
Revision 1.0 - 1 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Universal Serial Bus
Power Delivery Firmware

Update Specification

Revision 1.0
September 15, 2016

Revision 1.0 - 2 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Copyright © 2016, USB 3.0 Promoter Group
All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED TO YOU “AS IS” WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS
FOR ANY PARTICULAR PURPOSE. THE AUTHORS OF THIS SPECIFICATION DISCLAIM ALL
LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS,
RELATING TO USE OR IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. THE
PROVISION OF THIS SPECIFICATION TO YOU DOES NOT PROVIDE YOU WITH ANY LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS.

All product names are trademarks, registered trademarks, or service marks of their
respective owners.

Revision 1.0 - 3 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

CONTENTS

Specification Work Group Chairs / Specification Editors .. 7

Specification Work Group Contributors .. 7

1 Introduction ... 9

1.1 Purpose .. 9

1.2 Scope ... 9

1.3 Related Documents... 9

1.4 Conventions .. 9

1.4.1 Precedence .. 9

1.4.2 Keywords ... 9

1.4.3 Numbering ... 10

1.5 Terms and Abbreviations ... 11

2 Overview ... 13

2.1 Introduction ... 13

2.2 Use Cases ... 13

2.2.1 Scenario 1 – Updating a PD Source over a USB Type-C Cable 13

2.2.2 Scenario 2 – Updating a PD Sink over a USB Type-C Cable 13

2.2.3 Scenario 3 – Updating a USB Type-C Cable .. 14

2.2.4 Scenario 4 – Update via a USB Hub .. 15

2.3 PD Firmware Update Flow ... 15

2.3.1 Enumeration ... 16

2.3.2 Acquisition... 16

2.3.3 Reconfiguration ... 16

2.3.4 Transfer .. 17

2.3.5 Validation ... 17

2.3.6 Manifestation .. 17

3 Architecture ... 18

3.1 Overview ... 18

3.1.1 PDFU Depot ... 18

3.1.2 PDFU Initiator .. 19

3.1.3 PDFU Responder .. 20

3.2 Firmware Verification and Validation .. 28

3.2.1 PDFU File Prefix ... 28

3.2.2 Firmware Signature .. 29

4 PD Firmware Update Flow ... 31

4.1 PDFU Phases ... 31

4.1.1 Enumeration Phase ... 31

4.1.2 Acquisition Phase .. 32

4.1.3 Reconfiguration Phase ... 33

4.1.4 Transfer Phase ... 35

4.1.5 Validation Phase .. 44

4.1.6 Manifestation Phase ... 45

Revision 1.0 - 4 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

4.2 Mitigation to USB Data loss and Power Change .. 45

4.3 Termination .. 46

4.3.1 By PDFU Initiator .. 46

4.3.2 By PDFU Responder .. 46

5 Firmware Update Messages ... 47

5.1 Header .. 47

5.1.1 Protocol Version .. 47

5.1.2 Message Type .. 47

5.2 Requests .. 48

5.2.1 GET_FW_ID .. 48

5.2.2 PDFU_INITIATE .. 48

5.2.3 PDFU_DATA ... 49

5.2.4 PDFU_DATA_NR .. 49

5.2.5 PDFU_VALIDATE .. 50

5.2.6 PDFU_ABORT .. 50

5.2.7 PDFU_DATA_PAUSE .. 50

5.2.8 VENDOR_SPECIFIC .. 50

5.3 Responses.. 51

5.3.1 GET_FW_ID .. 51

5.3.2 PDFU_INITIATE .. 54

5.3.3 PDFU_DATA ... 54

5.3.4 PDFU_VALIDATE .. 55

5.3.5 PDFU_DATA_PAUSE .. 56

5.3.6 VENDOR_SPECIFIC .. 56

5.4 Response Status .. 58

5.5 Retries .. 58

5.6 Timing and Timeouts ... 59

5.6.1 PDFU Initiator Timing Parameters .. 60

5.6.2 PDFU Responder Timing Parameters .. 61

5.7 Unexpected Requests and Responses ... 62

6 Protocol Constants ... 64

Appendix A Transfer Phase Flow Diagrams (Informative) 65

Appendix B PDFU Prefix Reference Code .. 67

TABLES

Table 1-1: Terms and Abbreviations .. 11

Table 3-1: Firmware Image File Name Fields ... 19

Table 3-2: PDFU File Prefix Data .. 28

Table 4-1: PDFU Initiator Response .. 37

Table 4-2: PDFU Responder PDFU_DATA Response Field Values ... 41

Table 5-1: Firmware Update Message Header ... 47

Table 5-2: USB PD Firmware Update Protocol Version ... 47

Table 5-3: Firmware Update Message Request Types .. 48

Revision 1.0 - 5 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Table 5-4: GET_FW_ID Request Header .. 48

Table 5-5: PDFU_INITIATE Request Header ... 48

Table 5-6: PDFU_INITIATE Request Payload .. 49

Table 5-7: PDFU_DATA Request Header ... 49

Table 5-8: PDFU_DATA Request Payload ... 49

Table 5-9: PDFU_DATA_NR Request Header ... 49

Table 5-10: PDFU_DATA_NR Request Payload... 50

Table 5-11: PDFU_VALIDATE Request Header .. 50

Table 5-12: PDFU_ABORT Request Header ... 50

Table 5-13: PDFU_DATA_PAUSE Request Header .. 50

Table 5-14: VENDOR_SPECIFIC Request Header .. 51

Table 5-15: VENDOR_SPECIFIC Request Payload ... 51

Table 5-16: Message Response Types .. 51

Table 5-17: GET_FW_ID Response Header ... 52

Table 5-18: GET_FW_ID Response Payload ... 52

Table 5-19: PDFU_INITIATE Response Header ... 54

Table 5-20: PDFU_INITIATE Response Payload .. 54

Table 5-21: PDFU_DATA Response Header ... 54

Table 5-22: PDFU_DATA Response Payload .. 55

Table 5-23: PDFU_ VALIDATE Response Header .. 55

Table 5-24: PDFU_VALIDATE Response Payload .. 56

Table 5-25: PDFU_DATA_PAUSE Response Header ... 56

Table 5-26: PDFU_DATA_PAUSE Response Payload.. 56

Table 5-27: VENDOR_SPECIFIC Response Header ... 56

Table 5-28: VENDOR_SPECIFIC Response Payload .. 57

Table 5-29: Status Information during Firmware Update .. 58

Table 5-30: Timeout Values for a PD Firmware Update PDFU Initiator ... 61

Table 5-31: Timeout Values for a PD Firmware Update PDFU Responder ... 61

Table 5-32: Response to Requests ... 62

Table 6-1: Protocol Constants .. 64

FIGURES

Figure 2-1 Scenario 1 ... 13

Figure 2-2 Scenario 2 ... 14

Figure 2-3 Scenario 3 ... 14

Figure 2-4 Scenario 4a .. 15

Figure 2-5 Scenario 4b .. 15

Figure 2-6 PDFU Flow ... 16

Figure 3-1 General PDFU Topology ... 18

Figure 3-2 Architecture 1 - Bootloader with limited PD support and fully-featured application 21

Figure 3-3 Architecture 2 - Fixed base application with updatable application image 22

Figure 3-4 Architecture 3 - Single application image with holding area for new firmware 24

Figure 3-5 Architecture 4 - Multiple fully-featured application images ... 26

Revision 1.0 - 6 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Figure 4-1 PDFU Initiator Transfer Phase State Diagram ... 39

Figure 4-2 PDFU Responder Transfer Phase State Diagram .. 43

Figure 5-1 PDFU Retries for Single Chunk Messages .. 59

Figure 5-2 PDFU Retries for Multi-Chunk Messages ... 60

Figure A-1 PDFU Initiator Transfer Phase Flow (Informative) .. 65

Figure A-2 PDFU Responder Transfer Phase Flow (Informative) ... 66

Revision 1.0 - 7 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Specification Work Group Chairs / Specification Editors

Apple Co-Chair Colin Whitby-Strevens

Specwerkz Co-Chair Bob Dunstan

Intel Corporation Editor Stephanie Wallick

Specification Work Group Contributors

Advanced Micro Devices Joseph Scanlon

Analogix Semiconductor, Inc. Mehran Badii Greg Stewart

Apple William Ferry Scott Jackson Karthik Raj Kaliannan

 Robert Walsh Kevin Hsiue

Canyon Semiconductor YuHung Lin

Chrontel, Inc. David Tsai

Cypress Semiconductor Jagadeesan Raj Subu Sankaran

Dell Inc. Marcin Nowak

DisplayLink (UK) Ltd. Richard Petrie

Ellisys Tim Wei Abel Astley

Fairchild Semiconductor Oscar Freitas Joseph Bauman

Google Inc. Mark Hayter Vincent Palatin David Schneider

Intel Corporation Abdul Ismail Christine Krause Brad Saunders

Lattice Semiconductor Corp Babu Mailachalam

MCCI Corporation Terry Moore

Microchip Technology Inc. Shannon Cash John Sisto

Microsoft Corporation Michelle Bergeron Anthony Chen Tatu Tomppo

MQP Electronics Ltd. Sten Carlsen

NXP Semiconductors Vijendra Kuroodi

Renesas Electronics Corp. Philip Leung Toshifumi Yamaoka

STMicroelectronics Nathalie Ballot Chekib Hammami

Total Phase Chris Yokum

VIA Technologies, Inc. Jay Tseng

Revision 1.0 - 8 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Revision History

Revision Date Description

1.0 September 15, 2016 Initial Release

Revision 1.0 - 9 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

1 Introduction

1.1 Purpose

This specification defines a common method for updating the firmware in a USB PD capable
device.

The USB Power Delivery Firmware Update Specification is guided by the following
principles:

 Define a common method to update the firmware in a PD capable device such as a PD
charger or a USB Type-C Alternate Mode device

 Define a secure method designed to thwart installation of compromised firmware

 Complement and work in congruence with existing USB DFU Class implementations

1.2 Scope

This specification is intended as a supplement to the existing USB Power Delivery
specification. It addresses only the elements required to implement and support firmware
update using USB Power Delivery.

Normative information is provided to allow interoperability of components designed to this
specification. Informative information, when provided, may illustrate possible design
implementations.

1.3 Related Documents

USB PD Universal Serial Bus Power Delivery Specification, Revision 3.0, Version 1.0a,
March 25, 2016 (referred to in this document as the USB PD Specification)
(available at: http://www.usb.org/developers/docs).

USB Type-C Universal Serial Bus Type-C Cable and Connector Specification, Revision 1.2,
March 25, 2016 (referred to in this document as the USB Type -C
Specification)(available at: http://www.usb.org/developers/docs).

USB Type-C
Bridge

Universal Serial Bus Type-C Bridge Specification, Revision 1.0, June 15, 2016,
(available at http://www.usb.org/developers/docs).

USB DFU USB Device Class Specification for Device Firmware Upgrade, Version 1.1,
August 5, 2004 , (available at http://www.usb.org/developers/docs).

1.4 Conventions

1.4.1 Precedence

If there is a conflict between text, figures, and tables, the precedence shall be tables, figures,
and then text.

1.4.2 Keywords

The following keywords differentiate between the levels of requirements and options.

1.4.2.1 Conditional Normative

Conditional Normative is a keyword used to indicate a feature that is mandatory when
another related feature has been implemented. Designers are mandated to implement all
such requirements, when the dependent features have been implemented, to ensure
interoperability with other compliant Products.

http://www.usb.org/developers/docs
http://www.usb.org/developers/docs
http://www.usb.org/developers/docs
http://www.usb.org/developers/docs

Revision 1.0 - 10 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

1.4.2.2 Deprecated

Deprecated is a keyword used to indicate a feature, supported in previous releases of the
specification, which is no longer supported.

1.4.2.3 Informative

Informative is a keyword that describes information with this specification that intends to
discuss and clarify requirements and features as opposed to mandating them.

1.4.2.4 May

May is a keyword that indicates a choice with no implied preference.

1.4.2.5 N/A

N/A is a keyword that indicates that a field or value is not applicable and has no defi ned
value and shall not be checked or used by the recipient.

1.4.2.6 Normative

Normative is a keyword that describes features that are mandated by this specification.

1.4.2.7 Optional/Optionally/Optional Normative

Optional, Optionally , and Optional Normative are equivalent keywords that describe
features not mandated by this specification. However, if an Optional feature is
implemented, the feature shall be implemented as defined by this specification .

1.4.2.8 Reserved

Reserved is a keyword indicating reserved bits, bytes, words, fields, and code values that are
set-aside for future standardization. Their use and interpretation may be specified by future
extensions to this specification and, unless otherwise stated, shall not be utilized or adapted
by vendor implementation. A Reserved bit, byte, word, or field shall be set to zero by the
sender and shall be ignored by the receiver. Reserved field values shall not be sent by the
sender and, if received, shall be ignored by the receiver.

1.4.2.9 Shall/Normative

Shall and Normative are keywords indicating a mandatory requirement. Designers are
mandated to implement all such requirements to ensure interoperability with other
compliant Products.

1.4.2.10 Should

Should is a keyword indicating flexibility of choice with a preferred alternative . Equivalent
to the phrase “it is recommended that”.

1.4.3 Numbering

Numbers that are immediately followed by a lowercase “b” (e.g., 01b) are binary values.
Numbers that are immediately followed by a lowercase “h” (e.g., 3Ah) are hexadecimal
values. Numbers not immediately followed by either a “b”, or “h” are decimal values.

Revision 1.0 - 11 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

1.5 Terms and Abbreviations

This section defines the terms and abbreviations used throughout this document.

Table 1-1: Terms and Abbreviations

Term Description

Alternate Mode Operation defined by a vendor or standards organization that is
associated with a SVID assigned by the USB-IF. Entry into and exit
from an Alternate Mode is controlled by the USB PD Structured
VDM Enter Mode and Exit Mode commands, respectively.

CC Configuration Channel (CC) used in the discovery, configuration and
management of connections across a USB Type-C cable.

Direct Connect The host’s DFP is connected directly to the PD Device’s UFP with no
USB hub in between, either via a cable or without (e.g., thumb
drive).

Downstream Facing
Port (DFP)

Defined in USB PD.

Electronically
Marked Cable

A USB Type-C cable that uses USB PD to provide the cable’s
characteristics.

LSB Least significant byte

MSB Most significant byte

PD Device A device that supports USB PD.

PD Sink A Sink that is managed using USB PD.

PD Source A Source that is managed using USB PD.

PDFU Power Delivery Firmware Update.

PDFU Depot A place or entity that stores firmware images.

PDFU Initiator The system that retrieves a firmware image from the PDFU Depot
and provides it to the PDFU Responder.

PDFU Responder The system that receives a firmware image.

Port Partner Refers to the port (PD Device or host) that another port is attached
to.

Request USB PD Firmware Update Request (as specified in USB PD).

Response USB PD Firmware Update Response (as specified in USB PD).

Silent Failure Exiting the PDFU Flow prior to successful firmware image update
without first notifying the user that an error has occurred.

Silent Update The updating of a firmware image without first informing a user.

Sink Port consuming power from VBUS; most commonly a device.

Source Port providing power over VBUS; most commonly a Host or Hub
DFP.

Type-C Port The USB port associated to a USB Type-C receptacle. This includes
the USB signaling, CC logic, multiplexers and other associated logic.

Revision 1.0 - 12 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Term Description

Upstream Facing
Port (UFP)

Defined in USB PD.

VCONN-powered
accessory

An accessory that is powered from VCONN to operate in an Alternate
Mode.

Revision 1.0 - 13 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

2 Overview

This section contains no Normative requirements.

2.1 Introduction

This specification describes the architecture and methodology to load a single consolidated
firmware image using USB Power Delivery. The management of multiple firmware images is
outside the scope of this specification. Product vendors can implement a mean s of managing
multiple firmware images provided that those means do not conflict with or alter the
specifications described herein.

2.2 Use Cases

The use cases for PD Firmware Update are described in four topology scenarios for firmware
update. The first three are for PDFU Responders that are directly connected to the PDFU
Initiator. The last is for a PDFU Responder connected behind a Hub with an integrated USB
Type-C Bridge.

2.2.1 Scenario 1 – Updating a PD Source over a USB Type-C Cable

Figure 2-1 shows a firmware update topology scenario where the PDFU Initiator is a PD Sink
(e.g. a laptop) and the PDFU Responder is a PD Source (e.g. AC/DC power adapter). Note that
the PDFU Initiator and PDFU Responder are not likely to have appropriate USB data
connectivity in this scenario. Thus, USB DFU is not likely to be an option for firmware
update.

Figure 2-1 Scenario 1

Sink Source

PDFU Initiator PDFU Responder

USB Type-C cable

2.2.2 Scenario 2 – Updating a PD Sink over a USB Type-C Cable

Figure 2-2 shows a firmware update topology scenario where the PDFU Initiator is a PD
Source (e.g. a desktop capable of powering peripheral devices) and the PDFU Respond er is a
PD Sink (e.g. Captive Cable Sink or Sink with Alternate Mode Adapter). Note that the PDFU
Initiator and PDFU Responder may also have USB data connectivity and could potentially use
USB DFU for firmware update as well.

Revision 1.0 - 14 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Figure 2-2 Scenario 2

Source Sink

PDFU Initiator PDFU Responder

USB Type-C cable

2.2.3 Scenario 3 – Updating a USB Type-C Cable

Figure 2-3 shows a firmware update topology scenario where the PDFU Responders are the
ends of a PD cable (SOP’ and SOP’’).

Figure 2-3 Scenario 3

PDFU
Initiator

PD Port
Partner

USB Type-C cable
PDFU SOP
Responder

PDFU SOP
Responder

In this scenario, the following conditions have to be met:

 The PDFU Initiator supplies VCONN.

 The PDFU Initiator, the PDFU Responder(s) in the cable, and the system at the far
end of the cable to the PDFU Initiator all implement USB PD Revision 3.0a or later.

 The USB Type-C cable can tolerate the error case where only one end updates
successfully.

This scenario has the following limitations:

 If the cable has an isolated SOP’ at each end (i.e. only one end is powered at a time –
no VCONN wire in the cable), the user has to reverse the cable in the middle of the
update process.

 A PD Port Partner has to be connected to the end of the cable. The Port Partner does
not participate in firmware update but must support USB PD Revision 3.0 or later.

 The PDFU Initiator has to enter into an explicit contract with the PD Port Partner
before it can initiate firmware update.

Revision 1.0 - 15 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

2.2.4 Scenario 4 – Update via a USB Hub

In this firmware update topology scenario, the PDFU Responder is downstream of a Hub.

Figure 2-4 shows Scenario 4a, where the PDFU Responder connected behind the Hub is a PD
Source or PD Sink (Scenarios 1 and 2 respectively) .

Figure 2-4 Scenario 4a

PDFU Responder

Hub Source/Sink
USB Type-C cable

PDFU Initiator

USB

USB data communication USB PD communication

Figure 2-5 shows Scenario 4b, where the PDFU Responder connected behind the Hub is
either end of a PD cable (SOP’ or SOP”).

Figure 2-5 Scenario 4b

Hub Port PartnerUSB Type-C cable
PDFU SOP
Responder

PDFU SOP
Responder

PDFU Initiator

USB

USB data communication USB PD communication

These scenarios require a Hub that implements a USB Type-C Bridge. If the Hub does not
implement a USB Type-C Bridge, then the PDFU Initiator has no means of communicating
with the PDFU Responder and will not be able to detect whether or not the PDFU Responder
needs a firmware update.

2.3 PD Firmware Update Flow

The PD Firmware Update Flow (PDFU Flow) consists of six phases. Figure 2-6 shows the
order in which these phases occur.

Revision 1.0 - 16 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Figure 2-6 PDFU Flow

Enumeration

Acquisition

Reconfiguration

Manifestation

Validation

Transfer

2.3.1 Enumeration

In this phase, the PDFU Initiator queries the PDFU Responder. The PDFU Responder then
responds with vendor and device identification and firmware version information.

Enumeration takes place after a USB PD connection has been established and a USB PD
Explicit Contract has been negotiated. Enumeration can be performed at any time while in an
Explicit Contract.

2.3.2 Acquisition

In this phase, the PDFU Initiator uses the vendor and device identification and firmware
version information to query the appropriate PDFU Depot for a firmware update. The PDFU
Depot either responds with a new firmware update image, or indicates that there is no
appropriate update, in which case the PDFU Flow terminates.

2.3.3 Reconfiguration

In this phase, the PDFU Initiator and the PDFU Responder perform any necessary
reconfiguration in order to prepare for the transfer of the new firmware image.

Revision 1.0 - 17 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

2.3.4 Transfer

In this phase, the new firmware image is transferred from the PDFU Initiator to the PDFU
Responder.

2.3.5 Validation

In this phase, the PDFU Responder validates the new firmware imag e (including verifying a
vendor-dependent signature) and reports success or failure to the PDFU Initiator .

2.3.6 Manifestation

In this phase, the PDFU Responder switches to using the new firmware image. Any necessary
reconfiguration is performed, typically initiated by the PDFU Initiator performing a USB PD
Hard Reset.

Revision 1.0 - 18 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

3 Architecture

3.1 Overview

Figure 3-1 shows the general topology of a system that includes a PDFU Depot, PDFU
Initiator, and PDFU Responder.

Figure 3-1 General PDFU Topology

PDFU Responder
Local or remote

connection

PDFU InitiatorPDFU Depot

3.1.1 PDFU Depot

A PDFU Depot is a collection of one or more firmware images. A PDFU Depot may be
accessed by multiple parties. This allows firmware updates between PDFU Initiators and
PDFU Responders from different vendors (e.g. PDFU Responder from Vendor A can be
updated by PDFU Initiator from Vendor B).

A PDFU Depot can take a number of different forms:

 Local to PDFU Initiator (e.g. memory stick).

 Remote (manufacturer specific) – the firmware image is accessed and downloaded
using a vendor-dependent protocol.

 Remote (centralized for all manufacturers) – the firmware image is accessed and
downloaded using a standard protocol.

 Remote (manufacturer specific with centralized index) – the index and the firmware
image are accessed and downloaded using a standard protocol .

This specification does not currently define the interface between the PDFU Initiator and the
PDFU Depot. However, this is anticipated to be defined in a future version of this
specification.

3.1.1.1 File Naming and Hierarchy in Local Depot

To assist with firmware image identification, a local Depot shall have a top level file
directory with the name PDFU. Within this directory, there may be any combination of sub -
directories, firmware images and other files. A firmware image shall have a file name in the
following format (except for systems that only support 8.3 format file names, see below):

convenience string-iiii-pppp-vvvvvvvvvvvvvvvv-bb-yyyymmddhhmmss.pdfu

where the individual fields are as described in Table 3-1.

Revision 1.0 - 19 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Table 3-1: Firmware Image File Name Fields

Name Meaning

Convenience string An arbitrary string selected by the vendor, not containing a
hyphen character.

Example: Acme Inc. 60W power adapter

iiii Vendor ID represented as a string of four hexadecimal digits

pppp Product ID represented as a string of four hexadecimal digits

vvvvvvvvvvvvvvvv Firmware Version represented as a string of sixteen hexadecimal
digits. The first four hexadecimal digits correspond to FWVersion1,
the second four hexadecimal digits correspond to FWVersion2, the
third four hexadecimal digits correspond to FWVersion3 and the
final four hexadecimal digits correspond to FWVersion4.

bb Image bank in binary coded decimal. 00 if the PDFU Responder
does not support multiple image banks.

yyyymmddhhmmss Timestamp in international date/time format. Leading zeros for
months, date, hours, minutes and seconds shall be present.

All alpha characters in the hexadecimal strings, the timestamp and the file extension may be
represented in upper case or in lower case.

Example file name:
 Acme Inc. 60W power adapter-ac12-006b-0001000101010103-20160401093212.pdfu

In the case of systems that only support 8.3 file names, the file name shall be IIIIPPPP.PDU.

3.1.2 PDFU Initiator

A PDFU Initiator is a system (typically a laptop or PC) that has at least one USB Type-C port
that supports the USB PD Firmware Update Requests defined in this specification. A PDFU
Initiator also contains the following:

 An optional user interface.

 A means of accessing a PDFU Depot.

A PDFU Initiator does the following:

1. Enumerates PDFU Responders.

2. Queries the appropriate PDFU Depot using the information received during
enumeration.

3. Applies a policy whether or not to initiate a firmware image update.

4. Retrieves a firmware image from the PDFU Depot, converts it from hexadecimal to
binary (if necessary), and verifies the CRC.

5. Sends the firmware image to the PDFU Responder.

6. Validates whether or not firmware update was successful.

Revision 1.0 - 20 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

7. Optionally manifests the update of PDFU Responder firmware by initiating Hard
Reset (i.e. in order to minimize the disruptive effect of Manifestation, a PDFU
Initiator may delay manifestation of new firmware until after the PDFU Responder is
reset in the course of normal use).

3.1.3 PDFU Responder

A PDFU Responder is a system that has at least one USB Type-C port that supports the USB
PD Firmware Update Responses defined in this specification.

This specification supports four possible architectures for storing firm ware images within
the EEPROM of a PDFU Responder. Architecture 3 or Architecture 4 is recommended to
reduce the risk of limited or no Application functionality after a failed firmwa re update.

These architectures are informative, for reference, and are not intended to form an
exhaustive list. Variations of each of the four architectures are possible.

The architectures are described in terms of an Application Image, providing the full
functionality of the device, the PDFU Responder functionality and a Bootloader. The
Bootloader is firmware that is always present and is entered on power reset and, optionally,
from the Application. Its main functions include verifying the Application Image is correct
(e.g. by means of an image checksum). If the Application Image is not correct, then, where
the device contains more than one Application image, the Bootloader sele cts a fallback
image and repeats the check. If the selected Application Image is correct and is executed
from RAM, then the Bootloader copies it from the EEPROM to the RAM . If the selected
Application Image is correct then, on completion of t he optional copy and any other low-
level initialization, the Bootloader transfers control to the Application. The Bootloader
includes support for all Phases of PDFU so that, if there is no correct Application Image, it is
capable of downloading a new Application Image. The Bootloader may transfer control to
the newly loaded Application directly as part of the Manifestation Phase or may rely on the
PDFU Initiator performing a Hard Reset.

This version of this specification does not support the update of firmware images for
separate applications. Vendor-dependent means may be used for combining firmware
images for multiple applications into a single image for downloading via PDFU.

The Application Image always contains support for the E numeration and Reconfiguration
Phases of PDFU, and may contain support for all the phases of PDFU, allowing the
Application Functionality to continue during the Transfer and Validation Phases of PDFU. If
it does not contain support for all phases of PDFU then it transfers control to the Bootloader
in the Reconfiguration Phase so that the Bootloader can continue with the Transfer,
Validation and Manifestation Phases.

Revision 1.0 - 21 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

3.1.3.1 Architecture 1 - Bootloader with limited PD support and fully-featured application

Figure 3-2 illustrates Architecture 1.

Figure 3-2 Architecture 1 - Bootloader with limited PD support and fully-featured
application

This is the simplest supported image storage architecture. This architecture comprises a
single Application image and a Bootloader. The Bootloader contains support for all of the
PDFU phases.

Key features of Architecture 1 are:

 The PDFU Responder switches to the Bootloader during the Reconfiguration phase,
the Bootloader then downloads the new image into the Updatable Application Image
area during the Transfer phase and, once Validation has completed successfully, the
Bootloader switches to the new firmware image stored in the Updatable Application
Image space during the Manifestation phase.

 Device functionality is limited to that provided by the Bootloader while the firmware
image is being downloaded.

 In the event that the firmware download process fails fo r some reason, device
functionality is limited to that provided by the Bootloader. In other words, firmware
update has to be attempted again and has to succeed before full device functionality
can be restored.

If the device executes code from RAM instead of EEPROM, then it is possible for the
Application to incorporate all of the PDFU Responder functionality. In this case, the PDFU
Responder in the Application can download a new firmware version into the EEPROM while
maintaining full application functionality. At the Manifestation Phase, the Application
switches to the Bootloader which then copies the new Application Image into RAM.

As in the previous case, if the firmware download fails for some reason, then on a power
reset, the Bootloader finds that the Updatable Application Image is corrupt and waits for a
new image to be downloaded.

Revision 1.0 - 22 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

3.1.3.2 Architecture 2 - Fixed base application with updatable application image

Figure 3-3 illustrates Architecture 2.

Figure 3-3 Architecture 2 - Fixed base application with updatable application image

This architecture comprises Bootloader, a Fixed Base Application Image that contains a
PDFU Responder and an Updatable Application Image.

Key features of Architecture 2 are:

 The Updatable Application Image supports the Enumeration and Reconfiguration
Phases of PDFU. In the Reconfiguration Phase, it switches to the PDFU Responder in
the Fixed Base Application Image.

 The PDFU Responder in the Fixed Base Application Image overwrites the current
firmware image in the Updatable Application Image area with a new firmware image
during the Transfer Phase.

 The PDFU Responder in the Fixed Base Application verifies the new image during the
Validation Phase. If Validation is successful, then it switches to the new firmware
image stored in the Updatable Application image space during the M anifestation
phase, or the device is reset, the Bootloader is entered, and it transfers to the new
firmware image in the Updatable Application image space.

 Device functionality is limited to that provided by the Fixed Base Application while
the firmware image is being downloaded.

 In the event that the firmware download process fails for some reason, d evice
functionality falls back to that provided by the Fixed Base Application. In other
words, while much functionality continues to be provided, firmware upda te has to be

Revision 1.0 - 23 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

attempted again and has to succeed before the latest device functionality can be
restored.

If the device executes code from RAM instead of EEPROM, then it is possible for the
Application to incorporate all of the PDFU Responder functionality. In this case, the PDFU
Responder in the Application can download a new firmware version into the EEPROM while
maintaining full application functionality. At the Manifestation Phase, the Application
switches to the Bootloader which then copies the new Application Image into RAM.

As in the previous case, if the firmware fails for some reason, then on a power reset, the
Bootloader finds that the Updatable Application Image is corrupt and falls back to the Fixed
Base Application.

Revision 1.0 - 24 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

3.1.3.3 Architecture 3 - Single application image with holding area for new firmware

Figure 3-4 illustrates Architecture 3.

Figure 3-4 Architecture 3 - Single application image with holding area for new
firmware

This architecture comprises an Updatable Application Image area and an Image Holding area
in which to receive a new image. Both the Bootloader and the Application image contain the
full PDFU Responder functionality

Key features of Architecture 3 are:

 The PDFU Responder in the Application Image downloads a new image into the
Image Holding Area, while maintaining full Application functionality.

 The PDFU Responder in the Application Image validates the new image, and, if
Validation is successful, switches to the Bootloader at the start of the Manifestation
phase. The Bootloader copies the new firmware image from the Image Holding area
into the Updatable Application Image area and transfers control to it in the
Manifestation phase.

 In the event that the firmware download process fails for some reason, d evice
functionality continues with that provided by the current version in the Updatable
Application Image.

Revision 1.0 - 25 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

 In the event that the image copy fails for some reason the Bootloader finds the
Updateable Application Image is corrupt and uses its copy of PDFU to download a
new image.

Revision 1.0 - 26 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

3.1.3.4 Architecture 4 - Multiple fully-featured application images

Figure 3-5 illustrates Architecture 4.

Figure 3-5 Architecture 4 - Multiple fully-featured application images

Revision 1.0 - 27 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

This architecture comprises a number of Image Area banks, each of which can hold a
different version of an Application Image. A Current Image Bank pointer indicates which
bank contains the most up-to-date version of the firmware. Each Application Image
incorporates the full PDFU Responder functionality. Optionally, one of the banks may
contain a Fixed Application Image which is never overwritten.

Key features of Architecture 4 are:

 The PDFU Responder is responsible for managing the Image Area banks.

 The PDFU Responder downloads the new Application Image into a different bank
during the Transfer phase, and finally, once Validation has completed successfully,
updates a pointer to the bank containing the new firmware image during the
Manifestation phase.

 Full Device functionality is available while the new firmware image is being
downloaded.

 Device functionality falls back to that provided by current image in the event that
the firmware download process fails for some reason.

 Multiple levels of fall back are provided in the event of image ROM failure, p roviding
additional robustness.

Revision 1.0 - 28 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

3.2 Firmware Verification and Validation

3.2.1 PDFU File Prefix

The PDFU File Prefix provides a simple means for a PDFU Initiator to validate that a
particular firmware image is appropriate for a PDFU Responder. The PDFU File Prefix is
based on the specification for the File Suffix in USB DFU.

A PDFU Initiator shall not send the PDFU File Prefix from a firmware image to a PDFU
Responder.

All PDFU firmware image files shall contain a PDFU File Prefix at the start of the file. The
PDFU File Prefix shall take the form of a string of ASCII hexadecimal digits terminated by an
ASCII Carriage return (0x0D) and ASCII line feed (0x0A).

The PDFU File Prefix shall be a hexadecimal representation of the binary information
formatted according to Table 3-2 with byte offsets relative to the start of the binary
information.

Table 3-2: PDFU File Prefix Data

Offset Field Size
(Bytes)

Value Description

0 dwCRC 4 Number The CRC of the entire file, excluding
dwCRC.

Offset 0 (represented by the first two
hexadecimal digits) contains the LSB
of the dwCRC and offset 3 contains the
MSB of dwCRC

4 bLength 1 23 The length of this PDFU File Prefix,
including dwCRC, after converting to
hexadecimal.

5 ucPDFUSignature 4 “PDFU” The unique PDFU signature field in
ASCII.

Offset 5 contains the ASCII encoding
for the letter “P” and offset 8 contains
the ASCII encoding for the letter “U”

9 bcdPDFU 2 BCD PDFU specification number. For
Revision 1.0, the value of this field is
0100h.

Offset 9 contains the LSB of bcdPDFU
(i.e. 00h) and offset 10 contains the
MSB of bcdPDFU (i.e. 01h)

11 idVendor 2 ID The USB-IF-issued Vendor ID
associated with this file.

Offset 11 contains the LSB of idVendor
and offset 12 contains the MSB
of idVendor

Revision 1.0 - 29 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

13 idProduct 2 ID The Product ID associated with this
file as assigned by the vendor
identified in the idVendor field.

Offset 13 contains the LSB
of idProduct and offset
14 contains the MSB of idProduct

15 wVersionDevice1 2 Number The most significant component of
the firmware version number of the
firmware image contained in the file.

Offset 15 contains the LSB
of wVersionDevice1 and offset
16 contains the MSB
of wVersionDevice1

17 wVersionDevice2 2 Number The second-most significant
component of the firmware version
number of the firmware image
contained in the file.

Offset 17 contains the LSB
of wVersionDevice2 and offset
18 contains the MSB
of wVersionDevice2

19 wVersionDevice3 2 Number The third-most significant component
of the firmware version number of the
firmware image contained in the file.

Offset 19 contains the LSB
of wVersionDevice3 and offset
20 contains the MSB
of wVersionDevice3

21 wVersionDevice4 2 Number The least significant component of the
firmware version number of the
firmware image contained in the file.

Offset 21 contains the LSB
of wVersionDevice4 and offset
22 contains the MSB
of wVersionDevice4

The CRC stored in the dwCRC field shall be calculated over the binary representation of the
Prefix Data, excluding the first four bytes, followed by the remaining bytes in the file as
presented, starting with the ASCII Carriage return (0x0D) and ASCII line feed (0x0A) that
terminates the Prefix. The CRC shall be calculated using the polynomial and method given in
Appendix B.

3.2.2 Firmware Signature

All firmware images shall be signed by vendor-dependent means and the signature shall be
contained in the firmware image (typically at the end of the image). It is recommended that
the signature format be PKCS1 PSS. It is recommended that the hash algorithm be SHA256 or
better. The minimum RSA key size should be 2048 bits, but it is recommended that a key size
of 3072 bits or greater be used. Note that RSA 2048/3072 indicates a minimum security

Revision 1.0 - 30 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

recommendation, other methods with equivalent strength, for example ECDSA with P-256
curve, may also be used.

The PDFU Responder shall validate the Firmware Signature during the Validation Phase.

Revision 1.0 - 31 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

4 PD Firmware Update Flow

The PD Firmware Update Flow (PDFU Flow) comprises the PDFU Initiator and PDFU
Responder each following successively the Phases specified in Section 2.3. The PDFU
Initiator and PDFU Responder may exit the PDFU Flow from any Phase under the various
error conditions, specified below.

The firmware update process is initiated and managed by the PDFU Initiator. A PDFU
Responder shall not send any Requests.

A PDFU Responder may terminate firmware update during the Reconfiguration, Transfer and
Validation Phases by indicating an error in the Status field of an appropriate Response.

During the PDFU Flow there shall be no power state changes, no data role swaps, no power
role swaps, and no VCONN role swaps. If a Port receives a request for one of these during the
PDFU Flow, it shall respond with a Reject message.

A PDFU Initiator shall only enter the PDFU Flow for SOP if the peer supports USB PD. A
PDFU Initiator shall only follow the PDFU Flow for SOP’ or SOP” if both the peer port and the
cable support USB PD.

A PDFU Initiator shall follow the PDFU Flow in its entirety for each of SOP, SOP’ and SOP” in
succession, except that the flow for SOP’ and SOP’’ is skipped if USB PD support is not
available as described in the previous paragraph.

When not in any of the PDFU phases, a PDFU Initiator shall enter the PDFU Flow at periodic
intervals unless a previous Enumeration phase has determined that there is no PDFU
Responder for SOP, SOP’ and SOP’ as appropriate. The period is not specified, but is left to
system policy, possibly with user configurability. A period of one day may be ty pical.

4.1 PDFU Phases

4.1.1 Enumeration Phase

The PDFU Flow commences with both the PDFU Initiator and PDFU Responder entering the
Enumeration phase. The PDFU Initiator and PDFU Responder enter the Enumeration phase
on detecting a new connection after the Explicit Contract has been established, any
appropriate Data Role Swaps, Power Role Swaps and VCONN swaps have been performed and
after any appropriate Alternate Modes have been entered.

4.1.1.1 PDFU Initiator Enumeration Phase

Upon entering the Enumeration Phase, a PDFU Initiator shall attempt to enumerate a PDFU
Responder. A PDFU Initiator enumerates a PDFU Responder by sending a GET_FW_ID
Request to the PDFU Responder. If the PDFU Initiator does not receive a Response within
tPDFUResponseRcvd of sending the GET_FW_ID Request, it shall resend the GET_FW_ID
Request. If after resending the GET_FW_ID Request EnumerateResend times the PDFU
Initiator does not receive a response, it shall determine that there is no PDFU Responder
(note, this is separately determined for SOP, SOP’ and SOP”).

A PDFU Initiator exits the Enumeration Phase after either receiving a GET_FW_ID Response
or determining that there is no PDFU Responder:

If a GET_FW_ID Response is received and Silent Update is either not permitted or not used ,
the PDFU Initiator shall inform the user that firmware update is available to take place . If
the user allows the firmware update, then the PDFU Initiator shall continue to the
Acquisition Phase. If the user does not allow the firmware update, then the PDFU Initia tor
shall exit the PDFU Flow

Revision 1.0 - 32 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

If a GET_FW_ID Response is received and Silent Update is used, the PDFU Initiator shall
continue on to the Acquisition Phase.

Otherwise, the PDFU Initiator shall exit the PDFU Flow.

After entering the Enumeration Phase other than on a new connection, the PDFU Initiator
shall send a GET_FW_ID Request to the SOP PDFU Responder.

4.1.1.2 PDFU Responder Enumeration Phase

The PDFU Responder shall transit from the Enumeration Phase to the Reconfiguration Phase
on receipt of the PDFU_INITIATE Request. It shall respond to the PDFU_INITIATE Request
with a PDFU_INITIATE Response from within the Reconfiguration Phase (but within
tPDFUResponseSent).

The PDFU Responder shall exit the PDFU Flow on receipt of any USB PD message that is not
a PDFU Request prior to receipt of a GET_FW_ID Request in order to process the message
appropriately. Also, the PDFU Responder may exit the PDFU Flow prior to receipt of a
GET_FW_ID Request in order to perform non-PDFU activity (e.g. engage in power
negotiation). In both cases, the PDFU Responder shall re-enter the PDFU Flow starting at the
Enumeration Phase at the completion of the non-PDFU activity.

4.1.2 Acquisition Phase

Only the PDFU Initiator uses the Acquisition Phase.

4.1.2.1 PDFU Initiator Acquisition Phase

4.1.2.1.1 Firmware Image Retrieval

The means by which a PDFU Initiator retrieves a firmware image from a remote PDFU Depot
is outside the scope of this version of this specification. The means by which a PDFU
Initiator retrieves a firmware image from a local PDFU Depot is described below.

A PDFU Initiator may retrieve a relevant firmware image from local temporary storage, e.g. a
flash drive, either under control of a firmware update application, or automatically by
scanning the media.

Relevant images are those that have an exact match for the Vendor ID, Product ID and image
bank with the information retrieved by GET_FW_ID and for which the Firmware Version is
greater than that retrieved by GET_FW_ID when a numerical comparison is performed (see
below for details). In the event of more than one such image, the image with the latest
timestamp is selected.

After retrieving a firmware image from a PDFU Depot, the PDFU Initiator shall verify that the
firmware image is appropriate by validating the PDFU File Prefix as follows:

 Verify that the CRC over the firmware image file matches the dwCRC field.

 Verify that the ucPDFUSignature field is correct.

 Verify that the bcdPDFU field is equal to or lower than the PDFU Specification field
returned in the GET_FW_ID response.

 Verify that the idVendor field matches the VID returned in the GET FW_ID response .

 Verify that the idProduct field matches the PID returned in the GET_FW_ID response.

Revision 1.0 - 33 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

 Verify that the values in the wVersionDevice1-4 fields are greater than the values in
the FWVersion1-4 fields returned in the GET_FW_ID response, using the precedence
defined in Table 3-2 and in Section 5.3.1.

If validation of the PDFU File Prefix succeeds and a Silent Update is permissible and used,
the PDFU Initiator shall continue to the Reconfiguration Phase. Silent Updates shall not be
considered permissible unless one or more of the following conditions exist:

 The PDFU Responder advertises that it accepts Silent Updates.

 The user has approved Silent Updates via an implementation-specific mechanism
provided by the PDFU Initiator.

 The PDFU Initiator and PDFU Responder are from the same vendor.

Note: A firmware update can be disruptive to normal USB operation either during update or
at manifestation. The possibility of such disruption should be taken into account by system
policy in deciding whether or not to use a Silent Update.

If Silent Update is not allowed or is not used, then Silent Failure shall not be used. If Silent
Update is used, then it is a matter of system policy whether or not to use Silent Failure.

If validation of the PDFU File Prefix succeeds and a Silent Update is not permissible or not
used as a result of system policy, then the PDFU Initiator shall display a User Interface
inviting the user to continue with the firmware update. The User Interface shall also display
any warnings concerning loss of functionality during firmware update and/or prompts for
the user to take any necessary preparatory actions (such as ejection of removable media).
On confirmation from the user, the PDFU Initiator shall transit to the Reconfiguration Phase.
If the user declines to proceed with the firmware update, then the PDFU Initiator shall exit
the PDFU Flow.

If validation of the PDFU File Prefix fails:

 If the PDFU Initiator determines that a user has sufficient permissions, the PDFU
Initiator should display a User Interface providing an override mechanism allowing
the user to force a firmware update even though one or more verification checks
fails. The PDFU Initiator shall not perform an override unless the user has explicitly
requested it. The override mechanism may allow the PDFU Initiator to select a
different image in the Depot. For example, in the case of a local Depot, the PDFU
Initiator can display the names of other files with extension .pdfu. Mechanisms for
querying a remote Depot are not defined in this version of the specification. The
override mechanism shall include warnings that the result may cause loss of device
functionality. If the user overrides the check failures, then then the PDFU Initiator
shall transit to the Reconfiguration Phase.

 If the PDFU Initiator determines that a user does not have sufficient permissions,
the PDFU Initiator shall exit the Firmware Update Flow without displaying a UI
(typically this happens if there is no change in firmware version from that already
loaded).

4.1.3 Reconfiguration Phase

4.1.3.1 PDFU Initiator Reconfiguration Phase

Upon entering the Reconfiguration Phase, the PDFU Initiator shall transmit a
PDFU_INITIATE Request to the PDFU Responder. If the PDFU Initiator does not receive a
response within tPDFUResponseRcvd of sending the PDFU_INITIATE Request, it shall resend

Revision 1.0 - 34 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

the PDFU_INITIATE Request. If after resending the PDFU_INITIATE Request
ReconfigureResend times the PDFU Initiator does not receive a response, it shall exit the
PDFU Flow. If either Silent Update is being used but system policy prohibits Silent Failure or
Silent Update is not being used, the PDFU Initiator shall indicate an error to the user via the
User Interface prior to exiting the PDFU Flow.

If the PDFU Initiator receives a PDFU_INITIATE Response with the WaitTime set to zero,
then the PDFU Initiator shall perform any further necessary reconfiguration and then transit
to the Transfer Phase. A PDFU Initiator shall not send a PDFU_DATA Request until after it
transitions to the Transfer Phase.

If the PDFU Initiator receives a PDFU_INITIATE Response with a WaitTime greater than zero
but less than 255, then the PDFU Initiator shall wait at least the requested amount of time,
and then re-transmit the PDFU_INITIATE Request.

If the PDFU Initiator receives a PDFU_INITIATE Response with a WaitTime equal to 255, then
the PDFU Initiator shall not re-transmit the PDFU_INITIATE Request and shall exit the PDFU
Flow.

4.1.3.2 PDFU Responder Reconfiguration Phase

A PDFU Responder shall enter the Reconfiguration Phase after receipt of a PDFU_INITIATE
Request in the Enumeration Phase.

If a PDFU Responder is able to complete any necessary reconfiguration within
tPDFUResponseSent of receiving a PDFU_INTIATE Request, then it shall complete the
reconfiguration and transmit a PDFU_INITIATE Response with the WaitTime field set to 0.
The PDFU_INITIATE Response shall be sent within tPDFUResponseSent of receiving the
PDFU_INTIATE Request.

If the PDFU Responder is unable to perform all of the necessary reconfiguration within
tPDFUResponseSent of receiving a PDFU_INTIATE Request, then it shall transmit a
PDFU_INITIATE Response with a non-zero WaitTime indicating the amount of delay required
for it to complete its internal reconfiguration. The PDFU_INITIATE Response shall be sent
within tPDFUResponseSent of receiving the PDFU_INTIATE Request. The PDFU Responder
shall then await a further PDFU_INITIATE Request. If, the PDFU Responder does not receive
another PDFU_INITIATE Request within the WaitTime plus tPDFUNextRequestRcvd after
sending the PDFU_INITIATE Response, then the PDFU Responder shall resend the previous
PDFU_INITIATE Response a further ReconfigureResend times, waiting for the PDFU_INITIATE
Request after resending each PDFU_INITIATE Response. If the PDFU Responder does not
receive a PDFU_INITITATE Request after the final PDFU_INITIATE Response is sent, then the
PDFU Responder shall exit the PDFU Flow, then shall re-enter the PDFU Flow starting from
the Enumeration Phase.

After sending a PDFU_INITIATE Response with the WaitTime field set to 0, a PDFU
Responder shall wait for a PDFU_DATA Request. Upon receiving a PDFU_DATA Request, the
PDFU Responder shall transit to the Transfer Phase. If the PDFU Responder does not receive
a PDFU_DATA Request within tPDFUNextRequestRcvd of sending the PDFU_INITIATE
Response, then the PDFU Responder shall resend the previous PDFU_INITIATE Response a
further DataResend times, waiting for the initial PDFU_DATA Request after resending each
PDFU_INITIATE Response. If the PDFU Responder does not receive a PDFU_DATA Request
after the final PDFU_INITIATE Response is sent, then the PDFU Responder shall exit the
PDFU Flow, then shall re-enter the PDFU Flow starting from the Enumeration Phase .

Revision 1.0 - 35 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

4.1.4 Transfer Phase

In this phase, a firmware image is transferred from the PDFU Initiator to the PDFU
Responder via PDFU_DATA Requests. Firmware images are broken up into Data Blocks. Each
Data Block is 256 bytes in length unless it contains the end of a firmware image. A Data
Block carrying the end of a firmware image may be less than 256 bytes in length.

The PDFU Initiator starts a firmware image transfer by sending a PDFU_DATA Request that
contains a Data Block with the beginning of the firmware image. Upon receiving a
PDFU_DATA Request, a PDFU Responder performs flow control using the WaitTime and
NumDataNR fields in the PDFU_DATA Response. The PDFU Initiator continues the transfer
by sending subsequent PDFU_DATA Requests to the PDFU Responder abiding by the flow
control parameters in the last received PDFU_DATA Response. Firmware image transfer is
complete for the PDFU Initiator after it receives a PDFU_DATA Response for the PDFU_DATA
Request carrying the last Data Block of the firmware image. Firmware image transfer is
complete for the PDFU Responder after it sends a PDFU_DATA Response for the PDFU_DATA
Request carrying the last Data Block of the firmware image.

Note: The internal architecture for processing USB PD messages may have bandwidth
constraints, for example if the [Type-C Port Controller Interface] is used. The Responder
design should use the NumDataNR in the PDFU Data Response (indicating the number of
PDFU_DATA_NR Requests the PDFU Responder can receive before sending the next
PDFU_DATA Response).

Firmware image transfer may be “paused” midway and resumed at a later time. To pause a
firmware image transfer, a PDFU Initiator sends the PDFU Responder a PDFU_DATA_PAUSE
Request. A PDFU Initiator shall only send a PDFU_DATA_PAUSE Request when a firmware
image transfer is in progress (i.e. after the first Data Block of the firmware image is sent, but
before the last Data Block is sent).

A PDFU Responder that receives a PDFU_DATA_PAUSE Request shall respond with a
PDFU_DATA_PAUSE Response that either rejects (Status field = errREJECT_PAUSE) or accepts
(Status field = OK) the pause. A PDFU Responder that rejects a pause shall discard the
partially received firmware update and exit the PDFU flow, then shall re-enter the PDFU
Flow starting from the Enumeration Phase. A PDFU Responder that accepts a pause shall
disable any PDFU-related timeouts and shall remain paused in the Transfer Phase until one
of the following occurs:

 The PDFU Initiator resumes the firmware image transfer by sending a PDFU_DATA
Request that picks up where the transfer previously left off

 The PDFU Responder receives a PDFU_ABORT Request

 The PDFU Responder is disconnected from the PDFU Initiator

 The PDFU Responder undergoes a Hard Reset

If the PDFU Initiator does not receive a PDFU_DATA_PAUSE Response within
tPDFUResponseRcvd of sending the PDFU_DATA_PAUSE Request, it shall resend the
PDFU_DATA_PAUSE Request. If after resending the PDFU_DATA_PAUSE Request PauseResend
times the PDFU Initiator does not receive a response, it shall exit the PDFU Flow. If either
Silent Update is being used but system policy prohibits Silent Failure or Silent Update is not
being used, the PDFU Initiator shall indicate an error to the use r via the User Interface prior
to exiting the PDFU Flow.

Note that the rules and requirements in this specification prohibiting certain other activities
during firmware update still apply when the update is paused. For example, if a PDFU

Revision 1.0 - 36 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Initiator needs to change the Power Contract in the middle of a firmware update, it aborts
the current firmware update, renegotiates the Power Contract, then begins a new firmware
update starting from the Enumeration Phase.

The detailed requirements for a PDFU Initiator and PDFU Responder are described in detail
below.

4.1.4.1 PDFU Initiator Transfer Phase

Upon entering the Transfer Phase, the PDFU Initiator shall send a PDFU_DATA Request to
the PDFU Responder where:

 If the PDFU Initiator is starting a new firmware image transfe r, the PDFU_DATA
Request shall contain the first 256 bytes of the firmware image in the DataBlock field
(or the full firmware image if it is less than 256 bytes). The DataBlockIndex shall be
zero, to indicate that the PDFU_DATA Request carries the first block of data.

 If the firmware update is resuming from partway through a previous firmware image
transfer or if the PDFU Responder architecture contains areas that do not need
updating, the PDFU_DATA Request may contain a data block other than the first dat a
block. When the PDFU Responder requests Data Blocks out of order, the transfer of
the image is considered complete when the PDFU Initiator transmits the final Data
Block of the image.

Table 4-1 describes how a PDFU Initiator shall behave after receiving a PDFU_DATA
Response as based on the fields in the received Response.

Revision 1.0 - 37 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Table 4-1: PDFU Initiator Response

PDFU_DATA Response Payload Field
PDFU Initiator Behavior

Status WaitTime NumDataNR DataBlockNum

OK
less than
255

greater
than zero

N

The PDFU Initiator shall wait WaitTime
(which may be zero) and then may send
up to NumDataNR PDFU_DATA_NR
Requests without waiting for a
PDFU_DATA Response after each one. It
shall then send a PDFU_DATA Request
Message. It shall always send the final
Data Block of the firmware image as a
PDFU_DATA Request and not as a
PDFU_DATA_NR Request. The PDFU
Initiator shall send PDFU_DATA_NR
Requests in order of increasing
DataBlockIndex, starting from Data Block
N in the image indicated in the
DataBlockNum field in the Response.

OK
less than
255

zero N

The PDFU Initiator shall wait WaitTime
(which may be zero) before sending the
next PDFU_DATA Request. The next
PDFU_DATA Request shall continue the
firmware update from Data Block N in the
image indicated in the DataBlockNum field
in the Response.

OK 255 X X

If the PDFU Initiator has further Data
Blocks to be sent i.e. it has not yet
transmitted the final Data Block of the
image, the PDFU Initiator shall send a
PDFU_ABORT to the PDFU Responder and
exit the PDFU Flow. If either Silent Update
is being used but system policy prohibits
Silent Failure or Silent Update is not being
used, the PDFU Initiator shall indicate an
error to the user via the User Interface
prior to exiting the PDFU Flow.

If the PDFU Initiator has no further Data
Blocks to be sent i.e. it has just
transmitted the final Data Block of the
image, then the PDFU Initiator shall
transit to the Validation Phase.

error
(i.e.
non-
zero)

X X X

PDFU Initiator shall exit the PDFU Flow. If
either Silent Update is being used but
system policy prohibits Silent Failure or
Silent Update is not being used, the PDFU
Initiator shall indicate an error to the user
via the User Interface prior to exiting the
PDFU Flow.

X = don’t care

Revision 1.0 - 38 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

If a PDFU Initiator receives a PDFU_DATA Response with NumDataNR set to zero, the PDFU
Initiator shall not send any more PDFU_DATA_NR Responses to that PDFU Responder until
after it receives a subsequent PDFU_DATA Response with a non-zero value for NumDataNR.

A PDFU Initiator shall always use a PDFU_DATA Request to carry the final Data Block of the
firmware image. A PDFU Initiator shall end a transfer by either sending a PDFU_DATA
Request with zero payload or sending a PDFU_DATA Request with less than 256 bytes of
payload.

After receipt of a PDFU_DATA Response a PDFU Initiator shall send the following
PDFU_DATA, PDFU_DATA_NR or PDFU_DATA_PAUSE Request within the specified WaitTime
plus tPDFUNextRequestSent.

After sending a PDFU_DATA_NR Request, a PDFU Initiator shall send the following
PDFU_DATA, PDFU_DATA_NR or PDFU_DATA_PAUSE Request within tPDFUNextRequestSent.

If at any point the PDFU Initiator does not receive a response within tPDFUResponseRcvd
after sending the PDFU_DATA Request, it shall resend the PDFU_DATA Request. If after
resending the PDFU_DATA Request DataResend times the PDFU Initiator does not receive a
PDFU_DATA Response, it shall exit the PDFU Flow. If either Silent Update is being used but
system policy prohibits Silent Failure or Silent Update is not being used, the PDFU Initiator
shall indicate an error to the user via the User Interface prior to exiting the PDFU Flow.

The actions performed by the PDFU Initiator during the Transfer Phase are illustrated in
Figure 4-1.

Revision 1.0 - 39 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Figure 4-1 PDFU Initiator Transfer Phase State Diagram

Revision 1.0 - 40 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

4.1.4.2 PDFU Responder Transfer Phase

A PDFU Responder shall respond to a PDFU_DATA or PDFU_DATA_PAUSE Request with a
PDFU_DATA or PDFU_DATA_PAUSE Response respectively, within tPDFUResponseSent of
receiving the Request. The PDFU Responder shall then wait for a subsequent PDFU_DATA,
PDFU_DATA_NR or PDFU_DATA_PAUSE Request.

If the PDFU Responder is expecting more Data Blocks and the PDFU Responder does not
receive the next PDFU_DATA, PDFU_DATA_NR, or PDFU_DATA_PAUSE Request within
tPDFUNextRequestRcvd after sending a PDFU_DATA Response (but not after sending a
PDFU_DATA_PAUSE Response), then the PDFU Responder shall resend the
previous PDFU_DATA Response. If after resending the PDFU_DATA Response DataResend
times the PDFU Responder does not receive the next PDFU_DATA, PDFU_DATA_NR or
PDFU_DATA_PAUSE Request, the PDFU Responder shall exit the PDFU Flow, then shall re-
enter the PDFU Flow starting from the Enumeration Phase.

The PDFU Responder shall respond to all PDFU_DATA and PDFU_DATA_PAUSE Requests
received. The PDFU Responder shall not respond to any PDFU_DATA_NR Requests.

Table 4-2 describes how a PDFU Responder shall populate the fields of a PDFU_DATA
Response.

Revision 1.0 - 41 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Table 4-2: PDFU Responder PDFU_DATA Response Field Values

Condition PDFU_DATA Response Payload Field

Status WaitTime NumDataNR DataBlockNum

Data from PDFU_DATA Request was
successfully received and PDFU
Responder is ready to receive the
next (and only the next) Data Block
without delay.

OK 0 0
next Data
Block to send

Data from PDFU_DATA Request was
successfully received and PDFU
Responder is ready to receive the
next (and only the next) Data Block
after the specified delay.

OK
delay in ms
between 1
and 254

0
next Data
Block to send

Data from PDFU_DATA Request was
successfully received and PDFU
Responder is ready to receive
multiple Data Blocks without delay.

OK 0

(number of
Data Blocks
the PDFU
Responder is
able to receive
before sending
the next
PDFU_DATA
Response)
minus 1

next Data
Block to send

Data from PDFU_DATA Request was
successfully received and PDFU
Responder is ready to receive
multiple Data Blocks after the
specified delay.

OK
delay in ms
between 1
and 254

(number of
Data Blocks
the PDFU
Responder is
able to receive
before sending
the next
PDFU_DATA
Response)
minus 1

next Data
Block to send

The PDFU Responder receives a
PDFU_DATA Request with more data
in the Data Block than it has room for
or is expecting

errAD
DRESS

255 0 0

The PDFU Responder receives a
PDFU_DATA Request with a zero
length Data Block but detects that the
firmware image is not complete

errNO
TDONE

255 0 0

The PDFU Responder encounters an
internal error, or has other reason for
aborting the firmware update

error
value
from
Table
5-29

255 0 0

Revision 1.0 - 42 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

The PDFU Responder shall transit to the Validation Phase after either:

 Sending a PDFU_DATA Response in response to receiving the final block of data; or

 Sending a PDFU_DATA Response in response to a PDFU_DATA Request with a Data
Block of zero size that it does not error (with WaitTime = 255 in the Response).

The PDFU Responder shall ensure that areas of ROM that are not being updated are not
overwritten. Such areas can include fixed areas of EEPROM (such as those used to store the
BootROM and/or a Fixed Application Image) or areas used for other copies of the firmware
image. Accidental overwriting can occur, for example, in the event of too much data being
received or a Data Block index being out of range for the area designated to receive the
image. The PDFU Responder may skip downloading such areas by not requesting the
corresponding Data Blocks.

Note that PDFU_DATA and PDFU_DATA_NR Requests are not retried in the event of GoodCRC
not being received. It is therefore necessary for the PDFU Responder to check the Data Block
index in every PDFU_DATA or PDFU_DATA_NR Request received.

The actions performed by the PDFU Responder during the Transfer Phase are illustrated in
Figure 4-2.

Revision 1.0 - 43 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Figure 4-2 PDFU Responder Transfer Phase State Diagram

Revision 1.0 - 44 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

4.1.5 Validation Phase

4.1.5.1 PDFU Initiator Validation Phase

Upon entering the Validation Phase, the PDFU Initiator shall transmit a PDFU_VALIDATE
Request within tPDFUNextRequestSent of receiving the previous PDFU_DATA Response and
await the response.

If the PDFU Initiator does not receive a response within tPDFUResponseRcvd of sending the
PDFU_VALIDATE Request, it shall resend the PDFU_VALIDATE Request. A PDFU Initiator
shall not resend a PDFU_VALIDATE Request more than ValidateResend times. If after
resending the PDFU_VALIDATE Request ValidateResend times the PDFU Initiator does not
receive a response, it shall exit the PDFU Flow. If either Silent Update is being used but
system policy prohibits Silent Failure or Silent Update is not being used, the PDFU Initiator
shall indicate an error to the user via the User Interface prior to exiting the PDFU Flow.

If the PDFU Initiator receives a PDFU_VALIDATE Response with a WaitTime greater than
zero but less than 255, then the PDFU Initiator shall wait the requested amount of time, and
then re-transmit the PDFU_VALIDATE Request.

On reception of a PDFU_VALIDATE Response indicating that validation was successful, the
PDFU Initiator shall transit to the Manifestation Phase.

On reception of a PDFU_VALIDATE Response indicating that validation failed, the PDFU
Initiator shall exit the PDFU Flow. If either Silent Update is being used but system policy
prohibits Silent Failure or Silent Update is not being used, the PDFU Initiator shall indicate
an error to the user via the User Interface prior to exiting the PDFU Flow.

4.1.5.2 PDFU Responder Validation Phase

After receiving a PDFU_VALIDATE Request, a PDFU Responder shall verify that the received
firmware image is correctly signed. It may also perform other vendor-dependent validation
and image management.

If the PDFU Responder does not receive a PDFU_VALIDATE Request within
tPDFUNextRequestRcvd of sending the last PDFU_DATA Response, then the PDFU Responder
shall resend the last PDFU_DATA Response sent prior to transitioning to the Validation
Phase. If after resending the PDFU_DATA Response ValidateResend times the PDFU
Responder does not receive a PDFU_VALIDATE Request, the PDFU Responder shall exit the
PDFU Flow, then shall re-enter the PDFU Flow starting from the Enumeration Phase .

If the PDFU Responder is unable to complete validation and image management within
tPDFUResponseSent of receiving the PDFU_VALIDATE Request, then it shall transmit a PDFU_
VALIDATE Response indicating the amount of delay required for it to complete its internal
reconfiguration. The PDFU Validate Response shall be sent within tPDFUResponseSent of
receiving the PDFU_VALIDATE Request. The PDFU Responder shall then await a further
PDFU_ VALIDATE Request. If the PDFU Responder does not receive a subsequent
PDFU_VALIDATE Request after WaitTime plus tPDFUNextRequestRcvd, then the PDFU
Responder shall resend the PFDU_VALIDATE Response. If after resending the
PDFU_VALIDATE Response ValidateResend times the PDFU Responder does not receive a
PDFU_VALIDATE Request, the PDFU Responder shall exit the PDFU Flow, then shall re -enter
the PDFU Flow starting from the Enumeration Phase.

If the PDFU Responder is able to complete validation and image management within
tPDFUResponseSent of receiving the PDFU_VALIDATE Request, then it shall complete the
validation and transmit a PDFU_ VALIDATE Response indicating that no further delay is
needed and providing the validation status. The PDFU_VALIDATE Response shall be sent
within tPDFUResponseSent of receiving the PDFU_VALIDATE Request.

Revision 1.0 - 45 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Firmware image management is normally carried out after the image has been validated, and
can include copying the image from one location to another, or updating a pointer to the new
image bank, etc.

If validation is successful, the PDFU Responder shall transit to the Manifestation Phase after
transmitting the PDFU_VALIDATE Response.

If validation or firmware image management fails, then the PDFU Responder shall exit the
PDFU Flow, then shall re-enter the PDFU Flow starting from the Enumeration Phase .

4.1.6 Manifestation Phase

This phase follows immediately after successful Validation. There is no separate Request to
start or synchronize the actions in this Phase. On entry to the Manifestation Phase, the new
firmware image is in place and ready to be used.

4.1.6.1 PDFU Initiator Manifestation Phase

The PDFU Initiator shall initiate a Hard Reset or Cable Reset as appropriate if requested by
the PDFU Responder in its GET_FW_ID Response. The PDFU Initiator may also initiate Hard
Reset if necessary for internal purposes.

Note: Power provision (either Voltage, Current or both) is sometimes reduced as a result of
a Hard Reset.

The effect of Hard Reset is to reset the Port State machine. This has the by-product of an exit
from the PDFU Flow and is treated as a normal exit from the PDFU Flow.

If the PDFU Initiator does not issue a Hard Reset, then it shall then exit the PDFU Flow (after
issuing the Cable Reset if necessary).

If Silent Update is not being used (see Section 4.1.2.1.1), the PDFU Initiator shall inform the
user of the status of the firmware update before exiting the Manifestation Phase.

4.1.6.2 PDFU Responder Manifestation Phase

If the PDFU Responder indicated that Hard Reset or Cable Reset is necessary in its
GET_FW_ID Response, then it shall wait for the PDFU Initiator to generate the Reset. The
effect of the Reset is to reset the Port State machine and to re-enter the Bootloader. This has
the by-product of an exit from the PDFU Flow and is treated as a normal exit from the PDFU
Flow.

Note: Power provision (either Voltage, Current or both) is sometimes reduced as a result of
a Hard Reset.

If the PDFU Responder indicated that Hard Reset or Cable Reset was not necessary, then the
PDFU Responder shall exit the PDFU Flow (transferring control back to the Application) ,
then shall re-enter the PDFU Flow starting from the Enumeration Phase .

A PDFU Responder shall not update its firmware version information in response to a
GET_FW_ID Request until after it has exited the PDFU Flow that resulted in a successful
update.

4.2 Mitigation to USB Data loss and Power Change

PDFU Initiators and PDFU Responders should take precautions to avoid USB Data loss during
firmware update. Such precautions may include:

 Requesting un-mounting of any removable storage where applicable

Revision 1.0 - 46 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

It should be noted that a Hard Reset results in USB re-enumeration and interrupts any USB
traffic taking place at the time.

PDFU Initiators and PDFU Responders should also take precaution against power
fluctuations during firmware update. Such precautions may include:

 Reducing power consumed or provided prior to firmware update

4.3 Termination

4.3.1 By PDFU Initiator

A PDFU Initiator may terminate a PDFU Flow by sending a PDFU_ABORT Request at any time,
and then exiting the PDFU Flow. This is not shown in the detailed description of the Phases
but should be assumed. If a PDFU Initiator is powered off during the PDFU Flow (e.g. when
shut down by a user), it is recommended that the PDFU Initiator send a PDFU_ABORT
Request before powering off.

A PDFU Responder shall exit the PDFU Flow on receipt of a PDFU_ABORT Request, then shall
re-enter the PDFU Flow starting from the Enumeration Phase. It shall not issue a PDFU
message in response to a PDFU_ABORT.

If the PDFU Responder receives a PDFU_ABORT Request while it is executing from the
Bootloader, then it should verify the integrity of the Application image before transferring
control back to the Application, remaining in the Bootloader if there is no valid Application
image.

4.3.2 By PDFU Responder

A PDFU Responder may terminate a PDFU Flow during the Transfer Phase by sending an
appropriate error in the Status field of a PDFU_DATA Response. WaitTime and NumDataNR
shall be zero.

If the PDFU Initiator receives a PDFU_DATA Response with a non-zero value in the Status
field, it shall exit the PDFU flow. If either Silent Update is being used but system policy
prohibits Silent Failure or Silent Update is not being used, the PDFU Initiator shall indicate
an error to the user via the User Interface prior to exiting the PDFU Flow.

Revision 1.0 - 47 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

5 Firmware Update Messages

Firmware Update Messages are used to convey information related to firmware update. A
Firmware Update Message consists of a 2-byte Message Header followed by a variable length
(including zero) payload. The format for a Message Header is defined in Section 5.1.

There are two types of Firmware Update Messages:

 Requests

 Responses

Requests are defined in Section 5.2. Responses are defined in Section 5.3.

Firmware Update Messages are transmitted between a PDFU Initiator and PDFU Responder
using the transfer mechanisms defined in USB PD where a Request is sent in the Firmware
Update Request Data Block (FRQDB) of a Firmware Update Request Extended Message and a
Firmware Update Response is sent in the Firmware Update Response Data Block (FRPDB) of
a Firmware Update Response Extended Message.

Multi-byte fields that contain numerical values are formatted at consecutive offsets, and
shall be formatted with the LSB at the lower offset and the MSB at the higher offset. Fields
that contain firmware data bytes shall be formatted with the bytes in the same order as they
are in the file containing the firmware image.

5.1 Header

All Firmware Update Messages shall start with the 2-byte header defined in Table 5-1.

Table 5-1: Firmware Update Message Header

Offset Field Size Reference

0 ProtocolVersion 1 Section 5.1.1

1 MessageType 1 Section 5.1.2

5.1.1 Protocol Version

This field identifies which version of the USB PD Firmware Update Specification is being
used. Table 5-2 shows the valid values for this field. A Product shall not use a Protocol
Version value corresponding to a specification revision that it does not support.

Table 5-2: USB PD Firmware Update Protocol Version

Name Value Meaning

Reserved 00h Reserved

V1.0 01h USB PD Firmware Update Protocol Version 1.0

Reserved 02h-ffh Reserved

5.1.2 Message Type

This field identifies Firmware Update Message type and shall contain one of the Firmware
Update Message Types listed in Table 5-3 (Requests) or Table 5-16 (Responses).

Revision 1.0 - 48 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

5.2 Requests

Requests are used to send a command to the recipient and/or retrieve data. Request types
are listed in Table 5-3.

Table 5-3: Firmware Update Message Request Types

Value Description

00h – 7Fh Only used for Responses

80h Reserved

81h GET_FW_ID

82h PDFU_INITIATE

83h PDFU_DATA

84h PDFU_DATA_NR

85h PDFU_VALIDATE

86h PDFU_ABORT

87h PDFU_DATA_PAUSE

88h - FEh Reserved

FFh VENDOR_SPECIFIC

5.2.1 GET_FW_ID

This Request is used to retrieve information about a PDFU Responder and determine if a
firmware update is necessary. The header for a GET_FW_ID Request is defined in Table 5-4.
A GET_FW_ID Request has no payload.

Table 5-4: GET_FW_ID Request Header

Offset Field Size Value

0 ProtocolVersion 1 V1.0

1 MessageType 1 GET_FW_ID

5.2.2 PDFU_INITIATE

This Request is used to initiate firmware update. The header for a PDFU_INITIATE Request
is defined in Table 5-5. The Payload for a PDFU_INITIATE Request is defined in Table 5-6.

Table 5-5: PDFU_INITIATE Request Header

Offset Field Size Value

0 ProtocolVersion 1 V1.0

1 MessageType 1 PDFU_INITIATE

Revision 1.0 - 49 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Table 5-6: PDFU_INITIATE Request Payload

Offset Field Size Value

2 FWVersion1 2 Most significant component of the firmware version of the update

4 FWVersion2 2 Second-most significant component of the f irmware version of

update

6 FWVersion3 2 Third-most significant component of the firmware version of

update

8 FWVersion4 2 Least significant component of the firmware version of update

5.2.3 PDFU_DATA

This Request is used to transfer a data block from a firmware image to a PDFU Responder
where a response is required. The header for a PDFU_DATA Request is defined in Table 5-7.
The Payload for a PDFU_DATA Request is defined in Table 5-8.

Table 5-7: PDFU_DATA Request Header

Offset Field Size Value

0 ProtocolVersion 1 V1.0

1 MessageType 1 PDFU_DATA

Table 5-8: PDFU_DATA Request Payload

Offset Field Size Value

2 DataBlockIndex 2 The index into the firmware image of the Data Block being

transmitted where each Data Block contains 256 bytes

DataBlockIndex shall be 0 for the Request carrying the first Data

Block of a firmware image and shall increment by 1 for each

subsequent Data Block of the firmware image.

4 DataBlock Varies Data Block containing a section of the firmware image. A data

block shall be 256 bytes in length unless it is the last data block

in a firmware update transfer. A data block that is the last data

block in a firmware update transfer may be less than 256 bytes

in length, but shall not exceed 256 bytes.

5.2.4 PDFU_DATA_NR

This Request is used to transfer a data block from a firmware image to a PDFU Responder
where a response is not required. The header for a PDFU_DATA_NR Request is defined in
Table 5-7. The Payload for a PDFU_DATA_NR Request is defined in Table 5-8.

Table 5-9: PDFU_DATA_NR Request Header

Offset Field Size Value

0 ProtocolVersion 1 V1.0

1 MessageType 1 PDFU_DATA_NR

Revision 1.0 - 50 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Table 5-10: PDFU_DATA_NR Request Payload

Offset Field Size Value

2 DataBlockIndex 2 The index into the firmware image of the Data Block being

transmitted where each Data Block contains 256 bytes.

DataBlockIndex shall increment by 1 for each subsequent Data

Block of the firmware image.

4 DataBlock Varies Data Block containing a section of the firmware image. The data

block shall be 256 bytes in length.

5.2.5 PDFU_VALIDATE

This Request is used to request validation of a firmware image. The header for a
PDFU_VALIDATE Request is defined in Table 5-7. A PDFU_VALIDATE Request has no
payload.

Table 5-11: PDFU_VALIDATE Request Header

Offset Field Size Value

0 ProtocolVersion 1 V1.0

1 MessageType 1 PDFU_VALIDATE

5.2.6 PDFU_ABORT

This Request is used to end firmware image update prematurely. The header for a
PDFU_ABORT Request is defined in Table 5-12. A PDFU_ABORT Request has no payload.

Table 5-12: PDFU_ABORT Request Header

Offset Field Size Value

0 ProtocolVersion 1 V1.0

1 MessageType 1 PDFU_ABORT

5.2.7 PDFU_DATA_PAUSE

This Request is used to pause a firmware image update in the Transfer Phase before the
firmware image transfer is complete. The header for a PDFU_DATA_PAUSE Request is
defined in Table 5-12. A PDFU_DATA_PAUSE Request has no payload.

Table 5-13: PDFU_DATA_PAUSE Request Header

Offset Field Size Value

0 ProtocolVersion 1 V1.0

1 MessageType 1 PDFU_DATA_PAUSE

5.2.8 VENDOR_SPECIFIC

This Request is for vendor-specific use. The header for a VENDOR_SPECIFIC Request is
defined in Table 5-14. The payload for a VENDOR_SPECIFIC Request is defined by the vendor
except that the first 2 bytes shall always contain the VID of the vendor defining the rest of
the payload fields.

Revision 1.0 - 51 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Table 5-14: VENDOR_SPECIFIC Request Header

Offset Field Size Value

0 ProtocolVersion 1 V1.0

1 MessageType 1 VENDOR_SPECIFIC

Table 5-15: VENDOR_SPECIFIC Request Payload

Offset Field Size Value

2 VID 2 VID allocated by the USB-IF

4 Vendor Defined Varies up

to 256

Vendor defined

5.3 Responses

Responses are only sent in response to a Request. Response types are listed in Table 5-16.

Table 5-16: Message Response Types

Value Description

00h Reserved

01h GET_FW_ID

02h PDFU_INITIATE

03h PDFU_DATA

04h Reserved

05h PDFU_VALIDATE

O6h Reserved

07h PDFU_DATA_PAUSE

08h-7Eh Reserved

7Fh VENDOR_SPECIFIC

80h – FFh Only used by Requests

5.3.1 GET_FW_ID

This Response is used to respond to a GET_FW_ID Request. The header for a GET_FW_ID
Response is defined in Table 5-17. The Payload for a GET_FW_ID Response is defined in
Table 5-18.

Revision 1.0 - 52 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Table 5-17: GET_FW_ID Response Header

Offset Field Size Value

0 ProtocolVersion 1 V1.0

1 MessageType 1 GET_FW_ID

Table 5-18: GET_FW_ID Response Payload

Offset Field Size Value

2 Status 1 See Table 5-29

3 VID 2 USB-IF assigned Vendor ID

5 PID 2 USB-IF assigned Product ID

7 HWVersion 1 Hardware Version

Bits Description

3:0 Hardware Minor Version

7:4 Hardware Major Version

8 SiVersion 1 Silicon Version

Bits Description

3:0 Reserved

7:4 Silicon Base Version

9 FWVersion1 2 Most significant component of the firmware version

11 FWVersion2 2 Second-most significant component of the firmware version

13 FWVersion3 2 Third-most significant component of the firmware version

15 FWVersion4 2 Least significant component of the firmware version

17 ImageBank 1 Image bank for which firmware is requested

18 Flags1 1

Bit Description

0 Set to 1 to indicate support for PDFU via

USB PD Firmware Update flow. Otherwise

shall be set to 0.

1 Set to 1 to indicate support for DFU via USB
DFU. Otherwise shall be set to 0.

2 Set to 1 if firmware is not updatable.

Otherwise shall be set to 0.

3 Set to 1 if PDFU Responder allows Silent

Updates. Otherwise shall be set to 0.

7:4 Reserved

19 Flags2 1

Bit Description

0 Set to 1 if PDFU Responder is fully

functional during firmware update. Otherwise

shall be set to 0.

1 Set to 1 if unplug during firmware update is

safe. Otherwise, shall be set to 0.

7:2 Reserved

Revision 1.0 - 53 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Offset Field Size Value

20 Flags3 1

Bit Description

0 Set to 1 if Hard Reset required to complete

firmware update. Otherwise shall be set to 0.

1 Set to 1 if USB functionality is available

during firmware update. Otherwise shall be

set to 0.

2 Set to 1 if Alternate Modes are available

during firmware update. Otherwise shall be

set to 0 if Alternate Modes are not available

during firmware update or are not supported.

3 Set to 1 if PDFU Responder has power

limitations during firmware update. Otherwise

shall be set to 0.

4 Set to 1 if PDFU Responder needs more

power than is provided in the current Power

Contract in order to support firmware update.

Otherwise shall be set to 0.

If this bit is set to 1, the PDFU Initiator

(Power Source) shall either take suitable

action to provide new power to the PDFU

Responder (Power Sink) (e.g. by issuing

Source Capabilities or requesting the user to

connect external power to the PDFU

Responder), or abandon the Firmware

Update.

7:5 Reserved

21 Flags4 1

Bit Description

0 Set to 1 if user must un-mount storage on

PDFU Responder before starting firmware

update. Otherwise shall be set to 0.

1 Set to 1 if user must unplug/replug cable to

complete firmware update. Otherwise shall

be set to 0.

2 Set to 1 if user must swap cable ends during

firmware update. Otherwise shall be set to 0.

3 Set to 1 if power cycle is required to

complete firmware update. Otherwise shall

be set to 0.

7:4 Reserved

The use of the PID, HWVersion, SiVersion, and FWVersion1-4 fields is specified by the vendor
with the USB-IF assigned Vendor ID given in the VID field. Later versions in the HWVersion
and SiVersion shall always be arithmetically greater than earlier versions. A later version for
FWVersion1 shall always be arithmetically greater than earlier versions. A later version for
FWVersion2 for a specific FWVersion1 shall always be arithmetically greater than earlier
versions. A later version for FWVersion3 for a specific FWVersion1 and FWVersion2 shall
always be arithmetically greater than earlier versions. A later version for FWVersion4 for a

Revision 1.0 - 54 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

specific FWVersion1, FWVersion2 and FWVersion3 shall always be arithmetically greater than
earlier versions.

5.3.2 PDFU_INITIATE

This Response is used to respond to a PDFU_INITIATE Request. The header for a
PDFU_INITIATE Response is defined in Table 5-19. The payload for a PDFU_INITIATE
Response is defined in Table 5-20.

Table 5-19: PDFU_INITIATE Response Header

Offset Field Size Value

0 ProtocolVersion 1 V1.0

1 MessageType 1 PDFU_INITIATE

Table 5-20: PDFU_INITIATE Response Payload

Offset Field Size Value

2 Status 1 See Table 5-29

3 WaitTime 1 Carries a non-zero value when the PDFU Responder is not ready

for a firmware update that indicates the time in units of 10ms (e.g. a

value of 3 is equal to 30ms) that a PDFU Initiator shall wait before

resending a PDFU_INITIATE Request.

A value of 0 indicates that the PDFU Responder is ready to initiate

firmware update. A value of 255 indicates that the PDFU Responder

is unable to initiate firmware update.

4 MaxImageSize 3

Bit Description

19:0 Maximum firmware image length in bytes that

PDFU Responder can receive.

23:20 Reserved. Shall be set to 0.

5.3.3 PDFU_DATA

This Response is used to respond to a PDFU_DATA Request. The header for a PDFU_DATA
Response is defined in Table 5-21. The payload for a PDFU_DATA Response is defined in
Table 5-22.

Table 5-21: PDFU_DATA Response Header

Offset Field Size Value

0 ProtocolVersion 1 V1.0

1 MessageType 1 PDFU_DATA

Revision 1.0 - 55 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Table 5-22: PDFU_DATA Response Payload

Offset Field Size Value

2 Status 1 See Table 5-29

3 WaitTime 1 0: Indicates that the PDFU Responder is ready to receive more

data.

0 < WaitTime < 255: Indicates that the PDFU Responder is not

ready to receive additional data. The value indicates the time in

units of 1ms that a PDFU Initiator shall wait before sending data.

255: Indicates that the PDFU Responder is unable to receive any

more data.

4 NumDataNR 1 Number of PDFU_DATA_NR Requests the PDFU Responder can

receive before sending the next PDFU_DATA Response. Zero

indicates that the PDFU Responder cannot receive any

PDFU_DATA_NR Requests.

Shall be zero if WaitTime is non-zero.

5 DataBlockNum 2 The Data Block Number of the next PDFU_DATA or

PDFU_DATA_NR Request that the PDFU Initiator is to send.

Shall be set to zero if WaitTime is 255.

Note: this may not be the next Data Block to the one last sent

5.3.4 PDFU_VALIDATE

This Response is used to respond to a PDFU_VALIDATE Request. The header for a PDFU_
VALIDATE Response is defined in Table 5-23. The payload for a PDFU_ VALIDATE Response
is defined in Table 5-24.

Table 5-23: PDFU_ VALIDATE Response Header

Offset Field Size Value

0 ProtocolVersion 1 V1.0

1 MessageType 1 PDFU_VALIDATE

Revision 1.0 - 56 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Table 5-24: PDFU_VALIDATE Response Payload

Offset Field Size Value

2 Status 1 See Table 5-29

3 WaitTime 1 0: Indicates that the PDFU Responder was able to validate.

0 < WaitTime < 255: Indicates that the PDFU Responder is able

to complete validation. The value indicates the time in units of

1ms that a PDFU Initiator shall wait before resending a

PDFU_VALIDATE Request.

255: Indicates that the PDFU Responder is unable to validate

and that validation is not to be retried.

4 Flags 1 This field shall be ignored if WaitTime is not 0.

Bit Description

0 Set to 1 if validation was successful.

Otherwise, shall be set to 0.

7:1 Reserved. Shall be set to 0.

5.3.5 PDFU_DATA_PAUSE

This Response is used to respond to a PDFU_DATA_PAUSE Request. The header for a
PDFU_DATA_PAUSE Response is defined in Table 5-27. The payload for PDFU_DATA_PAUSE
Response is vendor defined.

Table 5-25: PDFU_DATA_PAUSE Response Header

Offset Field Size Description

0 ProtocolVersion 1 V1.0

1 MessageType 1 PDFU_DATA_PAUSE

Table 5-26: PDFU_DATA_PAUSE Response Payload

Offset Field Size Value

2 Status 1 See Table 5-29

5.3.6 VENDOR_SPECIFIC

This Response is used to respond to a VENDOR_SPECIFIC Request. The header for a
VENDOR_SPECIFIC Response is defined in Table 5-27. The payload for VENDOR_SPECIFIC
Response is vendor defined.

Table 5-27: VENDOR_SPECIFIC Response Header

Offset Field Size Description

0 ProtocolVersion 1 V1.0

1 MessageType 1 VENDOR_SPECIFIC

Revision 1.0 - 57 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Table 5-28: VENDOR_SPECIFIC Response Payload

Offset Field Size Value

2 Status 1 See Table 5-29

3 VID 2 VID allocated by the USB-IF

5 Vendor defined Varies up

to 255

Vendor defined

Revision 1.0 - 58 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

5.4 Response Status

The PDFU Responder shall indicate whether a Request was successfully completed or
whether an error was encountered in the Status field of the corresponding Response, using
one of the values specified in Table 5-29.

Note: the errors with values <80h are intended to align with corresponding errors in USB
DFU.

Table 5-29: Status Information during Firmware Update

Status Value Comment

OK 00h Request completed successfully or delayed

errTarget 01h FW not targeted for this device

errFile 02h Fails vendor-specific verification test

errWrite 03h Unable to write memory

errERASE 04h Memory erase function failed

errCHECK_ERASED 05h Memory erase check failed

errPROG 06h Program memory function failed

errVERIFY 07h Program memory failed verification

errADDRESS 08h Received address is out of range

errNOTDONE 09h Received PDFU_DATA Request with a zero length Data Block, but

the PDFU Responder expects more data

errFIRMWARE 0Ah Device’s firmware is corrupt. It cannot return to normal

operations.

Reserved 0Bh Reserved

Reserved 0Ch Reserved

errPOR 0Dh Unexpected power on reset

errUNKNOWN 0Eh Something went wrong

Reserved 0Fh –

7Fh

Reserved

errUNEXPECTED_HARD_RESET 80h Used when firmware update starts after a hard reset

(enumeration, etc.) that occurred in the middle of firmware update

errUNEXPECTED_SOFT_RESET 81h Used when firmware update starts after soft reset (new power

contract, etc.) that occurred in the middle of firmware update

errUNEXPECTED_REQUEST 82h PDFU Responder received a request that is not appropriate for the

current Phase

errREJECT_PAUSE 83h PDFU Responder is unable or unwilling to pause a firmware image

transfer

Reserved 84h –

FFh

Reserved

5.5 Retries

USB PD Messages, including PDFU Firmware Update messages, are not retried in various
circumstances when there is a Message transmission failure.

The following summarizes the rules related to retries specified in USB PD:

 Cable Plugs do not retry Messages

Revision 1.0 - 59 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

 Extended Messages of Data Size > MaxExtendedMsgLegacyLen that are not Chunked
(Chunked flag set to zero) are not retried

 Extended Messages of Data Size ≤ MaxExtendedMsgLegacyLen (Chunked flag set to
zero or one) are retried

 Extended Messages of Data Size > MaxExtendedMsgLegacyLen that are Chunked
(Chunked flag set to one) individual Chunks are retried

The rules for resending Requests and Responses and the associated timeouts in this
specification have been designed to provide an equivalent level of robustness to retries in
USB PD.

5.6 Timing and Timeouts

The PDFU message timing and timeouts depends on whether chunking is used or not. If both
the PDFU Initiator and PDFU Responder support unchunked Extended Messages, then
chunking is not used (the Chunked bit in the message is set to 0). If chunking is used (the
Chunked bit in the message is set to 1) then the message is transmitted in one or more
chunks.

Figure 5-1 illustrates where timeouts are applied for PDFU Messages that comprise a single
chunk. This figure applies to PDFU Messages with Data Size ≤ MaxExtendedMsgLegacyLen
bytes, regardless of whether chunking is used or not. It also applies when c hunking is not
used to PDFU Messages with Data Size > MaxExtendedMsgLegacyLen bytes.

Figure 5-1 PDFU Retries for Single Chunk Messages

Revision 1.0 - 60 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Figure 5-2 illustrates where timeouts are applied for PDFU Messages with Data Size >
MaxExtendedMsgLegacyLen bytes that are transmitted in a multiple of chunks.

Figure 5-2 PDFU Retries for Multi-Chunk Messages

tPDFUResponseSent and tPDFUNextRequestSent are performance requirements, and have
similar values to tReceiverResponse in USB PD, but with an extra 12 ms allowed for internal
bus transfer time of full size Extended Messages in both directions.

tPDFUResponseRcvd and tPDFUNextRequestRcvd are robustness timeouts, intended to guard
against transmission failures of the individual PDFU message components or corresponding
GoodCRC messages, particularly in cases where the USB PD messages are not retried.

Note: When chunking is used, a VENDOR_SPECIFIC Response that is longer than
MaxExtendedMsgLegacyLen bytes is transmitted as a sequence of chunks, otherwise all PDFU
Responses are transmitted as a single chunk.

5.6.1 PDFU Initiator Timing Parameters

Table 5-30 shows the timing parameters that apply to a PDFU Initiator. The parameter
NumOutgoingChunks is the number of chunks in the outgoing message (for example, 10

Revision 1.0 - 61 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

chunks in a full size PDFU_DATA message for timing tPDFUResponseRcvd) and the parameter
NumIncomingChunks is the number of chunked in the following incoming message.

Table 5-30: Timeout Values for a PD Firmware Update PDFU Initiator

Parameter Timeout Value Description

Chunked = 0 Chunked = 1

tPDFUResponseRcvd 54 ms (min)

60 ms (max)

30 x

NumOutgoingChunks +

30 x

NumIncomingChunks ms

Timeout for any PDFU

Request requiring a

response

tPDFUNextRequestSent 27 ms 27 ms Maximum time between

receiving a PDFU

Response and waiting a

specified WaitTime and

sending the next PDFU

Request

tPDFUResponseRcvd shall be measured from when the first bit of the PDFU Message
Preamble for the first chunk of the outgoing PDFU Request is transmitted to the time when
the last bit of the EOP in final chunk of the expected incoming PDFU Response Message has
been received by the Physical Layer.

tPDFUNextRequestSent time shall be measured from the time the last bit of the EOP in the
final chunk of the incoming PDFU Response Message has been received by the Physical Layer
until the first bit of the outgoing next PDFU Request Message Preamble has been transmitted
by the Physical Layer.

5.6.2 PDFU Responder Timing Parameters

Table 5-31 gives timing values that apply to a PDFU Responder. The parameter
NumOutgoingChunks is the number of chunks in the outgoing message and the parameter
NumIncomingChunks is the number of chunked in the following incoming message.

Table 5-31: Timeout Values for a PD Firmware Update PDFU Responder

Parameter Timeout Value Description

Chunked = 0 Chunked = 1

tPDFUNextRequestRcvd 54 ms (min)

60 ms (max)

30 x

NumOutgoingChunks +

30 x

NumIncomingChunks ms

Maximum time between

sending a Response

and waiting a specified

WaitTime and receiving

the next Request

tPDFUResponseSent 27 ms 27 ms Timeout for any PDFU

Request requiring a

response

tPDFUNextRequestRcvd shall be measured from the time the first bit of the PDFU Message
Preamble for the first chunk of the outgoing PDFU Response is transmitted to the time when
the last bit of the EOP in the final chunk of the expected incoming next PDFU Request
Message has been received by the Physical Layer.

tPDFUResponseSent shall be measured from the time the last bit of the EOP in the last chunk
of the incoming PDFU Request Message has been received by the Physical Layer until the
first bit of the outgoing PDFU Response Message Preamble has been transmitted by the
Physical Layer.

Revision 1.0 - 62 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

5.7 Unexpected Requests and Responses

As a result of error conditions or other failures, a PDFU Responder sometimes receives a
Request which is not anticipated for the current Phase in which the PDFU Responder is
operating.

Table 5-32 indicates the action that a PDFU Responder shall take after receiving an
unexpected Request type. When the Request requires a Response, the PDFU Responder shall
generate a Response with the Status byte set to errUNEXPECTED_REQUEST . The PDFU
Responder shall then exit the PDFU Flow, then shall re-enter the PDFU Flow starting from
the Enumeration Phase. For Reserved Requests, the Response MessageType field shall be
constructed by masking the Request MessageType field with 7Fh.

Table 5-32: Response to Requests

Phase Request Expected/

Unexpected

Response

All VENDOR_SPECIFIC Vendor

specific

If VID in Request matches the USB-IF

assigned Vendor ID provided in the

GET_FW_ID Response, then Vendor defined,

otherwise notify as unexpected with VID field

set to the VID in the Request

Enumeration GET_FW_ID Expected

PDFU_INITIATE Expected

PDFU_DATA Unexpected Notify as unexpected

PDFU_DATA_NR Unexpected Ignore

PDFU_VALIDATE Unexpected Notify as unexpected

PDFU_ABORT Expected

PDFU_DATA_PAUSE Unexpected Ignore

Reserved Unexpected Notify as unexpected

Reconfiguration GET_FW_ID Unexpected Notify as unexpected

PDFU_INITIATE Expected

PDFU_DATA Unexpected If reconfiguration is complete, transit to

Transfer Phase and treat as the first

PDFU_DATA Request, otherwise notify as

unexpected

PDFU_DATA_NR Unexpected Ignore

PDFU_VALIDATE Unexpected Notify as unexpected

PDFU_ABORT Expected

PDFU_DATA_PAUSE Unexpected Ignore

Reserved Unexpected Notify as unexpected

Transfer GET_FW_ID Unexpected Notify as unexpected

PDFU_INITIATE Unexpected If no PDF_DATA request has been received,

treat as valid, and provide PDFU_INITIATE

Response. If PDFU_DATA request has been

received, notify as unexpected

PDFU_DATA Expected

PDFU_DATA_NR Expected

Revision 1.0 - 63 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Phase Request Expected/

Unexpected

Response

PDFU_VALIDATE Unexpected If transfer is complete (all expected bytes of

the firmware image have been received),

transit to Validation Phase, otherwise notify as

unexpected

PDFU_ABORT Expected

PDFU_DATA_PAUSE Expected

Reserved Unexpected Notify as unexpected

Validation GET_FW_ID Unexpected Notify as unexpected

PDFU_INITIATE Unexpected Notify as unexpected

PDFU_DATA Unexpected Notify as unexpected

PDFU_DATA_NR Unexpected Ignore

PDFU_VALIDATE Expected

PDFU_ABORT Expected

PDFU_DATA_PAUSE Unexpected Ignore

Reserved Unexpected Notify as unexpected

Manifestation GET_FW_ID Unexpected Notify as unexpected

PDFU_INITIATE Unexpected Notify as unexpected

PDFU_DATA Unexpected Notify as unexpected

PDFU_DATA_NR Unexpected Ignore

PDFU_VALIDATE Unexpected Notify as unexpected

PDFU_ABORT Expected

PDFU_DATA_PAUSE Unexpected Ignore

Reserved Unexpected Notify as unexpected

If the PDFU Initiator receives a Response with Status errUNEXPECTED_REQUEST, it shall exit
the PDFU flow. If either Silent Update is being used but system policy prohibits Silent
Failure or Silent Update is not being used, the PDFU Initiator shall indicate an error to the
user via the User Interface prior to exiting the PDFU Flow.

If a PDFU Initiator receives a Response that is not a Response to the most recent Request
that it issued then it shall ignore the Response and re-issue the most recent Request.

Revision 1.0 - 64 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

6 Protocol Constants

Constants required by the PDFU Firmware Update Protocol are given in Table 6-1.

Table 6-1: Protocol Constants

Constant Value

EnumerateResend 10

ReconfigureResend 3

DataResend 3

ValidateResend 3

PauseResend 3

Revision 1.0 - 65 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Appendix A Transfer Phase Flow Diagrams (Informative)

Figure A-1 PDFU Initiator Transfer Phase Flow (Informative)

Revision 1.0 - 66 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Figure A-2 PDFU Responder Transfer Phase Flow (Informative)

Revision 1.0 - 67 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

Appendix B PDFU Prefix Reference Code

/***\

pdfu.c

This is sample software to demonstrate a simple method of manipulating the

PDFU prefix as specified in the PDFU specification version 1.0. This code

is modified from the equivalent DFU code in order to support the PDFU

Prefix (replacing the DFU Suffix) in hex

The following authors have contributed to this sample code:

Colin Whitby-Strevens

Robert Nathan

Greg Kroah-Hartman

Trenton Henry

Stephen Satchell

Chuck Foresburg

Gary S. Brown

The CRC algorithm derives from the works of the last three authors listed.

The authors hereby grant developers the right to incorporate any portion

of this source into their own works, provided that proper credit is given

to Gary S. Brown, Stephen Satchell, and Chuck Forsberg. Reference the

following source for the proper format.

Every attempt has been made to ensure that this source is portable. To

that end, it uses only ANSI C libraries. Any identifiers that are not part

of ANSI C have names starting with leading underscores. The purpose is to

differentiate what has been "invented" and what was "pre-existing".

This example cannot modify an existing prefix. To modify a prefix, delete

the current one and then append a new prefix.

***/

#include <stdio.h>

/* #include <io.h> *** not available in all environments */

#include <sys/stat.h> /* was <sys\stat.h> */

#include <stdarg.h>

#include <string.h>

#include <stdlib.h>

#include <errno.h>

#include <stdbool.h>

/***\

CRC polynomial 0xedb88320 – Contributed unknowingly by Gary S. Brown.

"Copyright (C) 1986 Gary S. Brown. You may use this program, or code or

tables extracted from it, as desired without restriction."

Paraphrased comments from the original:

The 32 BIT ANSI X3.66 CRC checksum algorithm is used to compute the 32-bit

frame check sequence in ADCCP. (ANSI X3.66, also known as FIPS PUB 71 and

FED-STD-1003, the U.S. versions of CCITT's X.25 link-level protocol.)

The polynomial is:

X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+X^0

Put the highest-order term in the lowest-order bit. The X^32 term is

implied, the LSB is the X^31 term, etc. The X^0 term usually shown as +1)

results in the MSB being 1. Put the highest-order term in the lowest-order

bit. The X^32 term is implied, the LSB is the X^31 term, etc. The X^0 term

(usually shown as +1) results in the MSB being 1.

The feedback terms table consists of 256 32-bit entries. The feedback

terms simply represent the results of eight shift/xor operations for all

combinations of data and CRC register values. The values must be right-

shifted by eight bits by the UPDCRC logic so the shift must be unsigned.

***/

unsigned long _crctbl[] = {

 0x00000000, 0x77073096, 0xe963a535, 0x9e6495a3, 0x09b64c2b, 0x7eb17cbd,

 0xf3b97148, 0x84be41de, 0x136c9856, 0x646ba8c0, 0xfa0f3d63, 0x8d080df5,

 0x3c03e4d1, 0x4b04d447, 0xdbbbc9d6, 0xacbcf940, 0x26d930ac, 0x51de003a,

 0xcfba9599, 0xb8bda50f, 0x2f6f7c87, 0x58684c11, 0x98d220bc, 0xefd5102a,

 0x7807c9a2, 0x0f00f934, 0x91646c97, 0xe6635c01, 0x6c0695ed, 0x1b01a57b,

Revision 1.0 - 68 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

 0x8bbeb8ea, 0xfcb9887c, 0x4db26158, 0x3ab551ce, 0xa4d1c46d, 0xd3d6f4fb,

 0x44042d73, 0x33031de5, 0xbe0b1010, 0xc90c2086, 0x5edef90e, 0x29d9c998,

 0xb7bd5c3b, 0xc0ba6cad, 0xead54739, 0x9dd277af, 0x0d6d6a3e, 0x7a6a5aa8,

 0xf00f9344, 0x8708a3d2, 0x196c3671, 0x6e6b06e7, 0xf9b9df6f, 0x8ebeeff9,

 0x38d8c2c4, 0x4fdff252, 0xd80d2bda, 0xaf0a1b4c, 0x316e8eef, 0x4669be79,

 0xcc0c7795, 0xbb0b4703, 0x2bb45a92, 0x5cb36a04, 0x9b64c2b0, 0xec63f226,

 0x72076785, 0x05005713, 0x92d28e9b, 0xe5d5be0d, 0x68ddb3f8, 0x1fda836e,

 0x88085ae6, 0xff0f6a70, 0x616bffd3, 0x166ccf45, 0xa7672661, 0xd06016f7,

 0x40df0b66, 0x37d83bf0, 0xbdbdf21c, 0xcabac28a, 0x54de5729, 0x23d967bf,

 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0x0edb8832, 0x79dcb8a4,

 0xe0d5e91e, 0x97d2d988, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,

 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0xfd62f97a, 0x8a65c9ec,

 0x14015c4f, 0x63066cd9, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,

 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0x32d86ce3, 0x45df5c75,

 0xdcd60dcf, 0xabd13d59, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,

 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0xc1611dab, 0xb6662d3d,

 0x76dc4190, 0x01db7106, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,

 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x6b6b51f4, 0x1c6c6162,

 0x856530d8, 0xf262004e, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,

 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0xa3bc0074, 0xd4bb30e2,

 0x4adfa541, 0x3dd895d7, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,

 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0x5768b525, 0x206f85b3,

 0xb966d409, 0xce61e49f, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,

 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0x04db2615, 0x73dc1683,

 0xe3630b12, 0x94643b84, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,

 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0xfed41b76, 0x89d32be0,

 0x10da7a5a, 0x67dd4acc, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,

 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0x36034af6, 0x41047a60,

 0xdf60efc3, 0xa867df55, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,

 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0xc2d7ffa7, 0xb5d0cf31,

 0x2cd99e8b, 0x5bdeae1d, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,

 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x7cdcefb7, 0x0bdbdf21,

 0x86d3d2d4, 0xf1d4e242, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,

 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0xa00ae278, 0xd70dd2ee,

 0x4e048354, 0x3903b3c2, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,

 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 0x53b39330, 0x24b4a3a6,

 0xbad03605, 0xcdd70693, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,

 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d};

/**/

unsigned char _prefix[64] = {

 0x00, /* dwCRC lsb */

 0x00, /* dwCRC --- */

 0x00, /* dwCRC --- */

 0x00, /* dwCRC msb */

 23, /* bLength for this version */

 'P', /* ucDfuSignature lsb */

 'D', /* ucDfuSignature --- */

 'F', /* ucDfuSignature --- */

 'U', /* ucDfuSignature msb */

 0x00, /* bcdPDFU lo */

 0x01, /* bcdPDFU hi */

 0x00, /* idVendor lo */

 0x00, /* idVendor hi */

 0x00, /* idProduct lo */

 0x00, /* idProduct hi */

 0x00, /* wVersionDevice1 lo */

 0x00, /* wVersionDevice1 hi */

 0x00, /* wVersionDevice2 lo */

 0x00, /* wVersionDevice2 hi */

 0x00, /* wVersionDevice3 lo */

 0x00, /* wVersionDevice3 hi */

 0x00, /* wVersionDevice4 lo */

 0x00 /* wVersionDevice4 hi */

Revision 1.0 - 69 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

};

unsigned char _fileprefix[64];

/**\

**/

void _fatal(const char *);

void _fatal(const char *_str)

{

 perror(_str);

/* fcloseall(); */ /* not available on all systems */

 abort();

}

/**\

The updcrc macro (referred to here as _crc) is derived from an article

Copyright © 1986 by Stephen Satchell.

“Programmers may incorporate any or all code into their programs, giving

proper credit within the source. Publication of the source routines is

permitted so long as proper credit is given to Steven Satchell, Satchell

Evaluations, and Chuck Forsberg, Omen technology."

**/

#define _crc(accum,delta) \

(accum)=_crctbl[((accum)^(delta))&0xff]^((accum)>>8)

#define _usage \

"\nusage: pdfu fname [options]\n\n" \

" to check for a prefix use: pdfu fname\n\n" \

" to remove a prefix use: pdfu fname -del\n\n" \

" to add a prefix use: pdfu fname -did1 val -did2 val -did3 \

val -did4 val -pid val -vid val\n\n" \

" e.g., pdfu myfile -did1 0x0102 -did2 0x0203 -did3 0x0304 \

-did4 0x0405 -pid 2345 -vid 017\n" \

" sets idDevice1 0x0102 idDevice2 0x0203 idDevice3 0x0304 \

idDevice4 0x0405 idProduct 0x0929 idVendor 0x000F\n\n"

#define _getarg(ident,index); \

if (!strcmp(argv[_i], (ident))) \

{ \

 _write_prefix = 1; \

 if (argc-1 == _i) _fatal(_usage); \

 _tmpl = strtol(argv[_i+1], &_charp, 0); \

 _prefix[(index)] = (unsigned char)(_tmpl & 0x000000FF); \

 _tmpl /= 256; \

 _prefix[(index)+1] = (unsigned char)(_tmpl & 0x000000FF); \

}

/**\

**/

int main(int argc, const char **argv)

{

 FILE *_fp;

 FILE *_tmpfp;

 int _remove_prefix = 0;

 int _write_prefix = 0;

 unsigned long _filecrc;

 unsigned long _fullcrc;

 long _i;

 int _j;

 int _plength;

 bool _foundprefix;

 long _tmpl;

 char *_charp;

 unsigned char _char;

 /* make sure there is at least one argument */

Revision 1.0 - 70 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

 errno = EINVAL;

 if (argc < 2)

 _fatal(_usage);

 /* make sure the file is there */

 _fp = fopen(argv[1], "r+b");

 if (!_fp)

 _fatal(argv[1]);

 for (_i = 0; _i < _prefix[4]; _i++)

 _fileprefix[_i] = _prefix[_i];

 /* assume that there is a prefix and convert from hex */

fseek(_fp, 0L, SEEK_END);

 _i = ftell(_fp);

 rewind(_fp);

 _foundprefix = false;

 if (_i > 48) /* file is long enough that there might be a real prefix */

 {

 _plength = 23;

 for (_j = 0; _j < _plength; _j++)

 {

 _char = fgetc(_fp);

 if (('0' <= _char) && (_char <= '9'))

 _char = _char - '0';

 else if (('a' <= _char) && (_char <= 'f'))

 _char = _char - 'a' + 10;

 else if (('A' <= _char) && (_char <= 'F'))

 _char = _char - 'A' + 10;

 else

 break;

 if (_j <= sizeof(_fileprefix))

 _fileprefix[_j] = _char << 4;

 _char = fgetc(_fp);

 if (('0' <= _char) && (_char <= '9'))

 _char = _char - '0';

 else if (('a' <= _char) && (_char <= 'f'))

 _char = _char - 'a' + 10;

 else if (('A' <= _char) && (_char <= 'F'))

 _char = _char - 'A' + 10;

 else

 break;

 if (_j <= sizeof(_fileprefix))

 _fileprefix[_j] = _fileprefix[_j] + _char;

 if (_j == 4) /* length byte - length may change in the future */

 {

 _plength = _fileprefix[_j];

 /* printf("length field in file prefix = %d\n", _plength); */

 }

 }

 if (_j == _plength)

 {

 _foundprefix = true;

 printf("found hex prefix\n");

 } else

 printf ("no hex prefix found\n");

 }

 /* compute the CRC after the first 4 bytes */

Revision 1.0 - 71 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

 _filecrc = 0xffffffff;

 if (_foundprefix) {

 for (_j = 4; _j < _fileprefix[4]; _j++)

 _crc(_filecrc, _fileprefix[_j]);

 for (; _i-(2*_fileprefix[4]); _i--)

 _crc(_filecrc, (unsigned char) fgetc(_fp));

 printf("file calculated crc: 0x%08lX\n", _filecrc);

 _fullcrc = _filecrc;

 /* store the file crc in the new prefix area for comparison */

 for (_i = 0; _i < 4; _i++) {

 _prefix[_i] = (unsigned char) (_filecrc & 0x000000ff);

 _filecrc /= 256;

 }

 /* and check with the received version using CRC zero technique */

 for (_j = 0; _j < 4; _j++)

 _crc(_fullcrc, _fileprefix[_j]);

 if (_fullcrc == 0)

 printf("File CRC OK\n");

 printf ("file calculated crc including crc bytes: 0x%08lX\n",

_fullcrc);

 }

 /* compute the CRC of everything including the first 4 bytes - assumes

 that there is no CRC */

 rewind(_fp);

 _fullcrc = 0xffffffff;

 fseek(_fp, 0L, SEEK_END);

 _i = ftell(_fp);

 for (; _i; _i--)

 _crc(_fullcrc, (unsigned char) fgetc(_fp));

 printf("full crc: 0x%08lX\n", _fullcrc);

 /* if prefix exists, try to validate it */

 if (_foundprefix)

 {

 /* print out what is in there already */

 printf(" idVendor: 0x%02X%02X\n", (unsigned char) _fileprefix[12],

(unsigned char) _fileprefix[11]);

 printf(" idProduct: 0x%02X%02X\n",

 (unsigned char) _fileprefix[14], (unsigned char)

_fileprefix[13]);

 printf(" idVersion1: 0x%02X%02X\n",

 (unsigned char) _fileprefix[16], (unsigned char)

_fileprefix[15]);

 printf(" idVersion2: 0x%02X%02X\n",

 (unsigned char) _fileprefix[18], (unsigned char)

_fileprefix[17]);

 printf(" idVersion3: 0x%02X%02X\n",

 (unsigned char) _fileprefix[20], (unsigned char)

_fileprefix[19]);

 printf(" idVersion4: 0x%02X%02X\n",

 (unsigned char) _fileprefix[22], (unsigned char)

_fileprefix[21]);

 }

 /* now parse the command arguments to overwrite the default prefix w/

 new values */

Revision 1.0 - 72 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

 for (_i = 1; _i < argc; _i++) {

 errno = EINVAL;

 if (!strcmp(argv[_i], "-del"))

 _remove_prefix = 1;

 _getarg("-vid", 11);

 _getarg("-pid", 13);

 _getarg("-did1", 15);

 _getarg("-did2", 17);

 _getarg("-did3", 19);

 _getarg("-did4", 21);

 }

 if (_foundprefix) {

 /* compare the found file prefix to the prefix in memory */

 for (_i = 0; _i < 11; _i++) {

 if (_fileprefix[_i] != _prefix[_i]) break;

 }

 if (_i < 4) {

 printf("bad dwCRC\n");

 }

 else if (_i < 5)

 printf("bad bLength\n");

 else if (_i < 9)

 printf("bad ucDfuSignature\n");

 else if (_i < 11)

 printf("bad bcdPDFU\n");

 if (_i < 11) {

 /* can't remove a prefix if there isn't one there */

 if (_remove_prefix)

 printf("invalid or missing prefix\n");

 _remove_prefix = 0;

 } else {

 printf("valid pdfu prefix found\n");

 errno = EINVAL;

 if (_write_prefix)

 _fatal("delete prefix before making changes\n");

 }

 }

 /* now it is known if a prefix exists, and the important

 information has been printed out. so, either the user wants

 to delete the prefix, or to add a new one */

 /* remove an existing prefix? */

 if (_foundprefix && _remove_prefix) {

 _tmpfp = fopen("pdfu.tmp", "w+b");

 if (!_tmpfp)

 _fatal("pdfu.tmp");

 /* this is not an exercise in how to do buffered file io ;-) */

 fseek(_fp, 0L, SEEK_END);

 _i = ftell(_fp) - ((_prefix[4] * 2) + 2); /* size of rest of file,

after the hex prefix */

 if (_i > 0) {

 fseek(_fp, (_prefix[4] * 2) + 2, SEEK_SET); /* skip the prefix */

 for (; _i; _i--)

 fputc(fgetc(_fp), _tmpfp);

 fclose(_tmpfp);

 fclose(_fp);

 chmod(argv[1], S_IWRITE);

 remove(argv[1]);

Revision 1.0 - 73 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

 rename("pdfu.tmp", argv[1]);

 /* warm fuzzies */

 printf("pdfu prefix removed from %s\n", argv[1]); }

 else

 printf("%s too small to contain pdfu prefix\n", argv[1]); exit(0);

 }

 /* prepend a prefix to the file? */

 if (_write_prefix) {

 /* prepend a PDFU prefix */

 _tmpfp = fopen("pdfu.tmp", "w"); // was "w+b"

 if (!_tmpfp)

 _fatal("pdfu.tmp");

 /* calculate CRC */

 _fullcrc = 0xffffffff;

 /* iterate CRC over the prefix less the CRC field */

 for (_i = 4; _i < _prefix[4]; _i++) {

 _crc(_fullcrc, _prefix[_i]);

 }

 _crc(_fullcrc, '\r');

 _crc(_fullcrc, '\n');

 /* and calculate rest of CRC over the original file */

 fseek(_fp, 0L, SEEK_END);

 _i = ftell(_fp);

 rewind(_fp);

 for (; _i; _i--)

 _crc(_fullcrc, (unsigned char) fgetc(_fp));

 printf("full crc: 0x%08lX\n", _fullcrc);

 /* store the CRC */

 for (_i = 0; _i < 4; _i++)

 {

 _prefix[_i] = (unsigned char) (_fullcrc & 0x000000ff);

 _fullcrc /= 256;

 }

 /* write the prefix */

 for (_i = 0; _i < _prefix[4]; _i++) {

 fprintf(_tmpfp, "%02X", _prefix[_i]);

 }

 fprintf(_tmpfp, "\r\n");

 /* copy the file */

 fseek(_fp, 0L, SEEK_END);

 _i = ftell(_fp); // size of file

 rewind(_fp);

 /* for (; _i; _i--) */

 for (_j = 0; _j < _i; _j++)

 fputc(fgetc(_fp), _tmpfp);

 fclose(_tmpfp);

 fclose(_fp);

 chmod(argv[1], S_IWRITE);

 remove(argv[1]);

 rename("pdfu.tmp", argv[1]);

 /* warm fuzzies */

 printf("pdfu prefix prepended to %s\n", argv[1]); }

Revision 1.0 - 74 - USB PD Firmware Update Specification

September 15, 2016

Copyright © 2016 USB 3.0 Promoter Group. All rights reserved.

 /* finished */

 fclose(_fp);

 return 0;

}

/* eof */

