
2:36 PM 1 12/06/96

An Analysis of Throughput Characteristics of Universal
Serial Bus

John Garney, Media and Interconnect Technology, Intel Architecture Labs

Abstract

Universal Serial Bus (USB) is a new personal computer
(PC) interconnect that can support simultaneous
attachment of multiple devices. Developers of USB
devices have initially had concerns about guaranteed
throughput performance compared to previous popular
single device PC connections such as RS232 serial
ports or Centronics parallel ports. This paper presents
a simple detailed analysis of USB throughput
characteristics. That analysis is then used to model
several examples of single USB device throughput
requirements and a range of representative multiple
device USB configurations. These examples
demonstrate the broad range of potential USB devices
that might possibly be implemented and expected to
reliably work when added to an existing USB
configuration. The reader is assumed to be familiar
with the USB system architecture.

Introduction
Universal Serial Bus has features that allow
simultaneously attaching and using multiple devices on
the same bus. Older connections like RS232 COMx
serial ports and parallel printer LPTx ports can only be
connected to a single device at a time. USB also allows
these devices to be attached and removed while the
computer system is running and without requiring a
reboot to use a newly attached device.

The 12Mb/s full speed (FS) bandwidth of USB allows
the creation of very exciting low to medium speed
devices. USB is intended for devices in the 8Mb/s and
below range. USB also provides a lower cost, reduced
feature mode of operation for low speed devices. This
mode uses an 1/8th speed clock resulting in a 1.5Mb/s
low speed (LS) bandwidth. Other interconnects will
provide support for higher speed devices.

USB also has features to support isochronous devices
like telephones. Game and telephony device developers
are particularly interested in these features. Therefore,
a wide variety of new and existing peripherals may be

developed that utilize USB. Developers need to ensure
that their devices will operate well in combination with
other devices so that end user expectations are met.

Developers of USB devices can determine specific
details about USB from the USB Specification [1].
However, the USB specification presents raw data about
the throughput performance features of the bus, but
doesn’t present them in a fashion that allows a
developer to easily determine a reasonable throughput
design target for a specific USB device.

This paper uses the raw data from the USB specification
to give a developer a better look at how device data
rates appear on the bus and also several example
configurations. First some of the key characteristics of
USB are described to understand differences as
compared to other common PC cabled buses. A
spreadsheet is then developed to model the throughput
requirements of a single device given the raw data rate
and USB transfer type(s) needed to support the device.
This spreadsheet is then used with estimated data for
several example devices. Finally, the estimated data for
these example devices are used to construct a range of
USB configurations to illustrate the remaining
bandwidth that can be used for additional devices.

The tables and figures included in this paper are
extracted from a spreadsheet built for the analysis.

Key USB Throughput Characteristics
Critical USB requirements are imposed on USB host
controllers in order to support isochronous data
transfers. One requirement is that transactions on the
bus are always framed into 1ms quanta. Therefore, this
analytic model focuses on the number of “byte times per
frame (BTF)”, e.g. it looks at the opportunities to
transmit bytes in a 1ms time period even though the bus
is a bit serial bus. Table 1 shows USB’s raw bus speed,
12MHz. This translates into the time to transmit 1500
bytes during a 1ms USB frame.

Universal Serial Bus Bandwidth Analysis

2:36 PM 2 12/06/96

Bus Characteristics:

Bus Speed Bit time Byte time

1.2E+07 8.33E-08 7E-07

Max BW Raw BW adj %

1500000 1500000 1

Frame time

0.001 sec.

Max per frame Max Frame w/ Overhead

1500 bytes 1308

Protocol Overhead Bit Stuff % Max BS

14 0.1667 218

Table 1 - USB Bus Characteristics

Bus Overhead

There are also several USB attributes that reduce the
actual number of bytes that can be used by other devices
during a frame. These attributes manifest as overhead
of the bus when viewed from the desired throughput
requirements of a device. Specific sources of overhead
include: packet organization, Start of Frame (SOF),
end of frame (EOF), clock adjustment, time consumed
to poll hubs, and time reserved for control transfers.

An SOF packet is transmitted over the bus to identify
the beginning of every USB frame. This packet consists
of 8 bits of SYNC, an 8 bit packet identifier (PID), an
11 bit frame count, a 5 bit CRC, 3 bits of end of packet
(EOP) and approximately 13 bits of inter packet
spacing. This takes approximately 6 BTF to transmit.

In order to preserve the integrity of 1ms framing and to
guarantee the ability to generate an SOF, there is also
an EOF “guardband” at the end of each frame that
precedes the next frame’s SOF. Hubs use this time to
monitor the state of the bus and disable devices that
transmitting when they shouldn’t be. This EOF time
accounts for approximately 2 BTF.

USB allows its specific frame size to be adjusted so that
SOFs can be slaved to an external device’s clock such
as a Public Switched Telephony Network(PSTN) clock.
This can result in the nominal 12000 bits per frame
varying by +/- 16 bits. This means that a frame may
actually be up to 2 BTF shorter.

USB depends on standardized devices called hubs that
support its hot plugging features and multiple
connectors. Hubs must be polled periodically to
determine if devices have been attached to or removed
from the bus. This hub polling can occur with low

frequency, e.g. 1 poll every 255ms. A hub poll requires
an interrupt transfer on the bus. As will be described
later for Table 2, this interrupt transfer requires 14
bytes of transaction protocol overhead plus 2 bytes of
data when there is a change. When no change is being
reported by a hub, 8 bytes time are saved since a
negative acknowledgment (NAK) handshake packet
instead of a data and handshake packet is transmitted.

The last specific overhead is to provide time for a
control transfer in each frame. The specification
requires that 10% of each frame be usable for any
requested control transfers. Time for control transfers
must be available to allow recognition and
configuration of newly attached devices. 10% of a
frame is 150 BTF, however, for simplicity, this analysis
assumes that there is sufficient time for one low speed
transaction. A low speed transaction of 8 bytes (the
maximum data payload allowed for low speed) is 162
Full Speed equivalent BTF; 98 BTF overhead + 64 BTF
for the data payload (8 LS bytes * 8x bit time due to
1/8th clock).

Estimated Transaction Protocol
Overhead BTF:

interpacket delay (included in overheads) 2

protocol overhead for FS non Isochronous 14

protocol overhead for Isochronous output 10

protocol overhead for Isochronous input 11

protocol overhead for LS 98

EOF guard band FS 6

EOF guard band LS 23

Table 2 - Estimated Protocol Overhead Byte Times per
Frame

Table 2 shows the estimated overhead BTF per
transaction for various USB defined transfer types1.
These are simply computed BTF equivalents of the
nanosecond times reported in Section 5.9.3 of the USB
Specification. The “non Iso” entry is applicable for
control, bulk and interrupt transfer types.

1 The estimated transaction protocol overheads that are
shown assume minimal host system and host controller
implementation delays. For systems that are less
efficient then the estimate system,, additional delays can
be introduced due to processing time required or latency
imposed to access memory. The values shown are only
estimates, not actual values measured on real hardware.

USB Bandwidth Analysis

2:36 PM 3 12/06/96

The “Max Frame w/ Overhead” entry in Table 1 shows
the 1308 remaining available BTF for other device use
after these overheads are subtracted from the raw bytes
times per frame. The actual overhead present in a
given frame can be less than identified here since there
may be less clock adjustment, no hub polls in this frame
and smaller or nonexistent control transfers. This
available BTF can be considered a lower bound on bus
time that can be allocated to a newly attached device.

Bit Stuffing Overhead

The USB bus is conceptually a single half duplex wire
that carries clock and data on the same wire. NRZI
encoding of the bit stream is specified for the physical
link. USB uses a feature called bit stuffing to ensure the
presence of sufficient signal transitions for clock
recovery.

USB bit stuffing consists of inserting an additional 0 bit
in the physical bit stream on the bus after 6 consecutive
1 bits. Therefore, bit stuffing can consume up to
16.67% additional bus time to move an amount of data.
Also, the actual additional time required is data
dependent since bits are only added after 6 consecutive
1’s are present in the physical data stream. Since a
specific data stream will not in general be known, an
estimate must be used for bit stuffing overhead.

The worst case bit stuffing is 16.67%, but Intel’s
internal simulations have indicated that 0.8% bit
stuffing may be typical for random bit streams. Given
the wide range of possible bit stuffing overheads, the

examples described later in this analysis will use
multiple bit stuffing estimates.

Table 1 is shown using the worst case (16.67%) bit
stuffing overhead. This bit stuffing is computed over
the remaining data bytes (1308) and results in 218 BTF
of stuffed bits. This may be too high since many of the
protocol overhead bytes are constructed so as to require
no bit stuffing. However since it not possible to a priori
determine the specific protocol overhead present in a
given frame, this number is used as the worst case
upper bound bit stuffing overhead.

The bold entries at the bottom of Table 1 show where
the input values for protocol overhead and estimated bit
stuffing percentage are supplied to the spreadsheet
when modeling a USB device transfer.

As can be seen, the transfer type that a specific device
uses affects the bus time required for protocol overhead.
This protocol overhead must be added to the bus time
required to transmit the device data payload. For
example, consider transmission of a full speed 8 byte
data payload via an output control transfer. A control
transfer consists of 3 stages, each being a transaction.
A control transfer requires an 8 byte data payload setup
stage transaction (14 overhead + 8 setup data payload
bytes), the desired 8 byte data payload data stage
transaction (14 overhead + 8 data payload bytes), and a
zero byte status stage (14 overhead bytes). This is a total
of 58 BTF to transmit the transfer.

In comparison, transferring the same 8 data payload

Possible Bandwidth Delivery Choices/Impact

Best (no bit stuff,etc.) Worst (w/ bitstuff, ovrhd)

payload max BW %max max Bytes/fram Bytes/frame max Bytes/fra Bytes/

size Bytes/sec BW trans/f Remaining useful data trans/f remaining Frame

1 100000 0.07 100 0 100 72 10 72

2 198000 0.13 93 12 186 68 2 136

4 338000 0.23 83 6 332 60 10 240

8 548000 0.37 68 4 544 49 12 392

16 800000 0.53 50 0 800 36 10 576

32 1052000 0.70 32 28 1038 23 32 754

64 1234000 0.82 19 18 1220 13 76 894

128 1360000 0.91 10 80 1346 7 96 978

256 1430000 0.95 5 150 1416 4 10 1024

max 1500000 1500

Table 3 - Payload Sizes vs. Number of Transactions per Frame

Universal Serial Bus Bandwidth Analysis

2:36 PM 4 12/06/96

bytes via an isochronous transfer takes only 18 BTF.
That is 10 bytes of protocol overhead and 8 bytes of data
payload. Therefore the designer of a device should
carefully choose the transfer types used to communicate
with the device to be as efficient as possible.

A USB device can be composed of several
simultaneously used endpoints where each endpoint can
have a different transfer type with its corresponding
bandwidth requirements. This analysis assumes simple
devices with single endpoints for each data transfer.
The same spreadsheet can be used for more complex
devices.

Table 2 can be used as a reference to select the
appropriate value to fill in the protocol overhead field of
Table 1. As shown in the example of Table 7 below,
the values for the protocol overhead fields in Table 1
may need to be used for multiple transactions, e.g. for
control transfers in particular. The protocol overheads
don’t include the data payload size. For example, a
control transfer would be 50 BTF of overhead (not 58
BTF as indicated above since the desired 8 byte data
payload is not part of the overhead).

Guaranteed vs. Non-Guaranteed Transfers

There are two classes of transfers from a bandwidth
allocation perspective: guaranteed and non-guaranteed.
Guaranteed transfers must have bandwidth allocated on
the bus that ensures sufficient time for their transfer.
Non guaranteed transfers have no bandwidth allocated
for their use: these transfers will make use of bandwidth
that is not being used for other purposes. Isochronous
and interrupt transfer types are guaranteed. Control and
bulk transfers are non-guaranteed.

Guaranteed transfers need to assume worst case bit
stuffing in calculating their bandwidth requirements to

ensure they will not fail simply due to lack of time due
to addition of bits stuffed.

Non-guaranteed transfers can assume random data
stream bit stuffing since a transfer will be retried if it
doesn’t complete due to lack of time.

General Bus Throughput

Table 3 shows how overall bus throughput varies as
different data payload sizes are used to move data over
the bus. Power of 2 data payload sizes from 1 to 256
are used to illustrate the effects of transaction protocol
overhead. This table is generated based on the values
supplied in Table 1. The analysis assumes that a frame
is packed with transactions of the indicated size. Since
isochronous and interrupt transfers have at most one
transaction per frame, this table is of most use for
analyzing control and bulk transfers.

The first column identifies the data payload size used.
The second column shows the maximum data payload
throughput in bytes/sec that can be delivered for this
case. Column three shows the percentage of theoretical
maximum throughput this case achieves.

The next two sets of three columns show results for two
bit stuffing cases: no bit stuffing or frame overhead and
worst case bit stuffing and full overhead. The first
column of each case shows the maximum number of
transactions that will fit in a 1ms frame. The second
column shows the bytes remaining that is smaller than
another full transaction. The third column shows the
full data payload bytes per frame carried in each frame.

For example, the row for an 8 byte data payload of
Table 3 shows that for a 14 byte overhead transfer type
with no bit stuffing (best case), 68 transactions can be
transmitted within a frame with 4 bytes per frame left
over. Worst case bit stuffing reduces this to 49

Device Desired Bandwidth: Worst Max desired BW Max Avail

bits/sec bytes/sec bytes/frame bit stuff w/ worst bitstuff Data BW

6291456 786432 787 131 918 1090

Table 4 - Desired Device Bandwidth Calculations

Best (no bit stuff,etc.) Worst (w/ bitstuff, ovrhd)

payload max BW %max max Bytes Bytes/frame max Bytes Bytes/

size BW trans Remaining useful data trans remaining Frame

787 1486000 0.99 1 699 1472 1 289 1062

Table 5 - Isochronous Data Payload and Frame Impact

USB Bandwidth Analysis

2:36 PM 5 12/06/96

transactions per frame with 12 bytes left over.

Single Device Model Spreadsheet
Table 4 does some initial calculations for a single
theoretical USB device. Its desired transfer data rate is
specified in the first column in bits per second and
converted to a raw bytes per frame in column 3. A
worst case bit stuff bytes is calculated in the next
column.

The 2nd to last column shows the worst case bit stuffed
total bytes per frame required to carry the desired data
rate without protocol overhead. The last column shows
the maximum possible data payload bytes per frame
after worst case bit stuffing bytes have been consumed.
This value is simply computed from the maximum
frame overhead of Table 1 minus the worst case bit stuff
(also from Table 1). This value is not dependent on the
desired bandwidth, but can be compared with the value
computed from the desired bandwidth in the 2nd to last
column. If the desired bytes per frame is larger than the
maximum available, then there is no way to reliably
carry the desired data rate over USB.

The specific transaction protocol overhead still needs to
be added to the value in the 2nd to last column to
complete modeling the data throughput requirements of
this device. If this computed value is larger than the
“Max Frame w/ Overhead” value in Table 1, there is
also no way to reliably carry this desired data rate over
USB.

Table 5 is similar to Table 3 and shows how the desired
data rate affects a frame assuming the data rate is
moved as one transaction. This table is most useful
when large data rates are desired. Large data payloads
are carried most efficiently via isochronous transfers for
two reasons: 1) the protocol overhead is the least, and
2) the maximum transaction data payload size allowed
greatly exceeds the sizes allowed for the other transfer
types. This table may also be useful for analyzing
interrupt transfers as long as the data payload desired is
not larger than the maximum size allowed by USB
specification. The explanation of the remaining
columns is the same as for Table 3.

Table 6 is most useful for analyzing bulk and control
transfers. Each row corresponds to a power of 2 data
payload size. The first two columns of Table 6 show
results similar to Table 3. The third column shows
how many BTF are remaining in the frame for the
indicated data payload size and desired data rate
including the specified transaction protocol overhead.
If the number is negative, then that data payload size
and transfer type cannot be used to carry the desired

data rate. The last column shows the percentage of
overall available transactions of this size that this case
consumes in terms of required number of transactions
compared to best case number of transactions.

The last row corresponds to Table 5 and shows details if
a single transaction of maximum required size is used.

For example, Table 6 shows that for a desired data
payload of 787 bytes per frame (as specified in Table 4),
a data payload size of at least 128 bytes is required to be
able to carry this data rate over USB. The smaller data
payload sizes have too much overhead and require more
time per frame than possible to move the data. Using a
payload size of 128 bytes results in 33 bytes per frame
remaining. This compares to using one data payload of
787 bytes (last row) with 117 bytes remaining.

Transaction Organization
Choices

test trans extra rem %avail trans

per frame bytes B/frame used

787 0 -10887 7.8700

394 1 -5385 4.2366

197 1 -2627 2.3735

99 5 -1255 1.4559

50 13 -569 1.0000

25 13 -219 0.7813

13 45 -51 0.6842

7 109 33 0.7000

4 237 75 0.8000

0.5243

1 0 117 1.0000

Table 6 - Data Payload Sizes and Frame Impact

Example USB Devices
The spreadsheet described by Tables 3-6 is now used to
present estimated bandwidth requirements of several
“example” USB devices. The performance of the
“example” devices has been estimated by Intel based on
data gathered from various sources. These example
devices have been selected to demonstrate a range of
typical bandwidth demands. The devices are:

Universal Serial Bus Bandwidth Analysis

2:36 PM 6 12/06/96

• a stereo CD quality isochronous output device like
speakers, 44.1K samples/second, 16 bits per
sample. This device is estimated to require 180
data payload bytes per frame worst case. It would
actually require that amount only every 10th frame
since the exact number of bytes required to deliver
44100 samples per second is not evenly divisible by
1000 (1ms) and so varies between 176 and 180. 10
bytes of isochronous transaction protocol overhead
is also required (giving 190 bytes per frame total).

• an MPEG2 6Mb/s isochronous video camera. The
data payload is estimated to require 787 bytes per
frame. An additional 11 bytes would be required
for transaction protocol overhead.

• a low speed interrupt device like a mouse or
keyboard or joystick. This example device assumes
a single low speed interrupt transfer polled every
8th frame with an 8 byte data payload. The 8 byte
low speed payload appears as 64 full speed bytes.
Adding the 98 (equivalent full speed) byte low
speed transaction protocol overhead gives 162 bytes

per frame.

• an 2B+D ISDN isochronous telephony device (only
considering the main data streams and ignoring
any additional synchronization or control data
streams). This device is modeled as 2 isochronous
data streams. Each B channel is 64Kb/s
bidirectional, while the D channel is 16Kb/s
bidirectional. This is 63 bytes of data payload with
an input (11 byte) and output (10 byte) isochronous
transaction protocol overhead included. This
assumes that the D channel and the 2 B channels
are all combined in only 2 USB isochronous
streams. Other implementations with different
bandwidth requirements are also possible.

Table 7 captures the results of using the spreadsheet for
these devices. The values in the first four columns
show the data payloads required including the
transaction protocol overhead. Bit stuffing overhead is
not included in these figures so that it can be varied in
the multiple device configuration examples presented in
the next section.

Example Bus Configurations
Since USB supports multiple simultaneous devices, a
representative bus configuration must be used in order
to estimate and analyze what can be expected when
adding a new device to an existing bus. The previous
section allows a device developer to choose the best
transfer types for a new device and to estimate the
percentage of the total bus that a new device will
require. Devices should be “good citizens” on the bus
to allow as much bandwidth as possible to be used by
other devices.

This section describes some typical combinations of
devices so a developer can understand what bus
environments a new device can find itself in. The
unused bus bandwidth is reported as the number of
maximum sized (64 byte) bulk transactions that could
additionally be moved during a frame. A developer can
use other calculations are more specific to a device
under investigation. But these estimates should give a
feel for remaining unallocated real bandwidth available
on USB under various loads.

The single device examples constructed above can be
combined in several ways in example bus
configurations. Three examples of bus configurations
will be used to estimate the range of USB throughput
that could be expected to be sustained:

• a light configuration consisting of a hub and a low
speed keyboard. Where the hub could well be
included in the keyboard as a compound device.
This is essentially a vacant bus. Given the hot plug
support of USB, this is a reasonable configuration
since all devices can be detached at any time. This
example configuration should represent the
maximum available bandwidth that can be
expected.

• a typical configuration consisting of the minimum
configuration plus an additional hub (in a video
monitor), CD audio output speakers, an ISDN
telephony line and up to 7 additional low speed
input devices (mice, joysticks, etc.). This example
configuration represents a reasonable configuration
that could well be encountered in an office setting
when a new device is attached to a bus.

per frame bytes CDaudio+Mpeg2+8LS+ISDN (2B+D) Bytes

CDa Mpeg LS ISDN bit stuff unalloc Req’d

190 798 162 63 178 -123 1213

Table 7 - Example Bus Bandwidth Requirements

USB Bandwidth Analysis

2:36 PM 7 12/06/96

• a maximum configuration consisting of the typical
configuration with the addition of an MPEG2 video
camera. This example configuration represents the
maximum bandwidth that could be carried over the
bus. Device developers should not reasonably
expect to exceed the bandwidth carried by this
configuration.

Each configuration is presented in bar chart and tabular
form. The bar chart gives an easily visible indication of
the saturation of the bus, while the table allows more
detailed analysis. The top of each bar chart shows the

remaining unallocated byte per frame.

Each example consists of four cases to take into account
variations due to bit stuffing and frame to frame
transaction differences. Each case illustrates different
estimates of typical actual frames.

The first case assumes worst case bit stuffing (16.67%)
and that every frame has every device transaction. This
is a worst/worst case and will not normally be expected
to occur in practice, but is possible.

The second case changes the bit stuffing assumption to
0.8%, more appropriate for random data. This is more
typical of what will be seen in practice for bit stuffing.
However, the transactions in each frame are still over
estimated.

The next case again uses 0.8% bit stuffing, but a
numerical average for the transaction load in each
frame due to those transactions that vary from frame to
frame, e.g. hubs won’t typically be polled in every
frame. This case is more reasonable of the average
frame to frame load. However, it underestimates frame
loading since transactions are continuously variable,

only specific data payload sizes are possible for a given
device.

The last case uses 0.8% bit stuffing and considers only
those transactions that must be present in every frame.
This is a best case for frame loading. It also under
estimates transactions in a frame since most frames will
have more transactions than this for a given
configuration. Some frame at some time may have this
load, but most will have more transactions.

Light Configuration

Figure 1 shows that even with worst case bit stuffing
(labeled “16.67%”) and assuming every frame has all
maximum size transactions, over 70% of the bus is
available for other device use. At the other extreme
(labeled “Every”), over 95% of the frame time is
available in more typical cases. The two middle
barcharts show random data bit stuffing (“0.80%”) and

average bit stuffing.

Table 8 contains the frame details corresponding to this
configuration. The first five rows show the contribution
to the frame time due to frame overhead, device data
requirements (including transaction protocol overhead)
and bit stuffing. The next row shows how many bytes
per frame are unallocated and can be used for other
devices.

The last two rows show the number of 64 byte sized
bulk transactions that can fill the unallocated frame
time and the resultant additional overall bandwidth
carried in that case.

Light Configuration

0%

20%

40%

60%

80%

100%

16
.6

7
%

0.
80

%

A
vg

.

E
ve

ry

Frame Loading Options

F
ra

m
e

C
o

n
te

n
ts

Figure 1.

Light Configuration

16.67% 0.80% Avg. Every

frame mgt 14 14 13 13

LS Control 162 162 0 0

Hub Poll 16 16 2 0

LS Int 162 162 21 0

bitstuff 59 9 17 9

unalloc 1087 1137 1447 1478

64B Bulks 12 15 19 19

Bulk BW 768000 960000 1216000 1216000

Table 8. - Frame Loading, Light Configuration

Universal Serial Bus Bandwidth Analysis

2:36 PM 8 12/06/96

The average column for this example configuration is
adjusted as follows:

• Frame management is reduced by 1 BTF assuming
the on average the clock adjustment is no worse
than -8 bits.

• Low speed control is assumed on average to not
have any pending transfer requests.

• Hub poll and low speed interrupt times are divided
by 8 on the assumption that a poll only occurs every
8 ms.

• Bit stuff is assumed to be 25% of worst case.

The “every frame” column shows that the hub poll and
low speed interrupt transfers don’t occur in every frame.
Also bit stuffing is assumed to be the 0.8% minimum.

As Table 8 shows, this configuration has from 768KB/s
to 1.2MB/s of deliverable unused bandwidth. For a
reference point, Intel estimates that typical PC parallel
port (Centronics, ECP, EPP, etc.) data rates range from
128KB/s to 1MB/s depending on particular
implementations and operating system overhead.
Typical PC serial port data rates are estimated by Intel
to be limited to 115K bits/s or less.

Typical Configuration

Figure 2 shows that with the addition of CD quality
audio and ISDN, frame loading is about 50% in
worst/worst (“16.67%”) case. However when more
typical frame loading (“Avg.”) is considered, frame

loading is only about 20%.

Table 9 shows the details for Figure 2. New rows are
added for ISDN and CD audio. The same adjustments
are used for the average and every columns as in Table
8. Note that ISDN and CD audio don’t vary
significantly from frame to frame due their isochronous
nature.

Even with the additional load of this example
configuration, there is still 576KB/s to 1MB/s of bulk

data transfer time available on the bus.

In passing, it can be seen that ISDN only accounts for
63 bytes per frame or less than 5% of the bus. ISDN is
a much higher speed device compared to other modem
devices (e.g. 28.8Kb/s) and is difficult to support on
existing PC serial ports, but is not a substantial load for
USB.

Maximum Configuration

Figure 3 shows the frame loading with the addition of
the 6Mb/s MPEG2 video camera. The camera imposed
load is significant, over 50% of the bus. The design of
this type of device needs to be considered carefully. A
device that requires over about 30% of the bus
bandwidth needs to be dealt with such that end users
will only expect one to be in use at a time.

As will be seen in more detail below, when worst case
bit stuffing and frame loading is assumed, this device
cannot be reliably supported. However, if less bit
stuffing or less frame loading is assumed, this

Typical Configuration

0%

20%

40%

60%

80%

100%

16
.6

7
%

0.
80

%

A
vg

.

E
ve

ry

Frame Loading Options

F
ra

m
e

C
o

n
te

n
t

Figure 2.

Typical Configuration

16.67% 0.80% Avg. Every

frame mgt 14 14 13 13

LS Control 162 162 0 0

Hub Poll 16 16 4 0

LS Int 162 162 41 0

ISDN 63 63 63 63

CD-A 190 190 187 186

bitstuff 102 9 28 9

unalloc 791 884 1164 1229

64B Bulks 9 12 15 16

Bulk BW 576000 768000 960000 1024000

Table 9. - Frame Loading, Typical Configuration

USB Bandwidth Analysis

2:36 PM 9 12/06/96

configuration is possible. In more typical frames, there
is still 128KB/s to 256KB/s of unused bulk transfer

time.

Table 10 shows that the worst/worst case configuration
is 137 bytes too short to fit in a frame. However, not
every frame will be fully loaded nor worst case bit
stuffed. Bit stuffing at 16.67% requires 232 bytes. If
more random bit stuffing is required, bit stuffing can be
reduced to 9 bytes and even fully loaded frames are
possible. The average and every frame cases show that
there can be substantial bus time available for other
devices.

Conclusion
The analysis presented here has estimated several
example USB devices. Bus configurations consisting of
several of these devices can be supported on USB.
These estimates show that a broad range of practical
bus configurations include a significant amount of
available bandwidth that can be used for additional
devices. Even in worst case configurations, significant
bandwidth may be expected for non-guaranteed
transfers such as those that may be needed for printers
and scanners.

The throughput possibilities of USB should allow for a
broad range of useful devices and bus configurations.
End users should also be able to reliably make use of
the devices and configurations they desire.

Spreadsheet formulas are available by email request
from john_garney@ccm.jf.intel.com.

Acknowledgment
The author acknowledges the work of: Mike Dwyer for
generating the original bus transmission timings and
for performing the bit stuffing simulations, Jan Camps
and Mike Bernstein for earlier presentation pictures,
Shelagh Callahan for checking the telephony and

isochronous estimates.

References
[1] Universal Serial Bus Specification, Version 1.0 .

Available from http://www.teleport.com/~USB.

Heavy Configuration

-20%

0%

20%

40%

60%

80%

100%

16
.6

7%

0.
80

%

A
vg

.

E
ve

ry

Frame Loading Options

F
ra

m
e

C
o

n
te

n
ts

Figure 3.

Heavy Configuration

16.67% 0.80% Avg. Every

frame mgt 14 14 14 14

LS Control 162 162 0 0

Hub Poll 16 16 6 0

LS Int 162 162 162 162

ISDN 63 63 63 63

CD-A 190 190 190 190

MPEG 798 798 798 798

bitstuff 232 9 61 9

unalloc -137 86 206 264

64B Bulks 0 2 3 4

Bulk BW 0 128000 192000 256000

Table 10. - Frame Loading, Heavy Configuration

	An Analysis of Throughput Characteristics of Universal Serial Bus
	Abstract
	Introduction
	Key USB Throughput Characteristics
	Bus Overhead
	Bit Stuffing Overhead
	Guaranteed vs. Non-Guaranteed Transfers
	General Bus Throughput

	Single Device Model Spreadsheet
	Example USB Devices
	Example Bus Configurations
	Light Configuration
	Typical Configuration
	Maximum Configuration

	Conclusion
	Acknowledgment
	References

