-mold (PO), thermal boundary, VBUS current level, and port to port spacing. The case study provided is for a specific mechanical design of the cable. When a different mechanical design (geometry or material, etc.) are used, these impacts need further investigation. The methodology of the study is thermal modelling. The modeling results has been validated for some cases (1.5 W PO and 5A VBUS) with lab test results within ± 3 °C, but not for all cases. Note that this appendix is not a full factorial or complete Design of Experiment (DOE) study and whether there is interaction among any of these factors are not covered here.

To meet thermal requirements specified in Section 5.2.4.1, as well as the junction temperature Tj requirement of any active components, an active cable should be carefully designed to facilitate the desired heat flow paths. A desirable thermal resistance between powered IC to over-mold surface is achieved when neither TS nor Tj exceeds their specifications. This appendix focuses solely on TS as output of the study, as the Tj requirement varies depending on the IC requirements.

It is recommended that system integrator such as host or device designer should take into consideration the heat transferred to or from an active cable in the system level thermal analysis.

Nomenclature used in this appendix:

- \(T_A \) = ambient temperature (°C)
- \(T_j \) = junction temperature (°C)
- \(T_S \) = plug over-mold outer surface maximum temperature (°C)
- \(T_{MB} \) = motherboard/thermal boundary temperature (°C)
- \(P_O \) = active component power (W) inside the over-mold that directly plugged in the host or device at each end of cable.

D.2 Model

D.2.1 Assumptions

A system model was built which includes a half active cable with one over-mold on the end, a mated pair of connectors (plug and receptacle) and a motherboard as its host or device side thermal boundary. The model assumes the cable is symmetric with VCONN power to be equally divided and each end of cable consumes half of VCONN power for the active components.

It is a Computational Fluid Dynamics (CFD) model with heat transfer of conduction, natural convection and radiation. Emissivity of the plug over-mold and cable jacket is assumed to be 0.92 and the connector metal surfaces is assumed to be 0.05.
D.2.2 Model Architecture

The specific system and cable architecture used in the model is shown below.

The simplified cable model uses a pure copper cable, representing a typical short active cable, with total cross section of the copper conductors being about 3.8 mm2.

The cable model incorporates a plastic boot for the over-mold which allows a higher surface temperature threshold than some other materials such as metal or glass. The over-mold length in the study was 35 mm.

In this specific cable design, two active components are surface mounted on plug PCB (or paddle board). Thermal Interface Material (TIM) are placed between “hot components” and “heat spreading material” such as metal housings to reduce thermal resistance between component junctions to ambient. Metal shells help to reduce Ts by spreading heat across the over-mold surface and avoid hot spots.

The plug PCB and motherboard are assumed to be FR4 based material. The motherboard is a bulk model assumed to be at a constant temperature without a point heat source on it. The receptacle is top mounted on the motherboard in single port and horizontal stacked cases, Figure D-6; and is vertically mounted in vertical stack up cases, Figure D-4 and Figure D-5.
D.2.3 Heat Sources

Main heat sources include:

- Active component power such as re-timer, voltage regulator, etc.; the overall power inside over-mold is P_o, which is about half of V_{CONN} power consumed by the full cable;

- Joule heat from the any conductor that carries high current, e.g. raw cable V_{BUS} and GND copper wire, the plug PCB copper traces, contact pins of connectors, etc.

D.2.4 Heat Flow

The main power sources and heat flow paths are illustrated in Figure D-3. The overall heat generated from the cable is mainly dissipated from over-mold surfaces, cable jacket and path to motherboard. The higher thermal resistance of one heat path, the more heat it will “push off” to other heat paths and the more risk that active component junction is overheated. Since heat flow to motherboard is not a desired path from the perspective of system design, cable and over-mold design are critical to achieve balanced heat dissipation paths so not to violate either T_s or T_J requirements.

The overall heat generated from the cable should be consistent with the overall power dissipated by the cable. An example of half a 1.0 m active cable consuming 1.5 W and sourcing 5 A V_{BUS} is shown below:
Table D-1 Heat Sources and Heat Dissipation Example (1.5 W cable and 5 A)

(a) Heat Sources

<table>
<thead>
<tr>
<th>Index</th>
<th>Heat Source</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Active Components</td>
<td>0.750</td>
</tr>
<tr>
<td>2</td>
<td>Pin Heating</td>
<td>0.330</td>
</tr>
<tr>
<td>3</td>
<td>PCB Heating</td>
<td>0.135</td>
</tr>
<tr>
<td>4</td>
<td>Cable Heating</td>
<td>0.805</td>
</tr>
<tr>
<td></td>
<td>Total Power Generation:</td>
<td>2.020</td>
</tr>
</tbody>
</table>

(b) Heat Dissipation

<table>
<thead>
<tr>
<th>Index</th>
<th>Heat Source</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plug Surface</td>
<td>0.500</td>
</tr>
<tr>
<td>2</td>
<td>Cable & SR</td>
<td>1.120</td>
</tr>
<tr>
<td>3</td>
<td>Receptacle</td>
<td>0.050</td>
</tr>
<tr>
<td>4</td>
<td>Flow to Motherboard</td>
<td>0.350</td>
</tr>
<tr>
<td></td>
<td>Total Power Dissipation:</td>
<td>2.020</td>
</tr>
</tbody>
</table>

D.3 USB 3.2 Single Lane Active Cable

Based on the assumption that VCONN power consumption is equally split between two ends of the cable and the 1 W maximum VCONN power dissipation in the USB Type-C active cable (See Table 4-5), active component power in each end or over-mold power (Po) can go up to 0.5 W in a USB 3.2 active cable.

D.3.1 USB 3.2 Single-Lane Active Cable Design Considerations

The active cable designer should design for Ts less than 30 °C above TA in the condition where thermal boundary TMB is of 25 °C above TA per Section 5.5.4.

D.3.1.1 USB 3.2 Single-Lane Active Cable in a Single Port Configuration

An active cable connected to a single port in a host or device can take full advantage of the overall plug surface area for heat dissipation. Table D-2 shows that when Po is 0.5 W, it is achievable to keep the plug over-mold surface temperature Ts of a single cable below the requirement, at both 3 A and 5 A VBUS, assuming the motherboard temperature is no higher than (TA +25) °C.

Table D-2 USB 3.2 Active Cable Design Single Port Case Study at 35 °C Ambient and 60 °C Thermal Boundary (Single Lane)

<table>
<thead>
<tr>
<th></th>
<th>3 A VBUS</th>
<th>5 A VBUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ts (°C)</td>
<td>57</td>
<td>60</td>
</tr>
</tbody>
</table>

D.3.1.2 USB 3.2 Single-Lane Active Cable in a Multiple Port Configuration

When multi-port connector spacing is small, there is heat transfer between cables resulting in heat dissipation through natural convection being less effective than in the single port case. Radiation is also less effective due to the proximity of hot surfaces. This section lists a few typical 3-port configuration to show the impacts of receptacle spacing to the thermal
performance of an active cable. For Figure D-4 and Figure D-5 minimum spacing center to center is 7 mm; for Figure D-6 it is 12.85 mm.

Figure D-4 Vertically Stacked Horizontal Connectors 3x1 Configuration (VERT)

![Vertically Stacked Horizontal Connectors 3x1 Configuration (VERT)](image1)

Figure D-5 Horizontally Stacked Vertical Connectors 1x3 Configuration (HZ90)

![Horizontally Stacked Vertical Connectors 1x3 Configuration (HZ90)](image2)

Figure D-6 Horizontally Stacked Horizontal Connector 1x3 Configuration (HORZ)

![Horizontally Stacked Horizontal Connector 1x3 Configuration (HORZ)](image3)
D.3.1.2.1 USB 3.2 Single-Lane 3A Active Cable in a 3-Port Configuration

When three active cables are stacked up, the port in the center position is usually in the worst situation for heat transfer. Figure D-7 shows the temperature difference between maximum over-mold surface temperature T_S of three ports and the ambient temperature T_A when three USB 3.2 3A cables are plugged on a 60 °C motherboard in 35°C ambient.

In all 3-port configurations shown in Figure D-4, Figure D-5, and Figure D-6, it is achievable to keep the all three plug over-mold surface temperature T_S below the requirement, at 3 A V_{BUS}, assuming the motherboard temperature is no higher than $(T_A + 25)$ °C. Specific cable design should be tested and validated because the margin of center port in VERT and HZ90 is less than 1 °C at minimum port spacing in thermal modeling.

Figure D-7 USB 3.2 Single-Lane 3A Active Cable in a 3-Port Configuration

D.3.1.2.2 USB 3.2 Single-Lane 5A Active Cable in a 3-Port Configuration

Figure D-8 shows the temperature difference between maximum over-mold surface temperature T_S of three ports and the ambient temperature T_A when three USB 3.2 5A cables are plugged on a 60 °C motherboard in 35 °C ambient.

All solid lines indicate the minimum spacing cases and dash lines the enlarged spacing cases. Center port is the worst case in all configurations. Three 5A cables at VERT and HZ90 configurations at minimum spacing could exceed the $(T_A + 30$ °C) specification by up to 5 °C. HORZ configuration marginally meet spec on side ports but failed on center port.

Enlarging spacing between ports greatly reduce T_S. Especially in HZ90 configuration, spacing from 7 mm to 15 mm reduced T_S by about 8 °C.
Figure D-8 USB 3.2 Single-Lane 5A Active Cable in a 3-Port Configuration

D.4 Dual-Lane Active Cables

USB 3.2 defines two lanes of SuperSpeed USB data and in dual-lane operation typically has higher active component power consumption than USB 3.2 single-lane Gen2 active cables. Higher power could heat up the over-mold and raise T_S above user comfort zone when plugging or unplugging the cable.

USB 3.2 dual-lane active cable may consume up to 1.5 W of power from VCONN. This compares with the 1 W allowed for USB 3.2 single-lane active cables.

Section D.4.1 shows T_S resulting from 0.75 W over-mold power P_O in a 1.5 W dual-lane USB 3.2 active cable for a certain design, in both single-port and multiple-port configurations. Results reveals that thermal solution is necessary to meeting cable design requirements especially in multiple-port configuration.

Both over-mold power P_O and thermal boundary of the cable T_{MB} have impacts on T_S. The correlation of three are studied in Section D.4.1.2 which helps system and cable designer to take both factors into consideration.

D.4.1 USB 3.2 Dual-Lane Active Cable Design Considerations

The cable designer should design for T_S of the over-mold less than 30 °C above T_A in the condition where thermal boundary T_{MB} is of 25 °C above T_A per Section 5.5.4.

D.4.1.1 USB 3.2 Dual-Lane Active Cable in a Single Port Configuration

An active cable connected to a single port in a host or device can take full advantage of the overall plug surface area for heat dissipation. Table D-3 shows that when P_O is 0.75 W, it is achievable to keep the plug over-mold surface temperature T_S of a single cable below ($T_A +30$) °C at both 3 A and 5 A VBUS, assuming the motherboard temperature is no higher than ($T_A +25$) °C.
Table D-3 USB 3.2 Active Cable Design Single Port Case Study at 35 °C Ambient and 60 °C Thermal Boundary (Dual Lane)

<table>
<thead>
<tr>
<th></th>
<th>3 A VBUS</th>
<th>5 A VBUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS (°C)</td>
<td>61</td>
<td>64</td>
</tr>
</tbody>
</table>

In 5 A VBUS case, TS is much closer to specified limit than 3 A VBUS case (Section D.3.1.1), so test and verification of thermal design is highly recommended.

D.4.1.2 Impact of Over-mold Power Po and Thermal Boundary Temperature TMB

In Figure D-9, the area under graph indicate the combination of over-mold power PO and thermal boundary temperature TMB that can achieve TS < (TA + 30) °C in a single port configuration in a 3 A VBUS application.

Figure D-9 Impact of Over-mold Power PO and Thermal Boundary Temperature TMB at 3 A VBUS in a Single Port Configuration

In Figure D-10, the area under graph indicate the combination of over-mold power PO and thermal boundary temperature TMB that can achieve TS < (TA + 30) °C in a single port configuration in a 5 A VBUS application.
D.4.1.3 Dongle Cable

When overall active component power is higher than the maximum over-mold power P_0 that could meet T_s requirement, cable may be re-designed to move the thermal load away from the USB Type-C plug over-mold such as in a dongle cable as illustrated in Figure D-11.

Figure D-11 USB 3.2 Active Cable Dongle Design (One End Shown)

The cable should be designed so that the over-mold directly plugged in the host or device dissipates no more than maximum P_0 and extra heat is migrated to another part of the cable such as a dongle, so neither extra heat will flow into host and device, nor over-mold surface temperature is too hot for users to touch.

D.4.2 USB 3.2 Dual-Lane Active Cable in a Multi-Port Configuration

Multi-port connector spacing results in less effective heat dissipation by natural convection and radiation. This section lists a few typical 3-port configuration to show the impacts of receptacle spacing to the thermal performance of USB 3.2 active cables. Naming of configurations used in this section are the same as in Section D.3.1.2.

D.4.2.1 USB 3.2 Dual-Lane 3A Active Cable in a 3-Port Configuration

Figure D-12 shows the temperature difference between maximum over-mold surface temperature T_s of three ports and the ambient temperature T_A when three USB 3.2 dual-lane 3A V_{BUS} and 1.5 W cables are plugged on a 60 °C motherboard in 35 °C ambient. The port in the center position is usually in the worst situation for heat transfer.
All solid lines indicate the minimum spacing cases and dash lines the enlarged spacing cases. Center port is the worst case in all configurations. T_S of center port in VERT and HZ90 configurations at minimum spacing could be more than $6 \, ^\circ C$ over the $(T_A +30 \, ^\circ C)$ specification and in HORZ configuration about $2 \, ^\circ C$ over specification.

Enlarging spacing between ports could greatly reduce T_S. Especially in HZ90 configuration, spacing from $7 \, \text{mm}$ to $15 \, \text{mm}$ reduced T_S by about $11 \, ^\circ C$, which help to reduce T_S to meet specification.

Figure D-12 USB 3.2 Dual-Lane 3A Active Cable in a 3-Port Configuration

![Figure D-12](image)

D.4.2.2 USB 3.2 Dual-Lane 5A Active Cable in a 3-Port Configuration

Figure D-13 shows the temperature difference between maximum over-mold surface temperature T_S of three ports and the ambient temperature T_A when three USB 3.2 dual-lane 5 A VBUS and 1.5 W cables are plugged on a $60 \, ^\circ C$ motherboard in $35 \, ^\circ C$ ambient. The T_S port in the center position is still the highest of all three in all cases.

In all 3-port configurations listed in Figure D-4, Figure D-5, and Figure D-6, plug over-mold surface temperature T_S of all three ports have exceeded the requirement, at 5 A VBUS, assuming the motherboard temperature is at $(T_A +25) \, ^\circ C$. T_S of center port in VERT and HZ90 configurations at minimum spacing are the highest, near $12 \, ^\circ C$ over the $(T_A +30 \, ^\circ C)$ specification and in HORZ configuration about $6 \, ^\circ C$ over specification.

Enlarging spacing between ports could help reduce T_S. The largest reduction is seen in HZ90 configuration, which is near $12 \, ^\circ C$ and it brings T_S back close to target, when spacing is enlarged from $7 \, \text{mm}$ to $15 \, \text{mm}$. However, when port spacing is not sufficient to bring T_S down to desired range, further design options in cable and host/device should be investigated.
D.5 USB 3.2 Host and Device Design Considerations

Multi-port USB 3.2 systems should follow the connector minimum spacing requirement defined in Section 3.10.2.

From heat flow schematics (Section D.2.4), when flow path 1 (over-mold surface dissipation) is less effective due to the limited spacing between cables, more heat would flow to motherboard and cable. It is recommended that system designer evaluate the heat flow to the system in a system level thermal analysis and provide a heat solution at the system level to reduce the motherboard temperature at these ports if necessary.

D.5.1 Heat Spreading or Heat Sinking from Host or Device

Proper thermal solutions may be needed on host or device to meet cable thermal requirements. Below are examples of placement of thermal interface material on host or device USB Type-C receptacle connector to spread heat or conduct heat away from chassis. This is to help either direct heat away from active components inside cable plug or limit amount of heat from flowing from host or device into the cable plug. Both would prevent the increased junction temperature of active components and increased cable plug surface temperature over the finger touch temperature limit. The heat management solution shown below are not limited to certain type or size.
D.5.2 Motherboard Temperature Control

Motherboard as a thermal boundary for the cable, could impact the thermal performance of cable greatly. Lowered motherboard temperature especially the area local around the receptacles could help reduce plug surface temperature T_s and component junction temperature T_J. See more discussion in Section D.4.1.1.

D.5.3 Wider Port Spacing for Multi-Port Applications

Wider spacing between receptacle connectors, especially when no additional heat sinking is available, is recommended for multiport application. Section D.3.1.2.1 and section D.3.1.2.2 show the impact from adjustment of port spacing.

D.5.4 Power Policies

To be added in a future update.
E Alternate Modes

All hosts and devices (except chargers and clearly marked charge-through ports) using a USB Type-C® receptacle shall expose a USB interface (minimally USB 2.0). In the case where the host or device optionally supports Alternate Modes:

- The host and device shall use USB Power Delivery Structured Vendor Defined Messages (Structured VDMs) to discover, configure and enter/exit modes to enable Alternate Modes.
- The device is strongly encouraged to provide equivalent USB functionality where such exists for best user experience.
- Where no equivalent USB functionality is implemented, the device shall provide a USB interface exposing a USB Billboard Device Class used to provide information needed to identify the device. A device is not required to provide a USB interface exposing a USB Billboard Device Class for non-user facing modes (e.g., diagnostic modes).

As Alternate Modes do not traverse the USB hub topology, they shall only be used between a host connected directly to a device.

There are Alternate Mode devices that look like a USB hub – the downstream facing ports of such devices are USB Type-C receptacles that support Alternate Modes. These devices are referred to as Alternate Mode expanders:

- The Alternate Mode port expander’s downstream facing USB Type-C receptacles shall expose a USB 2.0 interface.

An Alternate Mode port expander with the capability to pass SuperSpeed USB through its upstream facing port should expose SuperSpeed USB on its downstream facing USB Type-C receptacles.

E.1 Alternate Mode Architecture

The USB Power Delivery Structured VDMs are defined to extend the functionality a device exposes. Only Structured VDMs shall be used to alter the USB functionality or reconfigure the pins the USB Type-C Connector exposes. Structured VDMs provide a standard method to identify the modes a device supports and to command the device to enter and exit a mode. The use of Structured VDMs are in addition to the normal USB PD messages used to manage power. Structured VDMs may be interspersed within the normal USB PD messaging stream, however they shall not be inserted in the middle of an ongoing PD power negotiation.

The Structured VDMs consist of a request followed by a response. The response is either a successful completion of the request (ACK), an indication that the device needs time before it can service a request (BUSY), or a rejection of the request (NAK). A host and device do not enter a mode when either a NAK or BUSY is returned.

Multiple modes may exist and/or function concurrently. For example, a Structured VDM may be used to manage an active cable at the same time that another Structured VDM is used to manage the device so that both the cable and device are operating in a compatible mode.

E.2 Alternate Mode Requirements

The host and device shall negotiate a USB PD Explicit Contract before Structured VDMs may be used to discover or enter an Alternate Mode.

The ACK shall be sent after switching to the Alternate Mode has been completed by the UFP for Enter Mode and Exit Mode requests. See Section 6.4.4 in the USB Power Delivery Specification.
If a device fails to successfully enter an Alternate Mode within \(t_{AMETimeout} \) then the device shall minimally expose a USB 2.0 interface (USB Billboard Device Class) that is powered by \(V_{BUS} \). If the device additionally supports USB4, then the device should defer exposing a USB 2.0 interface (USB Billboard Device Class) due to an Alternate Mode timeout until the USB4 discovery and entry process has completed (See Section 5.2.2).

When a device offers multiple modes, especially where multiple Alternate Mode definitions are needed in order to be compatible with multiple host-side implementations, successfully entering an Alternate Mode may be predicated on only one of the available modes being successfully recognized by a host. In this case, the device is not required to expose but may still expose a USB Billboard Device Class interface to indicate to the host the availability and status of the modes it supports.

The host may send an Enter Mode after \(t_{AMETimeout} \). If the device enters the mode, it shall respond with an ACK and discontinue exposing the USB Billboard Device Class interface. The device may expose the USB Billboard Device Class interface again with updated capabilities.

The current supplied over \(V_{CONN} \) may be redefined by a specific Alternate Mode but the power shall not exceed the current rating of the pin (See Section 3.7.8.4).

E.2.1 Alternate Mode Pin Reassignment

Figure E-1 illustrates the only pins that shall be available for functional reconfiguration in a full-featured cable. The pins highlighted in yellow are the only pins that shall be reconfigured.

![Figure E-1 Pins Available for Reconfiguration over the Full-Featured Cable](image)

Figure E-2 illustrates the only pins that shall be available for functional reconfiguration in direct connect applications such as a cradle dock, captive cable or a detachable notebook. The pins highlighted in yellow are the only pins that shall be reconfigured. Five additional pins are available because this configuration is not limited by the cable wiring.

![Figure E-2 Pins Available for Reconfiguration for Direct Connect Applications](image)

The USB 2.0 data pins \(A6, A7 \) shall remain connected to the USB host controller during entry, while in and during exit of an Alternate Mode except in the case of a direct connect application that remaps \(A6 \) and \(A7 \). Direct connect applications that remap \(A6 \) and \(A7 \) through the use of an Alternate Mode shall provide a USB Billboard Class device that is presented if the remapped Alternate Mode is not entered within \(t_{AMETimeout} \).
E.2.2 Alternate Mode Electrical Requirements

Signaling during the use of Alternate Modes shall comply with all relevant cable assembly, adapter assembly and electrical requirements of Chapter 3.

Several requirements are specified in order to minimize risk of damage to the SuperSpeed USB transmitters and receivers in a USB host or device when operating in an Alternate Mode:

- If pin pairs B11, B10 (RX1) and A11, A10 (RX2) are used on a captive cable, they shall be AC coupled either before or in the USB Type-C plug.
- If pin pairs B11, B10 (RX1) and A11, A10 (RX2) are used on a USB Type-C receptacle, they may be AC coupled and discharged per USB 3.2 before the receptacle.
- AC coupling on pin pairs A2, A3 (TX1) and B2, B3 (TX2) as defined for SuperSpeed USB signaling per USB 3.2 shall be used for Alternate Mode signaling.
- Signals being received at the USB Type-C receptacle shall not exceed the value specified for $V_{TX-DIFF-PP}$ in Table 6-18 of the USB 3.2 specification.
- Direct Connect applications that remap pins A6 and A7 shall place pins A6 and A7 in a hi-Z state before transmitting the USB PD Enter_Mode command to the Sink. The Source shall not enable the alternate use of the A6 and A7 pins until an ACK has been received by the Source. In the event of a failure to enter the Alternate Mode after transmission of the USB PD Enter_Mode command, the Source shall restore pins A6 and A7 to the normative USB 2.0 operation.

Direct connect applications shall ensure that any stubs introduced by repurposing the extra D+/D− pair do not interfere with USB communication with compliant hosts that short the pairs of pins together on the receptacle. This can be ensured by placing the Alternate Mode switch close to the plug, by adding inductors to eliminate the stubs at USB 2.0 frequencies, by AC-terminating the long stubs to remove reflections at the cost of attenuated signal, or by other means.

When in an Alternate Mode, activity on the SBU lines shall not interfere with USB PD BMC communications or interfere with detach detection.

The AC coupling requirement are the same as defined in the USB 3.2 specification. The TX signals shall be AC coupled within the system before the physical connector. The RX signals may be DC coupled or AC coupled and discharged within the system.

It should be noted that the AC coupling capacitor is placed in the system next to the USB Type-C receptacle, so that the system components (the orientation switch, the Alternate Mode selection multiplexer, and other system components) operate within the common mode limits set by the local PHY. This applies, in the SuperSpeed USB operation, to both the transmit path and the receive path within the local system. The receive path is isolated from the common mode of the port partner by the AC coupling capacitors that are implemented on the TX path in the port partner.

Figure E-3 shows the key components in a typical Alternate Mode implementation using a USB Type-C to USB Type-C full featured cable. This implementation meets the AC coupling requirements, as the capacitors required to be in or before the USB Type-C plug are implemented behind the TX pins in the port partner.

It should be noted that the AC coupling capacitor is placed in the system next to the USB Type-C receptacle, so that the system components (the orientation switch, the Alternate Mode selection multiplexer, and other system components) operate within the common mode limits set by the local PHY. This applies, in the SuperSpeed USB operation, to both the
transmit path and the receive path within the local system. The receive path is isolated from the common mode of the port partner by the AC coupling capacitors that are implemented on the TX path in the port partner.

Figure E-3 Alternate Mode Implementation using a USB Type-C to USB Type-C Cable

In the case where the Alternate Mode System is required to implement DC blocking capacitors within the system between active system components and the Alternate Mode connector, then this provides the necessary isolation and further capacitors in the USB Type-C to Alternate Mode adapter cable are not necessary, and may indeed impair signal integrity.

Figure E-4 shows the key components in a typical Alternate Mode implementation using either a USB Type-C to Alternate Mode connector cable, or a USB Type-C Alternate Mode Direct Attach device. In both cases it is necessary that the system path behind the RX pins on the USB receptacle be isolated from external common mode. This requirement is met by incorporating capacitors in or behind the USB Type-C plug on the Alternate Mode cable or Alternate Mode device.

In the case where the Alternate Mode System is required to implement DC blocking capacitors within the system between active system components and the Alternate Mode connector, then this provides the necessary isolation and further capacitors in the USB Type-C to Alternate Mode adapter cable are not necessary, and may indeed impair signal integrity.
The USB Safe State is defined by the USB PD specification. The USB Safe State defines an electrical state for the SBU1/2 and TX/RX for DFPs, UFPs, and Active Cables when transitioning between USB and an Alternate Mode. SBU1/2 and TX/RX must transition to the USB Safe State before entering to or exiting from an Alternate Mode. Table E-1 defines the electrical requirements for the USB Safe State. See the USB-PD Specification for more detail on entry/exit mechanisms to the USB Safe State.

Table E-1 USB Safe State Electrical Requirements

<table>
<thead>
<tr>
<th></th>
<th>SBU1/2</th>
<th>TX1,2</th>
<th>RX2</th>
<th>A6/A7/B6/B7<sup>4</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Common-mode voltage</td>
<td>0 to 1.5 V</td>
<td>0 to 1.5 V</td>
<td>0 to 1.5 V</td>
<td>0 to 1.5 V</td>
</tr>
<tr>
<td>Impedance to ground<sup>3</sup></td>
<td>< 4 MΩ</td>
<td>< 4 MΩ</td>
<td>25 KΩ – 4 MΩ</td>
<td>< 4 MΩ</td>
</tr>
</tbody>
</table>

Notes:
1. TX common-mode voltage is defined on the integrated circuit side of the AC coupling capacitors.
2. Unused TX and RX signals should transition to USB Safe State if wired to the connector but not used.
3. The DFP and UFP shall provide a discharge path to ground in USB Safe State when a connection to the USB Type-C receptacle is present.
4. Applies to docking solutions/direct connect applications that redefine pins A6, A7, B6 and B7.

E.3 Parameter Values

Table E-2 provides the timeout requirement for a device that supports Alternate Modes to enable a USB Billboard Device Class interface when none of the modes supported by the device are successfully recognized and configured by the DFP to which the device is attached.
Table E-2 USB Billboard Device Class Availability Following Alternate Mode Entry Failure

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tAMETimeout</td>
<td>1000 ms</td>
</tr>
</tbody>
</table>

While operating in an Alternate Mode, the signaling shall not cause noise ingression onto USB signals operating concurrently that exceeds the Vnoise parameters given in Table E-3.

Table E-3 Alternate Mode Signal Noise Ingression Requirements

<table>
<thead>
<tr>
<th>Limit</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vnoise on BMC during BMC Active</td>
<td>30 mV</td>
</tr>
<tr>
<td>Vnoise on BMC during BMC Idle</td>
<td>100 mV</td>
</tr>
<tr>
<td>Vnoise on D+/D− (Single-ended)</td>
<td>40 mV</td>
</tr>
<tr>
<td>Vnoise on D+/D− (Differential)</td>
<td>10 mV</td>
</tr>
</tbody>
</table>

Note: Each Vnoise parameter is the max noise ingression level allowed onto the respective interface that is due to two SBU aggressors from the Alternate Mode signaling, under respective worse case scenarios. The coupling between SBU_A/SBU_B and CC within a USB Type-C cable shall meet the requirement described in Section 3.7.2.5.4. The coupling between SBU_A/SBU_B and USB D+/D− within a USB Type-C cable shall meet the requirement described in Section 3.7.2.5.5.

E.4 Example Alternate Mode – USB DisplayPort™ Dock

This example illustrates the use of Structured VDMs to expose and access functionality beyond the basic functionality defined by the USB Type-C Connector. The device uses its USB Type-C connector to make connection when placed in a cradle dock. This example only illustrates the functional connections.

E.4.1 USB DisplayPort™ Dock Example

- The cradle dock provides mechanical alignment and attachment in addition to those provided by the USB Type C connector allowing for only one orientation eliminating the need for an orientation MUX in the dock.
- The dock and system use USB PD to manage charging and power.
- The dock uses DisplayPort to drive a DisplayPort-to-HDMI adapter to support connecting an HDMI monitor.
- The dock has a USB hub that exposes two external USB ports and attached internal USB Devices, e.g. a USB audio Device (a 3.5 mm audio jack), and a USB Billboard Device.

Figure E-5 illustrates the USB DisplayPort Dock example in a block diagram form.
The system uses USB PD Structured VDMs to communicate with the dock to discover that it supports a compatible Alternate Mode. The system then uses a Structured VDM to enter the dock mode. Since USB PD is used, it may also be used to negotiate power for the system and dock. In this example, the SuperSpeed USB signals allow the dock to work as a USB-only dock when attached to a system that does not fully support the dock or even USB PD.

E.4.2 Functional Overview

The following summarizes the behavior resulting from attaching the example USB DisplayPort Dock for three likely host system cases.

1. **Host system does not support USB PD or supports USB PD without Structured VDMs**
 - The host does not support USB PD, or supports USB PD but not Structured VDMs, so it will not look for SVIDs using the Structured VDM method.
 - The host will discover the USB hub and operates as it would when connected to any USB hub.
 - Since the host will not send an Enter Mode command, after tAMETimeout the dock will expose a USB Billboard Device Class interface that the host will enumerate. The host then reports to the user that an unsupported Device has been connected, identifying the type of Device from the USB Billboard Device Class information.

2. **Host system supports USB PD and Structured VDMs but does not support this specific USB DisplayPort Dock**
 - The host discovers the USB hub and operates as it would when connected to any USB hub.
 - The Host looks for SVIDs that it recognizes. The VID associated with this USB DisplayPort Dock may or may not be recognized by the Host.
 - If that VID is recognized by the Host, the Host then requests the modes associated with this VID. The mode associated with this USB DisplayPort Dock is not recognized by the Host.
Since the host does not recognize the mode as being supported hence will not send the Enter Mode command, after \texttt{tAMETimeout} the dock will expose a \textit{USB Billboard Device Class} interface that the host will enumerate. The host then reports to the user that an unsupported Device has been connected, identifying the type of Device from the \textit{USB Billboard Device Class} information.

3. Host system supports this specific USB DisplayPort Dock
 - The Host looks for SVIDs that it recognizes. The VID associated with this USB DisplayPort Dock is recognized by the Host.
 - The Host then requests the modes associated with this VID. The mode associated with this USB/Display Dock is recognized by the Host.
 - Since this mode is recognized as supported, the Host uses the Enter Mode command to reconfigure the USB Type-C receptacle and enter the USB DisplayPort Dock mode.
 - The USB DisplayPort Dock may optionally expose the \textit{USB Billboard Device Class} interface to provide additional information to the OS.

E.4.3 Operational Summary

The following summarizes the basic process of discovery through configuration when the USB DisplayPort Dock is attached to the Host.

1. Host detects presence of a device (CC pins) and connector orientation
2. Host applies default \texttt{VBUS}
3. Host applies \texttt{VCONN} because the dock presents \texttt{Ra}
4. Host uses \textit{USB PD} to make power contract with the USB DisplayPort Dock
5. Host runs the Discover Identify process
 - Sends Discover Identity message
 - Receives an ACK message with information identifying the cable
6. Host runs the Discover SVIDs process
 - Sends Discover SVID message
 - Receives an ACK message with list of SVIDs for which the Dock device has modes
7. Host runs the Discover Modes process
 - Sends Discover Modes VDM for the VIDs previously discovered
 - Receives an ACK message with a list of modes associated with each VID
 - If USB DisplayPort Dock mode not found, dock will timeout and present the \textit{USB Billboard Device Class} interface and the OS will inform the user of the error - done
 - Else
8. Host runs the Enter Mode process
 - Sends Enter Mode VDM with VID and USB DisplayPort Dock mode
 - Receives an ACK message – Host is now attached to the USB DisplayPort Dock and supports DisplayPort signaling to interface additional functions in combination with USB signaling
9. Host stays in the USB DisplayPort Dock mode until
 a. Explicitly exited by an Exit Mode VDM
 b. System physically disconnected from the USB DisplayPort Dock
 c. Hard Reset on USB PD
 d. VBUS is removed
F Thunderbolt 3 Compatibility Discovery and Entry

The USB4™ specification includes defined support for compatibility between USB4 products that are designed to interoperate with existing Thunderbolt™ 3 (TBT3) products. This appendix documents the normative methodology to discover and enter into TBT3 between two port partners – this methodology relies on Alternate Mode protocol as defined in Appendix E of this specification and the USB Power Delivery specification.

Thunderbolt 3 technology is organized into two primary product categories; hosts and devices. Most TBT3 devices include at least one upstream and one downstream port although a TBT3 device may include more than one downstream port in a manner similar to a hub or no downstream ports in a manner similar to a peripheral.

F.1 TBT3 Compatibility Mode Functional Requirements

In order to successfully interoperate with existing TBT3 products, the functional requirements in the following subsections must be met.

F.1.1 TBT3-Compatible Power Requirements

Before two TBT3-compatible port partners can enter TBT3 mode, a USB PD explicit power contract shall be established.

F.1.2 TBT3-Compatible Host Requirements

All TBT3-compatible host ports shall meet the following requirements.

- Support DRP operation
- If resolved to a UFP, use USB PD DR_Swap to attempt to switch into the DFP data role when DFP is preferred
- If resolved to a DFP, do not accept USB PD DR_Swap to remain in the DFP data role when DFP is preferred

F.1.3 TBT3-Compatible Device Upstream Requirements

F.1.3.1 Self-Powered Device

The TBT3-compatible upstream port of a self-powered device shall meet the following requirements.

- Support DRP operation
- Prefer Sink/UFP through the implementation and use of Try.SNK as needed
- If resolved to a DFP, accept USB PD DR_Swap to switch into the UFP data role

F.1.3.2 Bus-Powered Device

The TBT3-compatible upstream port of a bus-powered device shall meet the following requirements.

- Support Sink/UFP operation
- Reject USB PD DR_Swap to remain in the UFP data role

F.1.4 TBT3-Compatible Device Downstream Requirements

F.1.4.1 Self-Powered Device

The TBT3-compatible downstream stream port of a self-powered device shall meet the following requirements.

- Support DRP operation
• Prefer Source/DFP through the implementation and use of Try.SRC as needed
• If resolved to a DFP, do not accept USB PD DR_Swap and remain in the DFP data role

F.1.4.2 Bus-Powered Device
The TBT3-compatible downstream port of a bus-powered device shall meet the following requirements.

• Support Sink

F.1.5 TBT3-Compatible Self-Powered Device Without Predefined Upstream Port Rules
A TBT3-compatible device port may behave as either a downstream or upstream port based on its connection state to a TBT3-compatible host as described below.

• When no TBT3-compatible host is connected, the USB Type-C® ports shall:
 o Prefer to be configured as a UFP
 o Implement and use Try.SNK as needed to get into the UFP state
 o If resolved to a DFP, initiate or accept USB PD DR_Swap to switch to the UFP data role
 o Accept USB PD DR_Swap to switch to the DFP data role
 o When resolved to a UFP, identify this port as being connected to the host

• When a TBT3-compatible host is initially connected, the remaining downstream USB Type-C ports shall:
 o Implement and use Try.SRC as needed to get into the DFP state
 o Issue a Hard Reset if a USB PD DR_Swap is received when both a connection is present and an Alternate Mode is in place
 o Issue a USB PD DR_Swap to switch to the DFP data role if a connection is present but no Alternate Mode has been entered (this includes performing a disconnect/reconnect on the port)
 o Accept USB PD DR_Swap to switch to the DFP data role if a connection is present but no Alternate Mode has been entered (this includes performing a disconnect/reconnect on the port)

• When a TBT3-compatible host is disconnected, the downstream USB Type-C ports shall:
 o Perform a disconnect/reconnect on the port
 o Behave as if no host is connected

F.1.6 TBT3-Compatible Devices with a Captive Cable
TBT3-compatible devices with a captive cable shall respond to USB PD messages both SOP and SOP'.

F.2 TBT3 Discovery and Entry Flow
Figure F-1 describes the flow for a TBT3-compatible DFP port to discover and enter into the TBT3 Compatibility Mode of USB4 with a connected UFP. For each functional block, refer to the sub-sections identified for additional details.
Figure F-1 TBT3 Discovery Flow

1. **Device Attach**
 - See Sections F.2.1 and F.2.2
 - **Discover Identity SOP** (eMarker)
 - **eMarker present?**
 - **Y**
 - **Passive Cable**
 - **Product Type?**
 - **Y**
 - **SuperSpeed USB?**
 - **N**
 - **Exit TBT3 Discovery**
 - **Y**
 - **Active Cable**
 - **Discover Identity SOP**
 - **Modal Operation?**
 - **N**
 - **Exit TBT3 Discovery**
 - **Y**
 - **Discover SVID SOP**
 - **SVID = 80B7h?**
 - **N**
 - **Exit TBT3 Discovery**
 - **Y**
 - **Discover SVID SOP**
 - **SVID = 80B7h?**
 - **N**
 - **Non TBT3 cable, TBT3 limited to passive Gen2**
 - **Y**
 - **Discover TBT3 Mode SOP**
 - **See Section F.2.5**
 - **Discover TBT3 Mode SOP**
 - **See Section F.2.6**
 - **Enter TBT3 Mode SOP**
 - **See Section F.2.7**
 - **Enter TBT3 Mode SOP**
 - **See Section F.2.8**
F.2.1 TBT3 Passive Cable Discover Identity Responses

Table F-1, along with Table F-2 and Table F-3, defines the expected Discover Identity VDO responses for a TBT3 passive cable. In fields where multiple values are listed, cable responses may vary to match the specific connected cable’s capabilities.

Table F-1 TBT3 Passive Cable Discover Identity VDO Responses

<table>
<thead>
<tr>
<th>Rsvd</th>
<th>Number of Objects</th>
<th>Message ID</th>
<th>Cable Plug</th>
<th>Spec Revision</th>
<th>Rsvd</th>
<th>Message Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5…6</td>
<td>0…7</td>
<td>1 = Cable Plug</td>
<td>10b or 01b</td>
<td>0</td>
<td>1111b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SVID</th>
<th>VDM Type</th>
<th>VDM Version</th>
<th>Rsvd</th>
<th>Object Position</th>
<th>Command Type</th>
<th>Rsvd</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xFF00</td>
<td>1</td>
<td>01b</td>
<td>0</td>
<td>000b</td>
<td>001b</td>
<td>0</td>
<td>00001b</td>
</tr>
</tbody>
</table>

Bit(s) Value Parameter

ID Header VDO

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>B31</td>
<td>0</td>
<td>USB Communications Capable as USB Host</td>
</tr>
<tr>
<td>B30</td>
<td>0</td>
<td>USB Communications Capable as a USB Device</td>
</tr>
<tr>
<td>B29…27</td>
<td>011b = Passive Cable</td>
<td>Product Type (Cable Plug)</td>
</tr>
<tr>
<td>B26</td>
<td>1 = Modal Operation</td>
<td>Modal Operation Supported</td>
</tr>
<tr>
<td>B25…23</td>
<td>000b</td>
<td>Product Type (DFP)</td>
</tr>
<tr>
<td>B22…16</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>B15…16</td>
<td>Per vendor</td>
<td>USB Vendor ID</td>
</tr>
</tbody>
</table>

Cert Stat VDO

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>B31…0</td>
<td>0x00000000…0xFFFFFFFF</td>
<td>XID assigned by USB-IF</td>
</tr>
</tbody>
</table>

Product VDO

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>B31…16</td>
<td>0x0000...0xFFFF</td>
<td>USB Product ID</td>
</tr>
<tr>
<td>B15…0</td>
<td>0x0000...0xFFFF</td>
<td>bcdDevice</td>
</tr>
</tbody>
</table>

Passive Cable VDO

Depending on USB PD Specification Revision:
See Table F-2 for USB PD Revision 2.0 or Table F-3 for USB PD Revision 3.0
Table F-2 TBT3 Passive Cable VDO for USB PD Revision 2.0, Version 1.3

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>B31...28</td>
<td>0000b...1111b</td>
<td>HW Version</td>
</tr>
<tr>
<td>B27...24</td>
<td>0000b...1111b</td>
<td>Firmware Version</td>
</tr>
<tr>
<td>B23...20</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>B19...18</td>
<td>10b = USB Type-C</td>
<td>USB Type-C plug to USB Type-C/Captive</td>
</tr>
<tr>
<td>B17</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>B16...13</td>
<td>0001b – <10ns (~1m)</td>
<td>Cable Latency</td>
</tr>
<tr>
<td></td>
<td>0010b – 10ns to 20ns (~2m)</td>
<td></td>
</tr>
<tr>
<td>B12...11</td>
<td>00b = VCONN not required</td>
<td>Cable Termination Type</td>
</tr>
<tr>
<td>B10</td>
<td>0 = Fixed</td>
<td>SSTX1 Directionality Support</td>
</tr>
<tr>
<td>B9</td>
<td>0 = Fixed</td>
<td>SSTX2 Directionality Support</td>
</tr>
<tr>
<td>B8</td>
<td>0 = Fixed</td>
<td>SSRX1 Directionality Support</td>
</tr>
<tr>
<td>B7</td>
<td>0 = Fixed</td>
<td>SSRX2 Directionality Support</td>
</tr>
<tr>
<td>B6...5</td>
<td>01b = 3A</td>
<td>VBUS Current Handling Capacity</td>
</tr>
<tr>
<td></td>
<td>10b = 5A</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>1 = Yes</td>
<td>VBUS through cable</td>
</tr>
<tr>
<td>B3</td>
<td>0 = No</td>
<td>SOP" controller present</td>
</tr>
<tr>
<td>B2...0</td>
<td>010b = [USB 3.1] Gen1 and Gen2</td>
<td>SuperSpeed USB Signaling Support</td>
</tr>
</tbody>
</table>

Table F-3 TBT3 Passive Cable VDO for USB PD Revision 3.0, Version 1.2

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>B31...28</td>
<td>0000b...1111b</td>
<td>HW Version</td>
</tr>
<tr>
<td>B27...24</td>
<td>0000b...1111b</td>
<td>Firmware Version</td>
</tr>
<tr>
<td>B23...21</td>
<td>000b = Version 1.0</td>
<td>VDO Version</td>
</tr>
<tr>
<td>B20</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>B19...18</td>
<td>10b = USB Type-C</td>
<td>USB Type-C plug to USB Type-C/Captive</td>
</tr>
<tr>
<td>B17</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>B16...13</td>
<td>0001b – <10ns (~1m)</td>
<td>Cable Latency</td>
</tr>
<tr>
<td></td>
<td>0010b – 10ns to 20ns (~2m)</td>
<td></td>
</tr>
<tr>
<td>B12...11</td>
<td>00b = VCONN not required</td>
<td>Cable Termination Type</td>
</tr>
<tr>
<td>B10...9</td>
<td>00b = 20V</td>
<td>Maximum VBUS Voltage</td>
</tr>
<tr>
<td>B8...7</td>
<td>00b</td>
<td>Reserved</td>
</tr>
<tr>
<td>B6...5</td>
<td>01b = 3A</td>
<td>VBUS Current Handling Capacity</td>
</tr>
<tr>
<td></td>
<td>10b = 5A</td>
<td></td>
</tr>
<tr>
<td>B4...3</td>
<td>00b</td>
<td>Reserved</td>
</tr>
<tr>
<td>B2...0</td>
<td>010b = [USB 3.2] Gen1 and Gen2</td>
<td>SuperSpeed USB Signaling Support</td>
</tr>
</tbody>
</table>
F.2.2 TBT3 Active Cable Discover Identity Responses

Table F-4, along with Table F-5, Table F-6 and Table F-7, defines the expected Discover Identity VDO responses for a TBT3 active cable. In fields where multiple values are listed, cable responses may vary to match the specific connected cable’s capabilities.

Table F-4 TBT3 Active Cable Discover Identity VDO Responses

<table>
<thead>
<tr>
<th>Message Header</th>
<th>VDM Header</th>
<th>Bit(s)</th>
<th>Value</th>
<th>-parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rsvd</td>
<td>Number of Objects</td>
<td>Message ID</td>
<td>Cable Plug</td>
<td>Spec Revision</td>
</tr>
<tr>
<td>0</td>
<td>5…6</td>
<td>0…7</td>
<td>1 = Cable Plug</td>
<td>10b or 01b</td>
</tr>
<tr>
<td>SVID</td>
<td>VDM Type</td>
<td>VDM Version</td>
<td>Rsvd</td>
<td>Object Position</td>
</tr>
<tr>
<td>0xFFF00</td>
<td>1</td>
<td>01b</td>
<td>0</td>
<td>000b</td>
</tr>
<tr>
<td>ID Header VDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B31</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B30</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B29…27</td>
<td>100b = Active Cable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B26</td>
<td>1 = Modal Operation Supported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B25…23</td>
<td>000b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B22…16</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B15…0</td>
<td>Per vendor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cert Stat VDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B31…0</td>
<td>0x00000000…0xFFFFFFFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product VDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B31…16</td>
<td>0x0000…0xFFFFFFFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B15…0</td>
<td>0x0000…0xFFFFFFFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Cable VDO 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Cable VDO 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table F-5 TBT3 Active Cable VDO for USB PD Revision 2.0, Version 1.3

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>B31…28</td>
<td>0000b…1111b</td>
<td>HW Version</td>
</tr>
<tr>
<td>B27…24</td>
<td>0000b…1111b</td>
<td>Firmware Version</td>
</tr>
<tr>
<td>B23…20</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>B19…18</td>
<td>10b = USB Type-C</td>
<td>USB Type-C plug to USB Type-C/Captive</td>
</tr>
<tr>
<td>B17</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>B16…13</td>
<td>0001b – <10ns (~1m)</td>
<td>Cable Latency</td>
</tr>
<tr>
<td>B12…11</td>
<td>11b = Both ends Active, VCONN required</td>
<td>Cable Termination Type</td>
</tr>
<tr>
<td>B10</td>
<td>0 = Fixed</td>
<td>SSTX1 Directionality Support</td>
</tr>
<tr>
<td>B9</td>
<td>0 = Fixed, 1= Configurable</td>
<td>SSTX2 Directionality Support</td>
</tr>
<tr>
<td>B8</td>
<td>0 = Fixed, 1= Configurable</td>
<td>SSRX1 Directionality Support</td>
</tr>
<tr>
<td>B7</td>
<td>0 = Fixed, 1= Configurable</td>
<td>SSRX2 Directionality Support</td>
</tr>
<tr>
<td>B6…5</td>
<td>01b = 3A, 10b = 5A</td>
<td>VBUS Current Handling Capacity</td>
</tr>
<tr>
<td>B4</td>
<td>1 = Yes</td>
<td>VBUS through cable</td>
</tr>
<tr>
<td>B3</td>
<td>0 = No, 1= Yes</td>
<td>SOP’ controller present</td>
</tr>
<tr>
<td>B2…0</td>
<td>010b = [USB 3.1] Gen1 and Gen2</td>
<td>SuperSpeed USB Signaling Support</td>
</tr>
</tbody>
</table>

Table F-6 TBT3 Active Cable VDO 1 for USB PD Revision 3.0, Version 1.2

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>B31…28</td>
<td>0000b…1111b</td>
<td>HW Version</td>
</tr>
<tr>
<td>B27…24</td>
<td>0000b…1111b</td>
<td>Firmware Version</td>
</tr>
<tr>
<td>B23…21</td>
<td>010b = Version 1.2</td>
<td>VDO Version</td>
</tr>
<tr>
<td>B20</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>B19…18</td>
<td>10b = USB Type-C</td>
<td>USB Type-C plug to USB Type-C/Captive</td>
</tr>
<tr>
<td>B17</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>B16…13</td>
<td>xxxxb (e.g., 0010b – 10ns to 20ns (~2m))</td>
<td>Cable Latency</td>
</tr>
<tr>
<td>B12…11</td>
<td>11b = Both ends Active, VCONN required</td>
<td>Cable Termination Type</td>
</tr>
<tr>
<td>B10…9</td>
<td>00b = 20V</td>
<td>Maximum VBUS Voltage</td>
</tr>
<tr>
<td>B8</td>
<td>1 = Yes</td>
<td>SBU Supported</td>
</tr>
<tr>
<td>B7</td>
<td>0 = Passive, 1= Active</td>
<td>SBU Type</td>
</tr>
<tr>
<td>B6…5</td>
<td>01b = 3A, 10b = 5A</td>
<td>VBUS Current Handling Capacity</td>
</tr>
<tr>
<td>B4</td>
<td>0 = No, 1= Yes</td>
<td>VBUS through cable</td>
</tr>
<tr>
<td>B3</td>
<td>0 = No, 1= Yes</td>
<td>SOP’ controller present</td>
</tr>
<tr>
<td>B2…0</td>
<td>010b = [USB 3.2] Gen1 and Gen2</td>
<td>SuperSpeed USB Signaling Support</td>
</tr>
</tbody>
</table>
Table F-7 TBT3 Active Cable VDO 2 for USB PD Revision 3.0, Version 1.2

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>B31...24</td>
<td>xxxxxxxxb (e.g., 10101010b = 170 °C)</td>
<td>Maximum Operating Temperature</td>
</tr>
<tr>
<td>B23...16</td>
<td>xxxxxxxxb (e.g., 11010010b = 210 °C)</td>
<td>Shutdown Temperature</td>
</tr>
<tr>
<td>B15</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>B14...12</td>
<td>000b ≥ 10 mW</td>
<td>U3 Power</td>
</tr>
<tr>
<td>B11</td>
<td>0</td>
<td>U3 to U0 Transition mode</td>
</tr>
<tr>
<td>B10...8</td>
<td>000b</td>
<td>Reserved</td>
</tr>
<tr>
<td>B7...6</td>
<td>00b</td>
<td>USB 2.0 Hub Hops Consumed</td>
</tr>
<tr>
<td>B5</td>
<td>0 = Supported</td>
<td>USB 2.0 Supported</td>
</tr>
<tr>
<td>B4</td>
<td>0 = Supported</td>
<td>SuperSpeed Supported</td>
</tr>
<tr>
<td>B3</td>
<td>1 = two lanes</td>
<td>SuperSpeed Lanes Supported</td>
</tr>
<tr>
<td>B2</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>B1...0</td>
<td>00b = Gen1, 01b = Gen2</td>
<td>SuperSpeed Signaling</td>
</tr>
</tbody>
</table>
F.2.3 TBT3 Device Discover Identity Responses

Table F-8 defines the expected Discover Identity VDO responses for a TBT3 device. In fields where multiple values are listed, device responses may vary to match the specific connected device’s capabilities.

<table>
<thead>
<tr>
<th>Message Header</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rsvd</td>
<td>Number of Objects</td>
<td>Message ID</td>
<td>Cable Plug</td>
<td>Spec Revision</td>
<td>Rsvd</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>0...7</td>
<td>0 = UFP</td>
<td>10b or 01b</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VDM Header</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SVID</td>
<td>VDM Type</td>
<td>VDM Version</td>
<td>Rsvd</td>
<td>Object Position</td>
<td>Command Type</td>
</tr>
<tr>
<td>0xFF00</td>
<td>1</td>
<td>01b</td>
<td>0</td>
<td>000b</td>
<td>001b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>B31</td>
<td>0 or 1</td>
<td>USB Communications Capable as USB Host</td>
</tr>
<tr>
<td>B30</td>
<td>0 or 1</td>
<td>USB Communications Capable as a USB Device</td>
</tr>
<tr>
<td>B29...27</td>
<td>001b = PDUSB Hub</td>
<td>Product Type (UFP)</td>
</tr>
<tr>
<td></td>
<td>010b = PDUSB Peripheral</td>
<td></td>
</tr>
<tr>
<td></td>
<td>101b = Alternate Mode Adapter (AMA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>110b = VCONN-Powered USB Device (VPD)</td>
<td></td>
</tr>
<tr>
<td>B26</td>
<td>1 = Modal Operation Supported</td>
<td>Modal Operation Supported</td>
</tr>
<tr>
<td>B25...23</td>
<td>001b = PDUSB Hub</td>
<td>Product Type (DFP)</td>
</tr>
<tr>
<td></td>
<td>010b = PDUSB Host</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100b = Alternate Mode Controller (AMC)</td>
<td></td>
</tr>
<tr>
<td>B22...16</td>
<td>0</td>
<td>Reserved</td>
</tr>
<tr>
<td>B15...0</td>
<td>Per vendor</td>
<td>USB Vendor ID</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cert Stat VDO</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B31...0</td>
<td>0x00000000...0xFFFFFFFF</td>
<td>XID assigned by USB-IF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product VDO</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B31...16</td>
<td>0x0000...0xFFFF</td>
<td>USB Product ID</td>
</tr>
<tr>
<td>B15...0</td>
<td>0x0000...0xFFFF</td>
<td>bcdDevice</td>
</tr>
</tbody>
</table>

Copyright © 2019 USB 3.0 Promoter Group. All rights reserved.
F.2.4 TBT3 Discover SVID Responses

Table F-9 defines the expected Discover SVID VDO responses for a TBT3 device or cable.

Table F-9 TBT3 Discover SVID VDO Responses

<table>
<thead>
<tr>
<th>Message Header</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RSVD</td>
<td>Number of Objects</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VDM Header</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SVID</td>
<td>VDM Type</td>
</tr>
<tr>
<td>0xFF00</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDO 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B31…16</td>
<td>0xB887 = Intel/TBT3</td>
<td>SVID 0</td>
</tr>
<tr>
<td>B15…0</td>
<td>0xFF01 = VESA DP (if supported)</td>
<td>SVID 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VDO 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B31…16</td>
<td>0x0000 – 0xFFFF (normally the cable manufacturer VID)</td>
</tr>
<tr>
<td>B15…0</td>
<td>0x0000 (normally)</td>
</tr>
</tbody>
</table>
F.2.5 TBT3 Device Discover Mode Responses

Table F-10 defines the expected Discover Mode VDO responses for a TBT3 device. In fields where multiple values are listed, device responses may vary to match the specific connected device’s capabilities.

Table F-10 TBT3 Device Discover Mode VDO Responses

<table>
<thead>
<tr>
<th>Message Header</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rsvd</td>
<td>Number of Objects</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VDM Header</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SVID</td>
<td>VDM Type</td>
</tr>
<tr>
<td>0x8087</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>B31</td>
<td>0 = Not supported 1 = Supported</td>
<td>Vendor specific B1</td>
</tr>
<tr>
<td>B30</td>
<td>0 = Not supported 1 = Supported</td>
<td>Vendor specific B0</td>
</tr>
<tr>
<td>B29…27</td>
<td>000b</td>
<td>Reserved</td>
</tr>
<tr>
<td>B26</td>
<td>0 = Not supported 1 = Supported</td>
<td>Intel specific B0</td>
</tr>
<tr>
<td>B25…17</td>
<td>000000000b</td>
<td>Reserved</td>
</tr>
<tr>
<td>B16</td>
<td>0b = TBT2 Legacy Adapter 1b = TBT3 Adapter</td>
<td>TBT Adapter</td>
</tr>
<tr>
<td>B15…0</td>
<td>0x0001 = TBT Mode</td>
<td>TBT Alternate Mode</td>
</tr>
</tbody>
</table>
F.2.6 TBT3 Cable Discover Mode Responses

Table F-11 defines the expected Discover Mode VDO responses for a TBT3 cable. In fields where multiple values are listed, cable responses may vary to match the specific connected cable's capabilities.

<table>
<thead>
<tr>
<th>Message Header</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rsvd</td>
<td>Number of Objects</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VDM Header</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SVID</td>
<td>VDM Type</td>
</tr>
<tr>
<td>0x8087</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>B31...24</td>
<td>00000000b</td>
<td>Reserved</td>
</tr>
<tr>
<td>B23</td>
<td>0 = Active with bi-directional LSRX(^3) communication or when Passive 1 = Active with uni-directional LSRX(^3) communication</td>
<td>Active Cable Plug Link Training</td>
</tr>
<tr>
<td>B22</td>
<td>0 = Not re-timer 1 = Re-timer</td>
<td>Re-timer</td>
</tr>
<tr>
<td>B21</td>
<td>0b = Non-Optical 1b = Optical</td>
<td>Cable Type</td>
</tr>
<tr>
<td>B20...19</td>
<td>00b = 3(^{rd}) Gen Non-Rounded TBT 01b = 3(^{rd}) & 4(^{th}) Gen Rounded and Non-Rounded TBT 10b...11b = Reserved</td>
<td>TBT_Rounded_Support</td>
</tr>
<tr>
<td>B18...16</td>
<td>000b = Reserved 001b = USB3.1 Gen1 Cable (10 Gbps TBT support) 010b = 10 Gbps (USB 3.2 Gen 1 and Gen2 passive cables) 011b = 10 Gbps and 20 Gbps (TBT 3(^{rd}) Gen active cables and 20 Gbps passive cables) 100b...111b = Reserved</td>
<td>Cable Speed</td>
</tr>
<tr>
<td>B15...0</td>
<td>0x0001 = TBT Mode</td>
<td>TBT Alternate Mode</td>
</tr>
</tbody>
</table>

Notes:
1. LSRX in TBT3 is the same communication channel as SBRX in USB4.
F.2.7 TBT3 Cable Enter Mode Command

Table F-12 defines the Enter Mode Command that shall be sent to the SOP’ (and if needed the SOP”) of an active TBT3 cable to enable the cable for TBT3 operation.

Table F-12 TBT3 Cable Enter Mode Command

<table>
<thead>
<tr>
<th>Message Header</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rsvd</td>
<td>Number of Objects</td>
<td>Message ID</td>
<td>Cable Plug</td>
<td>Spec Revision</td>
<td>Rsvd</td>
<td>Message Type</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0...7</td>
<td>1 = Cable Plug</td>
<td>10b or 01b</td>
<td>0</td>
<td>1111b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VDM Header</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SVID</td>
<td>VDM Type</td>
<td>VDM Version</td>
<td>Rsvd</td>
<td>Object Position</td>
<td>Command Type</td>
<td>Rsvd</td>
</tr>
<tr>
<td>0x8087</td>
<td>1</td>
<td>01b</td>
<td>0</td>
<td>000b</td>
<td>000b</td>
<td>0</td>
</tr>
</tbody>
</table>
F.2.8 TBT3 Device Enter Mode Command

Table F-13 defines the Enter Mode Command that shall be sent to the SOP of a TBT3 device to enable the device for TBT3 operation.

<table>
<thead>
<tr>
<th>RSVD</th>
<th>Number of Objects</th>
<th>Message ID</th>
<th>Cable Plug</th>
<th>Spec Revision</th>
<th>RSVD</th>
<th>Message Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>0...7</td>
<td>0 = UFP</td>
<td>10b or 01b</td>
<td>0</td>
<td>1111b</td>
</tr>
</tbody>
</table>

VDM Header

<table>
<thead>
<tr>
<th>SVID</th>
<th>VDM Type</th>
<th>VDM Version</th>
<th>RSVD</th>
<th>Object Position</th>
<th>Command Type</th>
<th>RSVD</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x8087</td>
<td>1</td>
<td>01b</td>
<td>0</td>
<td>000b</td>
<td>000b</td>
<td>0</td>
<td>00100b</td>
</tr>
</tbody>
</table>

Bit(s) | Value | Parameter |
|-------|-------|-----------|
| TBT3 SOP VDO

<table>
<thead>
<tr>
<th>Bit(s)</th>
<th>Value</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>B31</td>
<td>0 = Not supported 1 = Supported</td>
<td>Vendor specific B1</td>
</tr>
<tr>
<td>B30</td>
<td>0 = Not supported 1 = Supported</td>
<td>Vendor specific B0</td>
</tr>
<tr>
<td>B29...27</td>
<td>000b</td>
<td>Reserved</td>
</tr>
<tr>
<td>B26</td>
<td>0 = Not supported 1 = Supported</td>
<td>Intel specific B0</td>
</tr>
<tr>
<td>B25</td>
<td>0b</td>
<td>Reserved</td>
</tr>
<tr>
<td>B24</td>
<td>0 = Passive cable 1 = Active cable</td>
<td>Active_Passive</td>
</tr>
<tr>
<td>B23</td>
<td>0 = Active with bi-directional LSRX¹ communication or when Passive 1 = Active with uni-directional LSRX¹ communication</td>
<td>Active Cable Link Training</td>
</tr>
<tr>
<td>B22</td>
<td>0 = Not re-timer 1 = Re-timer</td>
<td>Re-timer</td>
</tr>
<tr>
<td>B21</td>
<td>0b = Non-Optical 1b = Optical</td>
<td>Cable Type</td>
</tr>
<tr>
<td>B20...19</td>
<td>00b = 3rd Gen Non-Rounded TBT 01b = 3rd & 4th Gen Rounded and Non-Rounded TBT</td>
<td>TBT_Rounded_Support</td>
</tr>
<tr>
<td></td>
<td>10b...11b = Reserved</td>
<td></td>
</tr>
<tr>
<td>B18...16</td>
<td>000b = Reserved 001b = USB3.1 Gen1 Cable (10 Gbps TBT support) 010b = 10 Gbps (USB 3.2 Gen1 and Gen2 passive cables) 011b = 10 Gbps and 20 Gbps (TBT 3rd Gen active cables and 20 Gbps passive cables) 100b...111b = Reserved</td>
<td>Cable Speed</td>
</tr>
<tr>
<td>B15...0</td>
<td>0x0001 = TBT Mode</td>
<td>TBT Alternate Mode</td>
</tr>
</tbody>
</table>

Notes:
1. LSRX in TBT3 is the same communication channel as SBRX in USB4.

The values to be used when sending the TBT3 Device Enter Mode command to the SOP of a TBT3 device are determined based on information retained from earlier in the discovery flow as follows:
• B31 and B30: return the values received in the B31 and B30 fields of the TBT3 Device Discover Mode Response.

• B26: return the value received in the B26 field of the TBT3 Device Discover Mode Response.

• B23: if using a TBT3 cable, return the value received in the B23 field of the TBT3 Cable Discover Mode Response, otherwise set to 0.

• B22: if using a TBT3 cable, return the value received in the B22 field of the TBT3 Cable Discover Mode Response, otherwise set to 0.

• B21: if using a TBT3 cable, return the value received in the B21 field of the TBT3 Cable Discover Mode Response, otherwise set to 0.

• B20...19: if using a TBT3 cable, return the value received in the B20...19 field of the TBT3 Cable Discover Mode Response, otherwise set to 00b.

• B18...16: if using a TBT3 cable, return the value received in the B18...16 field of the TBT3 Cable Discover Mode Response, otherwise set to 010b.

F.2.9 TBT3 Cable Functional Difference Summary

Table F-14 provides a summary of existing TBT3 cables and the unique functional differences between them.

<table>
<thead>
<tr>
<th>Cable</th>
<th>Function</th>
<th>ID Header VDO</th>
<th>Passive/ Active B29...27</th>
<th>Re-timer B22</th>
<th>Uni/Bi Directional LSRX ^1 B23</th>
<th>Rounded /none B20...19</th>
<th>Optical /none B21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>011</td>
<td>0</td>
<td>N/A (0)</td>
</tr>
<tr>
<td>TBT3 Re-timer</td>
<td>Yes</td>
<td>No</td>
<td>Legacy</td>
<td>No</td>
<td>No</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Re-Timer</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Re-Driver</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Limit Optical</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Linear Optical Re-</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No CLx</td>
<td>100</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Driver</td>
<td></td>
<td></td>
<td></td>
<td>No CC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. LSRX in TBT3 is the same communication channel as SBRX in USB4.

Notes:
1. TBT3 Re-timer cables only supports TBT3 and does not support USB4 operation.
2. All other re-timer cables are as defined in Chapter 6.
3. Limit Optical cables are as defined in Chapter 6 as optically-isolated active cables.