
 USB 3.1 Debug Class 7/14/2015

- 1 -

USB 3.1 Device Class
Specification for Debug

Devices
Revision 1.0 – July 14, 2015

 USB 3.1 Debug Class 7/14/2015

- 2 -

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED TO YOU “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR
PURPOSE. THE AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY
FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO USE OR IMPLEMENTATION OF
INFORMATION IN THIS SPECIFICATION. THE PROVISION OF THIS SPECIFICATION TO YOU DOES NOT
PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS.

Please send comments via electronic mail to techsup@usb.org.

For industry information, refer to the USB Implementers Forum web page at http://www.usb.org.

All product names are trademarks, registered trademarks, or service marks of their respective owners.

Copyright © 2010-2015 Hewlett-Packard Company, Intel Corporation, Microsoft Corporation, Renesas, STMicroelectronics,
and Texas Instruments

All rights reserved.

mailto:techsup@usb.org
http://www.usb.org/

 USB 3.1 Debug Class 7/14/2015

- 3 -

Contributors
Intel (chair) Rolf Kühnis

Intel Sri Ranganathan

Intel Sankaran Menon

Intel (chair) John Zurawski

ST-Ericsson Andrew Ellis

ST-Ericsson Tomi Junnila

ST-Ericsson Rowan Naylor

ST-Ericsson Graham Wells

ST Microelectronics Jean-Francis Duret

Texas Instruments Gary Cooper

Texas Instruments Jason Peck

Texas Instruments Gary Swoboda

AMD Will Harris

Lauterbach Stephan Lauterbach

Lauterbach Ingo Rohloff

Nokia Henning Carlsen

Nokia Eugene Gryazin

Nokia Leon Jørgensen

Qualcomm Miguel Barasch

Qualcomm Terry Remple

Qualcomm Yoram Rimoni

 USB 3.1 Debug Class 7/14/2015

- 4 -

TABLE OF CONTENTS

1 TERMS AND ABBREVIATIONS .. 8

1.1 USB & DEBUG TERMS AND ABBREVIATIONS .. 8
1.2 TERMINOLOGY ... 10
1.3 ABBREVIATIONS ... 11

2 RELATED DOCUMENTS ... 12

3 SPECIFICATION OVERVIEW AND SCOPE ... 13

3.1 INTRODUCTION... 13
3.2 PURPOSE .. 13
3.3 SCOPE .. 14
3.4 OVERVIEW ... 15

3.4.1 Debug Capabilities ... 15
3.4.2 DbC and DvC Overview ... 16
3.4.3 Example Implementation .. 17

3.5 FUNCTIONAL CHARACTERISTICS ... 19
3.5.1 The Debug Capabilities .. 20
3.5.2 Debug Scenario Examples ... 22
3.5.3 Debug Function Topology .. 24
3.5.4 Debug Control of the Debug Units ... 29

3.6 DEBUG OPERATIONAL MODEL .. 31
3.6.1 Alternate Settings ... 31
3.6.2 Changing Debug Capabilities via Alternate Settings.. 33
3.6.3 Changing Debug Capabilities using Different Configurations .. 33
3.6.4 Interface Association Descriptor (IAD) ... 35
3.6.5 Multiple Mutually-Exclusive Host Drivers ... 37
3.6.6 Enumerating Interface Collections ... 41
3.6.7 Debug-Control Interface ... 42
3.6.8 DxC.Trace Interface ... 47

4 DESCRIPTORS .. 52

4.1 DESCRIPTOR LAYOUT OVERVIEW .. 52
4.1.1 Class-Specific Topology Descriptors.. 53

4.2 XHCI-COMPLIANT DBC STANDARD DESCRIPTORS ... 56
4.3 DEBUG STANDARD DESCRIPTORS ... 56

4.3.1 USB 2.0 Descriptors ... 56
4.3.2 USB 3.1 Standard Descriptors ... 62

4.4 DEBUG CLASS-SPECIFIC DESCRIPTORS .. 62
4.4.1 Introduction ... 62
4.4.2 Debug-Control Interface Descriptors .. 64
4.4.3 Debug-Attributes Descriptor ... 66
4.4.4 Input-Connection Descriptor ... 70
4.4.5 Output Connection Descriptor .. 71
4.4.6 Debug-Unit Descriptor .. 72

4.5 STANDARDS-BODY SUPPORT ... 80
5 CLASS-SPECIFIC REQUESTS ... 84

5.1 INTRODUCTION... 84
5.2 DEBUG-CONTROL OVERVIEW ... 86
5.3 REQUEST LAYOUT .. 87

5.3.1 Request Layout .. 87
5.3.2 Request Examples ... 89

5.4 DEBUG CONTROL REQUESTS ... 92

 USB 3.1 Debug Class 7/14/2015

- 5 -

5.4.1 SET_CONFIG_DATA and GET_CONFIG_DATA Overview ... 92
5.4.2 Debug Commands and Operating Modes .. 92
5.4.3 SET_CONFIG_DATA_SINGLE .. 93
5.4.4 SET_CONFIG_DATA ... 94
5.4.5 GET_CONFIG_DATA .. 94
5.4.6 SET_CONFIG_ADDRESS ... 95
5.4.7 GET_CONFIG_ADDRESS ... 96
5.4.8 SET_ ALT_STACK ... 96
5.4.9 GET_ALT_STACK ... 97
5.4.10 SET_OPERATING_MODE .. 98
5.4.11 GET_OPERATING_MODE .. 103
5.4.12 GET_INFO .. 104
5.4.13 GET_ERROR ... 105
5.4.14 SET_TRACE .. 107
5.4.15 GET_TRACE .. 107
5.4.16 SET_BUFFER .. 108
5.4.17 GET_BUFFER .. 109
5.4.18 SET_RESET ... 109

6 DEBUG PAYLOAD .. 111

6.1 DEBUG TRACE OVERVIEW .. 111
7 USB 3.1 DEBUG SECURITY ... 112

7.1 OVERVIEW ... 112
8 USB 3.1 DEBUG DATA STRUCTURES .. 113

8.1 OVERVIEW ... 113
 DEBUG-DEVICE-CLASS CODES ... 114

Debug Class-Specific Descriptor Types ... 115
Debug Class-Specific Descriptor Sub-Types ... 116

 DESCRIPTOR EXAMPLES .. 117

Overview ... 117

 DEBUG TRACE PAYLOAD FORMAT ... 120

Debug Trace Payload ... 120
Debug Trace Payload Size ... 120
Debug Trace Header/Footer ... 120
Debug Trace Sequence Number .. 122
Isochronous Operations and “NULL” data .. 123

 POWER MANAGEMENT ... 125

 EXAMPLE DEBUG SCENARIOS .. 126

Software Stack Model ... 126
TS as Host .. 126

 SOFTWARE STACK OVERVIEW .. 128

 USB 3.1 Debug Class 7/14/2015

- 6 -

TABLE OF FIGURES

Figure 3-1: USB 3.1 and USB 2.0 interfaces 14
Figure 3-2: Two possible debug scenarios 15
Figure 3-3: Example of a TS device supporting all Debug Capabilities 18
Figure 3-4: Example of the USB Descriptors for the Debug Function 19
Figure 3-5: Simple Debug Scenario Examples 23
Figure 3-6: Debug Scenario Examples; Combined Tooling 24
Figure 3-7: Host Debug Scenario Examples 24
Figure 3-8: Examples of allowed and disallowed topologies 25
Figure 3-9: Input-Connection Icon 26
Figure 3-10: Input and Output Connections driving USB endpoint and external pins 26
Figure 3-11: Output-Connection Icon 27
Figure 3-12: Dfx Unit icon with two sets of 2 inputs together with an example 27
Figure 3-13: Select Unit icon with an Example TAP chain 28
Figure 3-14: Trace-Router Unit icon with 3 outputs 28
Figure 3-15: Trace Processing Unit icon with 3 inputs 28
Figure 3-16: Trace-Generation Unit Icon with an example 29
Figure 3-17: Trace-Sink Unit 29
Figure 3-18: Possible means of configuring a debug unit 29
Figure 3-19: Composite UASP (USB Attached SCSI Protocol) Device Example 32
Figure 3-20: Composite Debug Class Device Example 33
Figure 3-21: Alternate Settings Example 33
Figure 3-22: Example of two configurations 34
Figure 3-23: Debug Interface Collection 35
Figure 3-24: Example showing two IADs grouping the Control with the appropriate debug interface 36
Figure 3-25: Example showing a single IAD grouping the control for a DvC.Dfx and DvC.Trace 36
Figure 3-26: TS device with three DICs 36
Figure 3-27: Multiple debuggers accessing common Debug-Function Example 37
Figure 3-28: Alternate Settings used to select between multiple Debuggers on the same Endpoints. 38
Figure 3-29: Master Switch with two Slave Debuggers 39
Figure 3-30: Example showing support for Multiple Debug tools 40
Figure 3-31: Example of a Debug Control targeting the Global Configuration Register Control 43
Figure 3-32: Control Transfer Examples 45
Figure 3-33: Example of DvC.Trace Descriptors 49
Figure 3-34: Example of Alternative setting for DvC.Trace and DvC.Dfx 49
Figure 3-35: DvC.Trace Example using multiple different types of Alternate settings 50
Figure 3-36: Lost processor-instructions trace segments caused by inadequate trace buffers 51
Figure 4-1: Debug-Descriptor Sample Layout 52
Figure 4-2: Debug-Unit Descriptor Example 54
Figure 4-3: StreamID Example 56
Figure 4-4: Diagnostic Class, Sub-Class, and Protocol partitioning 61
Figure 4-5: Debug Topology and Descriptor Hierarchy Example 1 62
Figure 4-6: Debug Topology and Descriptor Hierarchy Example 2 64
Figure 4-7: Example of TS and DIC Debug Control & Attributes descriptor usage 69
Figure 4-8: Example interconnect between a number of Dfx Units 73
Figure 4-9: New Debug Function created by a Standards Body accessed via the Debug Class 81
Figure 4-10: Standards bodies can only define commands at the Debug-unit level 81
Figure 4-11: A TS containing two Debug units defined by different Standards bodies 83
Figure 5-1: Which bmControl field defines the Debug Control for the TS, DIC, and Unit level 85
Figure 5-2: Debug Example using only the Debug-Control Interface 86
Figure 5-3: Debug Control accessing a specific Debug Unit 89
Figure 5-4: Debug Control accessing a specific DIC or the complete TS 90
Figure 5-5: Debug Request to Global Configuration Registers 90
Figure 5-6: Debug Request to DIC Configuration Registers 91
Figure 5-7 Debug Request to Debug-Unit Configuration Registers 91

 USB 3.1 Debug Class 7/14/2015

- 7 -

Figure 5-8: Example of SET_CONFIG_DATA, SET_CONFIG_DATA_SINGLE, and
GET_CONFIG_DATA access of Memory space 92

Figure 5-9: Debug Class Specific Parameter Block for SET_CONFIG_DATA Request 94
Figure 5-10: SET_OPERATING_MODE Example 99
Figure 8-1: USB 3.1 Debug Class Descriptor Examples 117
Figure 8-2: USB 3.1 Debug Class Descriptor example of two DICs 118
Figure 8-3: USB 3.1 Debug Class Descriptor example of Debug Control only 118
Figure 8-4: Example of Multiple Debug interface without a DIC 119
Figure 8-5: Example of a Debug Trace 120
Figure 8-6: Debug Trace Footer Formats 121
Figure 8-7: Local Retry Buffer within USB3 Device Controller 122
Figure 8-8: No Local Retry Buffer within the USB3 Device Controller 122
Figure 8-9: Bulk Retry example 123
Figure 8-10: Isochronous Example showing interspersed “NULL” data 124
Figure 8-11: Example of a Software Stack driving traces to a Hardware Trace-Processing unit 126
Figure 8-12: Two examples showing the TS streaming traces to external devices 126
Figure 8-13: Debug Probe providing DvC.Dfx support 127
Figure 8-14: DvC Debug Mode S/W stack example 128
Figure 8-15: The xHCI DbC Software stack 129

 USB 3.1 Debug Class 7/14/2015

- 8 -

1 Terms and Abbreviations

1.1 USB & Debug Terms and Abbreviations

Term Description
adb Android Debug Bridge

APE Application Processor Engine

BELT Best Effort Latency Tolerance. Please see USB
3.1 Architecture specification.

BOS Binary Object Store Descriptor. See USB 3.1
Architecture specification

Capabilities Those attributes of a USB device that are
administrated by the host.

Configuration A collection of one or more interfaces that may be
selected on a USB device.

Control A logical object within an Entity that is used to
manipulate a specific property of that Entity.

Composite Device A device that contains more than one interface
descriptor is known as a composite USB device.

Debugger The debug application running on the USB host
that controls the debug session and receives the
debug traces.

Descriptor Data structure used to describe a USB device
capability or characteristic.

DUD Debug Unit Descriptor.

DbC Debug Capability on the Extended Host Controller
Interface

Dfx Design for Debug or Test. This refers to a logic
block that provides debug or test support.

DvC Debug Capability on the USB device (Device
Capability)

DxC Refers to DbC or DvC interchangeably
DTS Debug and Test System. This is the debugger

application running on the host together with any
probes connecting it to the Target System (i.e.,
device under test). For USB 3.1 Debug, this refers
to the host laptop or PC running the debugger.
There is typically no probe involved, but vendors
may provide a Probe for enhanced capability.

DTT Debug and Test Target (also called a Target
System (TS))

DIC Debug Interface Collection. This refers to the
collection of Debug interfaces within the same

 USB 3.1 Debug Class 7/14/2015

- 9 -

Debug Function.

Device USB peripheral.
Endpoint Source or sink of data on a USB device.
Entity A Unit, Terminal or Interface within the debug

function, each of which may contain Controls.
Function A set of one or more related interfaces that

expose a capability to a software client
GUID Global Unique Identifier. Also known as a

universally unique identifier (UUID). The
Guidgen.exe command line program from
Microsoft is used to create a GUID. Guidgen.exe
never produces the same GUID twice, no matter
how many times it is run or how many different
machines it runs on. Entities such as video
formats that need to be uniquely identified have a
GUID. Search www.microsoft.com for more
information on GUIDs and Guidgen.exe.

HW Hardware
Host Computer system where a Host Controller is

installed.
Host Controller Hardware that connects a Host to the USB.
Host Software Generic term for a collection of drivers, libraries

and/or applications that provide operating system
support for a device.

IAD Interface Association Descriptor. This is used to
describe that two or more interfaces are
associated to the same function. An ‘association’
includes two or more interfaces and all of their
alternate setting interfaces.

Interface An Entity representing a collection of zero or more
endpoints that present functionality to a Host.

IC Input Connection
IP vendor Intellectual Property vendor.
JTAG Join Test Action Group
OC Output Connection
OS Operating System
OTG On-the-Go: Supplement to the USB standard for

mobile devices. Amongst other functional
enhancements, it allows point-to-point
communication and greater power-efficiency.

MIPI MIPI Alliance. See www.mipi.org.
MIPI STP MIPI System Trace Protocol [1]
Payload Transfer In the context of the USB 3.1 Debug Class, a

Payload Transfer is a unit of data transfer
common to bulk and isochronous endpoints. Each
Payload Transfer includes a Payload Data

 USB 3.1 Debug Class 7/14/2015

- 10 -

followed by Payload Footer. For isochronous
endpoints, a Payload Transfer is contained in the
data transmitted during a single service interval:
up to 1024 bytes for a super-speed endpoint. For
bulk endpoints, a Payload Transfer is contained in
the data transmitted in a single bulk transfer
(which may consist of multiple bulk data
transactions).

Payload Data Format-specific data contained in a Payload
Transfer (excluding the Payload Footer).

Payload Footer A header at the end of each Payload Transfer that
provides data framing and encapsulation
information.

Run-control Run-control is a generic term referring to run-
mode control or stop-mode control. Stop-mode
control use the TAP infrastructure to perform halt,
single-step, breakpoint, etc. debug operations.
Run-mode uses a kernel debugger or similar
software debug capability to perform similar
operations.

Run-mode See Run-control
Stop-mode See Run-control
SoC System on a Chip.
STM Module implementing the MIPI STP protocol
STP See MIPI STP
TAP Test-Access Port
TD Transfer Descriptor
TS Target System (also called a Debug and Test

Target (DTT))
TRB Transfer Request Block
Trace Transfer A trace transfer is composed of one or more

payload transfer(s) representing a debug trace.
USB Universal Serial Bus.
USB Transaction See USB 2.0 Chapter 5.
USB Transfer See USB 2.0 Chapter 5.
xHCI-Device The USB 3.1 Device Controller. This is specified

as an extended capability to the eXtensible Host
Controller [2]

xHC(I) USB 3.1 eXtensible Host Controller (Interface) [3]

1.2 Terminology
This document has adopted Section 13.1 of the IEEE Standards Style Manual, which dictates use of the
words “shall”, “should”, “may”, and “can” in the development of documentation, as follows:

• The word shall is used to indicate mandatory requirements strictly to be followed in order to
conform to the standard and from which no deviation is permitted (shall equals is required to).

• The use of the word must is deprecated and shall not be used when stating mandatory
requirements; must is used only to describe unavoidable situations.

• The use of the word will is deprecated and shall not be used when stating mandatory
requirements; will is only used in statements of fact.

 USB 3.1 Debug Class 7/14/2015

- 11 -

• The word should is used to indicate that among several possibilities one is recommended as
particularly suitable, without mentioning or excluding others; or that a certain course of action is
preferred but not necessarily required; or that (in the negative form) a certain course of action is
deprecated but not prohibited (should equals is recommended that).

• The word may is used to indicate a course of action permissible within the limits of the standard
(may equals is permitted).

• The word can is used for statements of possibility and capability, whether material, physical, or
causal (can equals is able to).

All sections are normative, unless they are explicitly indicated to be informative.

This specification uses the word “device” to refer to a device-under-test (DUT) or a Target System (TS).
For example, we may refer to a “mobile device” as the device being debugged. The USB architecture
assigns specific meanings to the words “host” and “device”. The word “device” thus becomes confusing
when debugging a “host” device, such as an OTG smartphone. In this case, the host being debugged
supports the xHCI Debug Capability (DbC), where the DbC is essentially a barebones device controller.
Thus, in this context, it is correct to refer to the “host” device as a device. To avoid confusion, we try to
use TS instead of device.

1.3 Abbreviations
e.g. For example (Latin: exempli gratia)

i.e. That is (Latin: id est)

aka also known as

 USB 3.1 Debug Class 7/14/2015

- 12 -

2 Related Documents

[1] "MIPI Alliance Debug Architecture Overview," [Online]. Available: www.mipi.org.

[2] "USB2 Debug Device: A functional Device Specification. Rev 0.9," March 2003.

[3] "xHCI Specification," www.usb.org, May 21, 2010.

[4] "USB2 Specification Rev 2.0," www.usb.org, April 2000.

[5] "USB3 Specification Rev 3.0," www.usb.org, Nov 12, 2008.

[6] "USB Attached SCSI Protocol V1.0," 24 June 2009. [Online]. Available:
http://www.usb.org/developers/devclass_docs.

[7] "USB Interface Association Descriptor Device Class Code and use model," usb.org, July 23, 2003.

[8] "Universal Serial Bus Communications Class Subclass Specifications for Network Control Model
Devices," 24 Nov 2010. [Online]. Available: http://www.usb.org/developers/devclass_docs.

 USB 3.1 Debug Class 7/14/2015

- 13 -

3 Specification Overview and Scope

3.1 Introduction
The integration of processors and hardware accelerators on a single die and within a single mobile
appliance leads to a premium on pins and connectors, such that the cost of implementing a dedicated
debug port is very high. In addition, the quest for ever thinner and smaller mobile devices makes it
physically difficult to add any connectors, never mind a dedicated debug port. Consequently, debug
connectivity is often no longer easily accessible in the late phases of Research and Development, and is
often removed in the end product. This severely restricts the debugging capabilities, especially in the case
of customer returns.

It is thus very attractive to share an available USB port for debug, especially if this does not preclude
normal operation of the port. Enhanced SuperSpeed is ideal because it allows probe-less debug by third-
party application developers with trace bandwidth of up to 10Gbps. The USB Type-C port doubles this
via two SuperSpeedPlus ports.

Debug spans many usage cases. For example, it could mean accessing registers via the TAP network,
or debugging the OS or an application with a GNU-type debugger, or capturing hardware or software
traces, and so on. To help address these various scenarios, this specification supports a number of
different debug capabilities: there is a capability for accessing a debug unit, such as a TAP controller; a
capability to capture traces; and finally, a capability to access debug software. The multiple USB
endpoints allow these capabilities to operate concurrently. Thus, it is possible to perform trace capture
over one endpoint, and to use another pair of endpoints for run control. We provide more extensive
examples later in the document.

An SoC consists of many cores, each of with may require its own debug tool. For example, the audio,
video, graphics, modem and primary cores of an SoC may all come from different IP vendors, and each
of these vendors may provide their proprietary debug tools. This specification allows multiple such tools
with their corresponding USB drivers to all coexist on the host, and for the user to swap between
tools/drivers as required to debug the different IPs within the SoC target, albeit in a mutually-exclusively
manner.

In addition, the USB Debug Class specification allows extensions to the descriptors by standardization
bodies and for vendor-specific use. This flexibility allows the Debug Class to accommodate future
developments, similar to how the video class allows the addition of future image-compression standards.
Thus, for example, a debug-standards body could develop a specification for a new debug function, and
define an associated set of Debug Class specific debug commands to control this function.

The aforementioned flexibility helps ensure that the Debug Class specification accommodates the
demanding debug requirements for the SoCs within mobile devices, as well as the debugging needs for
laptops, PCs, servers, and other compute devices with a USB port – both, for current and for future
devices.

Because most debuggers are not USB experts (and equally, most USB experts are not debug experts),
then this document provides numerous examples and use cases to help bridge this knowledge gap.

Finally, debug support is often inconsistent across designs and generations of products. This leads to
multiple variants of debug tools, each crafted for a particular design. This specification attempts to address
this shortcoming by recommending or mandating how the USB 3.1 debug capabilities should/shall be
used, to help drive standardization of debug via USB 3.1 in the industry.

3.2 Purpose
This document describes the minimum capabilities and characteristics that a USB device shall support to
comply with the USB 3.1 Device-Class Specification for debug devices.

 USB 3.1 Debug Class 7/14/2015

- 14 -

The debug function running on the USB device can use either the device endpoints provided by the USB
3.1 Device Controller or via the Debug Capability (DbC). The DbC was originally architected in the
Extensible Host Controller Interface for the USB (xHCI) [3], but has been extended in this document to
support Debug Control and other attributes.

Devices that conform to this specification are referred to as USB 3.1 Debug Class devices.

3.3 Scope
The USB Device-Class definition for debug devices applies to all devices or functions within composite
devices that are used to manipulate debug and debug-related functionality using the capabilities defined
in this specification. This includes devices such as a smartphone, tablet, laptop, desktop computers,
servers, game console, embedded device, and other digital devices that provide a USB 3.1, USB 3.0, or
USB 2.0 port and require debug, either in the field or in the lab. It includes the debug and test of devices
from initial power-on to the tuning of software applications in a released product. Note that the target
system may be a Smartphone, laptop, etc., which provides an OS. An implementation may choose to use
this software in support of the debug, but this is not anticipated to be the usual case.

This specification assumes the reader is familiar with the USB 2.x, USB 3.x, and the eXtensible Host
Controller Interface specifications [4], [5], [3].

USB 3.1 is a dual-bus architecture that incorporates USB 2.0 and an Enhanced SuperSpeed bus. It is a
physical Enhanced SuperSpeed bus combined in parallel with a physical USB 2.0 bus. The USB 3.1
connection model accommodates backward and forward compatibility for connecting USB 3.1, USB 3.0,
or USB 2.0 devices into a USB 3.1 bus. Similarly, USB 3.1 devices can be attached to a USB 2.0 bus.
USB 3.1 devices accomplish backward compatibility by including both Enhanced SuperSpeed and non-
SuperSpeed bus interfaces. USB 3.1 hosts also include both Enhanced SuperSpeed and non-
SuperSpeed bus interfaces, which are essentially parallel buses that may be active simultaneously in a
host.

A USB 3.1 peripheral device must provide support for both Enhanced SuperSpeed and at least one non-
SuperSpeed speed. For a Debug Class device, we recommend HighSpeed. The minimum requirement
for non-SuperSpeed is for a device to be detected on a USB 2.0 host and allow system software to direct
the user to attach the device to an Enhanced SuperSpeed capable port. A device implementation may
choose to provide appropriate full functionality when operating in non-SuperSpeed mode. We recommend
providing a basic set of capability as a backup in case the Enhanced SuperSpeed mode fails during early
debug.

Note that the USB 3.1 specification does not permit simultaneous operation of Enhanced SuperSpeed
and non-SuperSpeed modes for peripheral devices. In contrast, a host or hub may support both interfaces
simultaneously – see Figure 3-1.

Enhanced
SuperSpeed

Non-
SuperSpeed

USB 3.1 Hub

Enhanced
SuperSpeed

Non-
SuperSpeed

Composite Cable

USB 3.1 Host
USB 2.0 Device

Non-
SuperSpeed

USB 3.1 Device

Non-
SuperSpeed

Enhanced
SuperSpeed

USB 3.1 and USB 2.0 simultaneously

USB 3.1 or USB 2.0 but
not simultaneously

USB 2.0 interface only

Figure 3-1: USB 3.1 and USB 2.0 interfaces

Because of this dual-bus architecture, this specification addresses debug support of a USB 3.1 or USB
2.0 host debugging a USB 3.1 or USB 2.0 device. The expectation is that debuggers will primarily focus

 USB 3.1 Debug Class 7/14/2015

- 15 -

on Enhanced SuperSpeed because of its greater bandwidth. However, this duality is beneficial, since the
non-SuperSpeed interface provides a backup in case the Enhanced SuperSpeed interface is buggy and
not functioning correctly (e.g., during early-phase debug).

Consequently, this debug support provides a means of connecting two systems where one system is a
USB 3.1 or USB 2.0 Debug and Test System (DTS) host (i.e., where the debug tool runs) and the other
is a USB 3.1 or USB 2.0 Target System (TS) (e.g., a smartphone). See option 1 in Figure 3-2. It is also
possible for a single DTS to debug multiple target systems, as shown in option 2 of Figure 3-2. Appendix
E: gives more examples of other debug scenarios.

Figure 3-2: Two possible debug scenarios

The TS requires device capability. Thus, it can be a USB device, or a USB host that supports DbC.

A USB 3.1 Debug device is a standard USB device, in the sense that it supports a default Control endpoint
that responds to standard USB requests, e.g. SET ADDRESS, etc. In addition, the Debug Class supports
optional Debug Class specific commands on the default Control endpoints, together with an optional
interrupt IN endpoint.

The Debug Class commands provide elementary capabilities to configure the debug hooks. This is
particularly useful in a low-cost device with only a limited number of endpoints available for debug use.
For example, a device may provide a single IN endpoint for debug trace, and use the control endpoint for
configuration of the trace capability.

The Debug class predominantly uses the Bulk transfer mode, but it also supports isochronous transfers
for streaming debug traces across the debug-trace interface.

The actual mechanisms used to configure and initialize the debug hooks in the TS are out of scope of this
document, although elementary, optional debug commands are defined to perform basic configuration
operations. The details of the TAP chains and the functionality of the debug hooks are also out of scope.

This Debug Class does not support the USB 2.0 Debug Device [2], but it does not preclude its use. The
USB 2.0 debug capabilities are orthogonal to those covered by this document and thus an OTG device
may choose to support both (providing the host controller provides the appropriate support).

3.4 Overview

3.4.1 Debug Capabilities
The USB 3.1 Debug Class allows the debug of current and future generations of compute devices, using
debug capabilities. In the past, debug was achieved via a trace port, TAP, and a UART port accessing a
kernel debugger, etc. Thus, the USB Debug Class provides the following debug capabilities:

Dfx: The intent of this capability is to provide access to a hardware debug unit such as a TAP
controller. Once this capability is initiated, it is fully self-controlled (e.g., via a hardware state
machine and not via an OS USB stack), thus allowing a host to perform stop-mode debug on
a running TS.

Debug Option 2Debug Option 1

USB 3.0
link

Target
System (TS)

DTS with Debugger application
running on host laptop

USB 3.0 links

DTS with Debugger application
running on host laptop

H
U
B

Multiple Target
Systems

 USB 3.1 Debug Class 7/14/2015

- 16 -

Trace: This capability supports debug traces.

GP: The intent of this “General-Purpose” debug capability is to provide access to debug software,
such as a kernel debugger or software used to configure the debug features. Unlike Dfx, this
capability could be controlled by the USB OS Stack, just like a normal device endpoint. Note
that an implementation may choose to use this for any general-purpose debug usage, such
as accessing memory via a hardware block such as a DMA engine.

Control: The Debug class supports optional Debug Class specific control requests that allow the
debugger to perform basic operations on the debug logic via the default endpoint. These
include reads and writes of data structures (e.g., configuration registers), the enabling of
power-management operating modes, and so on. It is possible to use these class-specific
commands for basic debug operations (e.g., read/write memory), although the bandwidth via
the default Control endpoint is low.

Each Dfx and GP interface requires a pair of IN/OUT endpoints, while a Trace interface requires a single
IN endpoint. Debug Control uses the default Control endpoint, together with an optional Interrupt endpoint.

Certain debug scenarios may require all capabilities (i.e., Dfx, Trace, GP, and Debug Control) during the
same debug session, although a typical scenario requires fewer capabilities (e.g., just Trace). In addition,
a device may choose to replicate capabilities across multiple interfaces. For example, a device may
provide three, independent trace interfaces, one for the modem traces, one for the main core, and one
for the graphics traces. Such a device may also provide GP and Dfx interfaces, and will thus support three
debug capabilities across five debug interfaces.

Note: An SoC implementation consists of multiple IP blocks, each of which may provide a trace
output. An implementation may find it more convenient to treat these as separate, dedicated trace
interfaces, rather than attempt to merge the traces together into a single interface. This is
especially true if there are legacy debug tools associated with the IP blocks that cannot handle
the new protocol necessary for a merged trace stream.

Thus, a TS implementation of the Debug class may provide from zero to many endpoints. For example,
an implementation may only use the Debug Control, which uses the default endpoint; or it may use many
endpoints, as given in the prior example. That example supported all four debug capabilities across six
interfaces spread across seven IN or OUT endpoints together with the Default Control endpoint:

Dfx: 1 Interface using an IN/OUT endpoint pair.

Trace: Trace 1 (Modem): 1 interface using an IN endpoint.

Trace 2 (Core): 1 interface using an IN endpoint.

Trace 3 (Graphics): 1 interface using an IN endpoint.

GP: 1 Interface using an IN/OUT endpoint pair

Debug Control: 1 Default Control interface using default Control endpoint 0

3.4.2 DbC and DvC Overview
3.4.2.1 DbC Overview

The Debug Class requires a USB device controller on the TS. However, a host does not have a USB
device controller, and thus needs extra logic so that it behaves as a device (and not a host) during debug
over USB. The xHCI specification [3] defines the DbC Debug Capability for this purpose, where the DbC
is in essence a simple device controller that provides a pair of Bulk endpoints for the purpose of debug.
This allows, for example, a laptop to debug another laptop that supports DbC.

The Debug Class extends upon the xHCI-compliant DbC to include the full complement of debug
capabilities, namely GP, Trace, Dfx, and Control. Thus, the Debug Class defines three debug capabilities,
DbC.Dfx, DbC.Trace, and DbC.GP, together with Debug Control. Each of these capabilities expands upon
the original xHCI DbC. For example, DbC.Dfx, DbC.Trace, and DbC.GP support topology and Debug
Control, which the original xHCI DbC did not.

 USB 3.1 Debug Class 7/14/2015

- 17 -

Note that the xHCI DbC specification is not a USB class specification, but an architectural specification
(e.g., state machines, registers, etc.). This Debug Class specification describes the capabilities of the
DbC as perceived by the host, and not the actual architecture or implementation of the DbC.GP,
DbC.Trace, and DbC.Dfx logic. An implementation is free to architect DbC.GP, DbC.Trace, and DbC.Dfx
as they prefer, and need not adhere to the original xHCI-Compliant DbC architecture. This is most likely
the case for DbC.Trace and DbC.Dfx which interface to debug hardware. DbC.GP interfaces to software,
and thus there is some value in using the original xHCI DbC architecture for this particular capability.

3.4.2.2 DvC Overview

A USB host requires DbC to provide the necessary device-controller hardware for debug. A USB device
clearly does not need any extra hardware – debug simply uses any of the available device endpoints.

Thus, the Debug Class uses the standard device endpoints for the three debug capabilities, and refers to
them as DvC.Dfx, DvC.Trace, and DvC.GP, where DvC denotes Device (debug) Capability. The acronym
DvC is purely a convenience, and unlike DbC, does not imply additional hardware support for debug
(although a TS may do so if it wishes).

We also use the acronym DxC when we are referring equally to either DbC or DvC.

Thus, a Host TS requires DbC in order to be debug-able, whereas a USB device or OTG does not. Note
that the Host controller of an OTG may provide DbC logic, thus allowing it to be debugged via DbC or
DvC, depending upon which USB cable is inserted.

In reality, there is no difference between the DbC and DvC capabilities from the perspective of the Debug
Class – they are interchangeable. The two categories, DbC and DvC, originally came about because the
current implementations physically associate the DbC logic with the xHCI, while the DvC uses the
endpoints of the device controller. In future designs, if the device controller and the DbC logic are
integrated into one IP, then this distinction becomes immaterial.

Note that the xHCI specification restricts DbC to SuperSpeed only. This Debug class does not impose
this restriction. Thus, one may use DbC.Dfx, DbC.GP, or DbC.Trace with HighSpeed.

3.4.3 Example Implementation
Figure 3-3 shows an example of a TS device providing a number of debug interfaces together with a
normal interface (e.g., to a mass-storage function). Thus, in this example, a single USB port supports
both normal USB 3.1 traffic together with debug traffic.

This example supports all three debug capabilities (i.e., DvC.Trace, DvC.GP, and DvC.Dfx) across four
interfaces (i.e., DvC.GP, DvC.Dfx and two Trace interfaces). It also uses the default, endpoint 0 interface
for the Debug Class-specific commands. For example, the debugger can use the Debug Class-specific
requests to configure the debug capabilities, such as enabling the Trace-Processing unit.

The TS of Figure 3-3 has two independent Trace-Processing units that merge a number of internal traces
into a single trace stream, before sending the trace out via two separate DvC.Trace interfaces. The device
also provides an interface to the TAP logic via the DvC.Dfx interface. In addition, the device uses the
DvC.GP interface for a kernel debugger on the host to communicate with the corresponding Kernel-debug
Function on the device.

 USB 3.1 Debug Class 7/14/2015

- 18 -

Graphics

Bus
Watcher

USB3 Hardware
Controller

HOST
(DTS)

Processor
Traces

SW Messages

HW Messages

USB Device (TS)

DvC.Trace 2

DvC.Dfx Commands/data in

Endpoint B IN

Endpoint C OUT

Endpoint D OUT
DvC.GP (Kernel debugger control)

Endpoint C IN DvC.Dfx Data out

Endpoint D IN
DvC.GP (Kernel debugger data out)

Application

A
P

E
 D

eb
ug

ge
r

Endpoint 0 USB Enumeration & Debug-Class
specific Commands

TAP
Controller

Trace
Processing

Unit 2

Kernel
debugger

USB 3.0
Kernel
Drivers

Normal USB traffic
Endpoint E IN

Endpoint E OUT

Debug Configuration

Debug
Driver

Modem

Bus
Watcher

Processor
Traces

SW Messages

DvC.Trace 1Endpoint A IN

Trace
Processing

Unit 1

M
od

em

D
eb

ug
ge

r

Figure 3-3: Example of a TS device supporting all Debug Capabilities

The Debug Class descriptors provide the optional capability to define the debug topology. For example,
the topology could define which sources generate the debug traces and how these traces are merged to
form the final trace stream sent on the trace endpoint. Thus, for example in Figure 3-3, the topology
descriptors will show that the Modem traces connect to the Trace-Processing unit 1, while the Core,
Graphics unit, and the Bus-Watcher unit connect to the Trace-Processing unit 2. In addition, the
descriptors could provide the trace format of the output of each of these units. The Debug Class-specific
commands can target these individual units for the purpose of configuration, power-gating, etc.

The following examples itemize a number of debug-use cases, and suggest the appropriate debug
capability:

• TAP debug: DxC.Dfx is the most suitable capability for accessing this debug functionality.

• Trace Capture: DxC.Trace in conjunction with DxC.Dfx, DxC.GP, or the Debug Class-specific
debug commands to configure and enable the traces.

• Software debug: DxC.GP to access the Kernel debugger, and possibly, in addition, DxC.Dfx for
TAP debug when the kernel debugger hangs and the debugger needs to access hardware state.

• System Debug of a smart device: This may use 1, 2, or 3 of the following debug capabilities:

• DxC.Trace for instrumentation traces (e.g., Printk-type messages from the software
and/or firmware) and for hardware traces

• DxC.Dfx, DxC.GP, or the Debug Class-specific debug commands to configure and
enable the traces

• DxC.Dfx for TAP access

• OS USB-stack debug on a multi-port OTG device or host: This can use DxC.GP on one port
communicating with a kernel debugger on the device, while another port is acting as a normal
USB 3.1 host.

 USB 3.1 Debug Class 7/14/2015

- 19 -

3.5 Functional Characteristics
Figure 3-4 shows an example debug configuration with the corresponding standard descriptors defining
the debug functionality of the Target System device.

Configuration Descriptor

Endpoint Descriptor 1 (TAP IN)

Endpoint Descriptor 1 (TAP OUT)

Interface 2 Descriptor (DvC.Dfx)

Endpoint Descriptor 2 (Debug Traces IN)

Interface 3 Descriptor (DvC.Trace), bAlternate Setting = 0

EndPoint 2 IN, Bulk Transfer

EndPoint 1 IN, Bulk Transfer

EndPoint 1 OUT, Bulk Transfer

Endpoint Descriptor 2 (Debug Traces IN)

Interface 3 Descriptor (DvC.Trace), bAlternate Setting = 1

EndPoint 2 IN, Isochronous Transfer, Full Bandwidth

Endpoint Descriptor 4

Interface 6 Descriptor (Mass-Storage)

EndPoint 4 IN, Bulk Transfer

D
eb

ug
 M

ul
ti-

Fu
nc

tio
n

(T
A

P
 a

nd
 T

ra
ce

)

Endpoint Descriptor 3 (Run-Mode IN)

Endpoint Descriptor 3 (Run-Mode OUT)

Interface 5 Descriptor (DvC.GP)

EndPoint 3 IN, Bulk Transfer

EndPoint 3 OUT, Bulk Transfer

EndPoint 4 IN

EndPoint 3 IN

EndPoint 3 OUT

N
or

m
al

(n

on
 d

eb
ug

)

Device Descriptor

Interface Association Descriptor Interface Association 0

Endpoint Descriptor 4
EndPoint 4 OUT, Bulk Transfer

EndPoint 4 OUT

Non-debug
Application

(e.g., Mass storage)
Mass-Storage Logical Pipe

Normal Interface Endpoint 4 OUT

Endpoint 4 IN

Debugger 1

Stop-Mode
Control Debugger

DvC.Dfx Logical Pipe

Debug Interfaces

TAP Controller
Capability

DvC.Trace Logical Pipe

Endpoint 1 OUT

Endpoint 1 IN
Debug Trace
Capture and
Display GUI

Endpoint 2 IN

USB3

Debug Trace
Capability

Kernel Run-mode
Debugger

DvC.GP Logical Pipe
Kernel Run-mode
Debug Function

Endpoint 3 OUT

Endpoint 3 IN

Debugger 2

Interface 1 Descriptor (Debug Control)

Debug Attributes Descriptor

Multi-Function

Host (DTS) Device (TS)

Interface 4 Descriptor (Debug Control)

Debug Attributes Descriptor

Interface Association 1Interface Association Descriptor

D
eb

ug
 F

un
ct

io
n

(K
er

ne
l D

eb
ug

ge
r)

Mass-Storage
Function

Figure 3-4: Example of the USB Descriptors for the Debug Function

Figure 3-4 is an example showing the primary USB descriptors for three DvC debug capabilities: DvC.Dfx,
DvC.Trace, and DvC.GP. It also shows two debugger tools in the host – one communicates via the

 USB 3.1 Debug Class 7/14/2015

- 20 -

DvC.GP to a kernel debugger, while the other communicates with a multi-function debug unit providing
trace and Dfx capabilities. In order to support two such debuggers, two separate drivers are necessary
on the host – one per debug tool. The USB uses Interface Association Descriptors (IAD) to group together
the functions which pertain to a particular debug tool, thus allowing such multi-tool support.

In this example, the first three debug interfaces (i.e., Debug Control, DvC.Dfx and DvC.Trace) are grouped
together into a Debug Interface Collection (DIC) by the Interface Association Descriptor (IAD). This
grouping allows a single Debug tool to access this multi-function TAP and Trace unit.

The last debug interfaces (i.e., Debug Control and DvC.GP) is within a different DIC defined by the second
IAD. This IAD is used to associate the Debug Control with the DvC.GP interface – thus the Debug
commands will pertain only to the Kernel Debug function and not to the Trace and TAP multi-function unit.
Thus, for example, Debugger 1 can use a Class-specific command to stop/start the hardware debug
traces over the DvC.Trace interface, while Debugger 2 can use the same Class-specific command to
start/stop software traces over the DvC.GP interface. Each of these commands target the particular DIC,
and have no effect on the other DIC. Please see Section 5 for more details.

Section 3.6.4 provides more details on Debug Interface Collections and Interface Association Descriptors.

The host DTS in this example contains two debuggers. Debugger 1 communicates with the first DIC,
while debugger 2 communicates with the second DIC. Thus the example of Figure 3-4 shows two
independent debug tools interacting with different debug capabilities and functions in the target device.
Debugger 1 provides trace and TAP debug support, while Debugger 2 is a kernel debugger.

To avoid overcomplicating the example, Figure 3-4 does not show the optional Debug Class-specific
descriptors, which are used to define the debug topology in the TS. These are covered later in this
document.

Finally, in addition to the debug interfaces, the example of Figure 3-4 also shows the device supporting a
normal (i.e., non-debug) USB function (i.e., mass storage).

3.5.1 The Debug Capabilities
The Debug Capability is defined in the Interface descriptor using the bInterface, bInterfaceSubClass
fields, as shown in Table 3-1.

Table 3-1: The Debug Sub-classes

bInterface Class bInterface Sub-Class Description of Typical usage

Diagnostic Class

(0xDC)

DbC.GP General-Purpose Software debug function (e.g., GNU
debugger)

DbC.Dfx Access to hardware Dfx hooks within the host (e.g.,
TAP, Memory access, debug trace1, etc.)

DbC.Trace Debug traces

DvC.GP General-Purpose Software debug function (e.g., GNU
debugger)

DvC.Dfx Access to Dfx hooks within the device (e.g., TAP,
Memory access, debug trace1, etc.)

DvC.Trace Debug traces

 Debug Control Control interface applicable to DxC.Trace, DxC.Dfx,
DvC.GP (and optional for DbC.GP)

1Although, DxC.Dfx supports debug traces, DxC.Trace is the recommended interface

 USB 3.1 Debug Class 7/14/2015

- 21 -

In general, the DbC and DvC functionality is interchangeable, and thus this Debug Class specification
uses the terminology DxC to refer to either.

The USB 3.1 Debug Class provides the following capabilities:

(1) DxC.GP (General Purpose): This uses a pair of standard USB Bulk IN/OUT endpoints for
accessing debug software. Typical uses for DxC.GP are access to a GNU debugger or a device
driver that configures the debug hooks within the device (this is analogous to the COM drivers
long used for debugging purposes). DxC.GP uses bulk transfers for reliability. DvC.GP may
choose to provide hardware support for this debug capability (e.g., hardware support for
enumeration similar to the xHCI DbC).

(2) DxC.Dfx: This debug capability uses a pair of Bulk IN/OUT endpoints to access a debug
hardware block within a TS. Examples of such debug blocks include the scan logic within a TS
(e.g., the TAP logic), read/write access to a memory region, debug traces, etc. Typically, the
Debugger uses the DxC.Dfx capability to configure and initialize the device, and to perform the
usual debug run-control features such as halt and resume the CPU, perform a single-step
operation, read/write memory, etc. Run-control operations require guaranteed, reliable
transactions, and thus DxC.Dfx only supports Bulk transfers.

Even though DxC.Dfx capability supports debug traces, we discourage this usage because the
DTS tools may have difficulty in separating merged high-bandwidth traces from other debug traffic
in real-time. Instead, we recommend using DxC.Trace exclusively for traces. However, a cost-
constrained TS may only provide a single pair of debug endpoints. In this case, all debug
operations, including traces, need to funnel through DxC.Dfx.

Note that DvC.Trace supports both bulk and isochronous transfers, whilst DxC.Dfx only supports
bulk transfers for reliability reasons (see Table 3-2).

(3) DxC.Trace: This capability is intended for the transfer of high-bandwidth debug trace to the DTS.
This is the preferred capability (rather than DxC.Dfx) for traces. As an implementation note, we
recommended that a TS performs the trace operations autonomously via hardware control
instead of via an OS stack driver so as not to perturb the running system. This capability supports
bulk and isochronous transfers.

(4) Debug Control: The Debug Class provides optional support for Debug Class-specific
commands. For example, they allow read and write access to the configuration registers of the
debug hardware, thus allowing the debugger to configure the debug hooks. Although the Debug
Class-specific commands are optional, we strongly urge their use to facilitate standardization of
the debug tools. See Section 5 for more details.

Table 3-2 provides the attributes of the debug capabilities. DvC may use any of the available endpoints
in the device – there is no requirement to use specific, dedicated endpoints for debug (unlike the USB 2.0
Debug Device [2]).

 USB 3.1 Debug Class 7/14/2015

- 22 -

Table 3-2: Debug Interfaces
TS Debug Interfaces Bus Interface Endpoint Data Type

DvC

DvC.GP

Enhanced SuperSpeed,
SuperSpeed, HighSpeed

IN, OUT Bulk
DvC.Dfx IN, OUT Bulk

DvC.Trace IN Bulk,
Isochronous

DbC

DbC.GP IN, OUT Bulk
DbC.Dfx IN, OUT Bulk

DbC.Trace IN Bulk,
Isochronous

DxC Debug Control
(Optional for DbC.GP)

Default
Control

Endpoint

Control

Interrupt
(Optional)

Note that the xHCI-compliant DbC only supports SuperSpeed, but the Debug Class does not impose this
restriction.

3.5.2 Debug Scenario Examples
A USB 3.1 Debug Class device may implement no specific debug interface apart from supporting Debug
commands over the default endpoint 0, or it may implement one or more of the debug interfaces. The
simplest example is a TS that sends the debug traces to an internal buffer and uses debug commands
over the default endpoint 0 to configure and extract these traces. More extensive scenarios will use
multiple interfaces for trace, Dfx, and GP to access SW debug functions.

A debug lab could have multiple debuggers installed on the DTS host. For example, they may have an
in-house debugger with proprietary access to a specific core in an SoC, and may have another
commercial debugger that supports multiple cores, but without access to the protected features. It is quite
possible that a debug user will switch between these tools during a debug session, depending on the
visibility they require.

For example, one debugger controls the DvC.Dfx and DvC.Trace pipes, while another debugger controls
the DvC.GP pipe. All of the DxC debug capabilities can be used concurrently.

Figure 3-5, Figure 3-6 and Figure 3-7 show a number of possible options for the debuggers within a host.
These examples show the Debug Class driver in the DTS host connecting to a TS host or to a TS device.

The example options in

Figure 3-5 are:

• Option 1 shows a device that only generates debug traces. Thus, the host only requires a
DvC.Trace driver. This option could use the Debug Class commands on the default endpoint 0
to configure and enable the traces, or even the Standard USB commands such Set Configuration
to automatically enable the traces.

• Option 2 shows a device that only supports run-control via a DvC.Dfx interface.

• Option 3 shows three independent debugger applications running in a single host: one each for
the DvC.Dfx, DvC.Trace, and the DvC.GP capability.

• Option 4 uses two debuggers connected to the three drivers

Figure 3-6 shows:

 USB 3.1 Debug Class 7/14/2015

- 23 -

• Option 5 shows the simplest scenario of a debugger using Debug Control to access state within
the device. For example, configuring the Graphics unit to send traces to a buffer in main memory,
and then afterwards extracting the traces from memory.

• Option 6 shows a single, full-capability, independent debugger connected to all three drivers
providing the TAP, Trace, and GNU debugger debug support

• Option 7 illustrates that a device can instantiate multiple instances of a debug capability. This
example has two different DvC.Trace interfaces. For example, a SoC with integrated modem may
choose to dedicate one debug-trace interface to the modem traces and a second to the non-
modem traces.

Figure 3-7 visualizes:

• Option 8 is the same as Option 2 except that it is an example of host-to-host debug

• Option 9 is the same as Option 3 except that it is an example of host-to-host debug

• Option 10 assumes that the host TS is merging traces, run-control, and a memory accesses onto
a single DbC.Dfx interface (see top portion of the drawing

• Figure 3-5).

An OTG device may implement both DbC and DvC, and could thus provide mutually-exclusive support
for either by changing the USB cable. For example, options 5 or option 8 – depending on which USB
cable is used.

USB Debug Class Driver

Device TS

Option 4

Run-Control & Trace-
Capture Debugger

GNU
Debugger

DvC.Dfx
Driver

DvC.Trace
Driver DvC.GP Driver

Host (DTS)

USB Debug
Class Driver

Device TS

Option 2

DvC.Dfx
Driver

Run-
Control

Debugger

Host (DTS)

USB Debug Class Driver

DvC.Dfx
Driver

DvC.Trace
Driver DvC.GP Driver

Device TS

Option 3

Run-
Control

Debugger

Trace
Capture

Debugger

GNU
Debugger

Host (DTS)

USB Debug
Class Driver

Device TS

Option 1

DvC.Trace
Driver

Trace
Capture

Debugger

Host (DTS)

Figure 3-5: Simple Debug Scenario Examples

 USB 3.1 Debug Class 7/14/2015

- 24 -

USB Debug Class Driver

Device TS

Option 7

Run-Control & Trace-Capture
Debugger

GNU
Debugger

DvC.Dfx
Driver

DvC.Trace
Driver1 DvC.GP DriverDvC.Trace

Driver2

Host (DTS)

USB Debug
Class Driver

Device TS

Debug Control
Driver

Debugger

Host (DTS)

Option 5

USB Debug Class Driver

Device TS

Option 6

DvC.Dfx
Driver

DvC.Trace
Driver DvC.GP Driver

Single, Combined Trace, GNU
debugger, & Run-control Debugger

Host (DTS)

Figure 3-6: Debug Scenario Examples; Combined Tooling

USB Debug
Class Driver

Host (DbC) TS

Option 10

DbC.Dfx Driver

Run-
Control

Debugger

Trace
Debugger

Memory
Interface
Debugger

Host (DTS)

USB Debug
Class Driver

Host (DbC) TS

Option 8

DbC.Dfx
Driver

Run-
Control

Debugger

Host (DTS)

USB Debug Class Driver

DbC.Dfx
Driver

DbC.Trace
Driver DbC.GP Driver

Option 9

Run-
Control

Debugger

Trace
Capture

Debugger

GNU
Debugger

Host (DTS)

Host (DbC) TS

Figure 3-7: Host Debug Scenario Examples

3.5.3 Debug Function Topology
A debug function may consist of a number of interconnected components. For example, a debug trace
function may consist of a network of Trace-Processing units. The optional Debug Class-specific, Debug-
Unit descriptor allows one to define this network, together with the control capabilities supported by each
component of the specific network.

There are two generic entities that define these components:

• Units
• Connections

Units provide the basic building blocks to fully describe the debug functions. These include agents that
generate traces, such as cores, graphics units, and bus watchers, as well as merging units that combine
multiple traces into a single stream. Connecting a number of such units creates a debug function (Figure
4-5 shows an example).

 USB 3.1 Debug Class 7/14/2015

- 25 -

A Unit typically has one or more input “pins” and a single output “pin”, but more complicated units consist
of multiple input and output pins. Note that the term “pin” denotes a vector going in and out of a unit, and
not a physical hardware pin.

One can connect multiple units together into a desired topology by connecting their I/O pins. A single
output pin can connect to one or more Input pins (fan-out allowed). However, a single input pin can only
connect to one output pin (fan-in disallowed) (Because it is unclear what to do when 2 or more outputs
join together – for example, do they merge packets or do they drop packets on a collision). See Figure
3-8. Loops or cycles within the graph topology are disallowed.

Dfx Unit

Dfx Unit

Dfx Unit

Dfx UnitFanout
allowed

Fan-in Not allowedDfx Unit

Dfx Unit

Dfx Unit

Figure 3-8: Examples of allowed and disallowed topologies

There are two types of Connections:

• An Input Connection (IC), which is an entity that represents a starting point for data streams inside
the debug function.

• An Output Connection (OC) represents an ending point for data streams.

A USB endpoint is a typical example of an Input Connection or Output Connection.

A connection provides data streams to the debug function (i.e., IC) or consumes data streams coming
from the debug function (i.e., OC).

Note: The meaning of “input” and “output” are relative to the debug unit and not the USB host. Hence, an
Input Connection connects to an OUT endpoint, and an Output Connection connects to an IN endpoint.
This use of “input” and “output” is more convenient from the perspective of the debug function.

Another example of connections is when interconnecting the debug hooks across multiple chips in a
platform. In this case, one of the chips provides the primary debug interface (e.g., the main SoC), and this
chip provides a debug path to the other chip (e.g., a Modem) (see top of Figure 4-5 for an example).

Input Pins of a Unit are numbered starting from one up to the total number of Input Pins on the Unit. A
Pin is an entity that can be a single signal or a bus. Similarly, output pins are numbered starting from one
up to the total number of Output Pins on the Unit. Connections have one Input or one Output Pin, which
is always numbered one.

A Debug-Unit Descriptor (DUD) fully describes every associated Unit in the debug function. The Debug-
Unit Descriptor contains all necessary fields to identify and describe the Unit. Likewise, there is a
Connection Descriptor for every input and output Connection in the debug function. In addition, these
descriptors provide all the necessary information about the topology of the debug function. They fully
describe how Connections and Units are interconnected.

See Section 4 for more details on Debug-Unit descriptors.

This specification describes the following types of standard Connections and Units:

• Input Connection
• Output Connection
• Dfx Unit
• Select Unit
• Trace-Router Unit
• Trace-Processing Unit
• Trace-Generation Unit
• Trace-Sink Unit

 USB 3.1 Debug Class 7/14/2015

- 26 -

These blocks can define hardware or software units. See Appendix E: for an example.

Future revisions of this specification, or companion specifications, could extend the types of Units.

In addition to the Unit and Connection descriptors, the Debug Class also defines a Debug-Control
Interface descriptor together with a corresponding Debug-Attribute descriptor. This set of descriptors
together with the debug-capability descriptors provides a full description of the debug function to the Host.
See section 4.4 for examples and more details. These descriptors allow a host debugger to determine
the topology and capabilities of the debug function on the TS.

Note: The descriptors could carry auxiliary vendor-specific information fully informing the DTS of the full
details and release levels of the debug IP. Alternatively, they could provide simplified information reflecting
the life-cycle support of a device. For example, in the lab, the device may provide TAP access to a modem,
which is not provided in a customer device. Thus, a DTS could quickly determine the supported features
within the TS.

3.5.3.1 Input Connection

The Input Connection (IC) provides an interface between the debug function and the "outside world". It
serves as a receptacle for data flowing into the debug function. The IC can be a single signal or a bus.
The symbol for an Input Connection is:

IC

Figure 3-9: Input-Connection Icon

An Input Connection can represent inputs to the debug function other than a USB OUT endpoint. An
example of such a non-USB input is JTAG pins driven by the debug function. Figure 3-10 shows Input
and Output Connections connecting to a USB endpoint and to an external device via JTAG pins. In
addition, the figure shows modem traces going to the Trace-Processing unit in the main SoC chip. Thus,
the TS consists of multiple chips (a modem and an APE), and only the APE has a USB port.

DTSDfx Unit:
Modem

DvC.Dfx

 OUT Endpoint

IN Endpoint

TAP
Controller

 Dfx Unit: TAP

OC

IC
OC

SoC Chip
DvC.Trace
IN EndpointOC

Other
traces

SoC
JTAG

Modem
Trace

IC

JTAG
mux

IC

JTAG

Trace
Processing

Unit

Figure 3-10: Input and Output Connections driving USB endpoint and external pins

3.5.3.1 Output Connection

The Output Connection provides an interface between the units within the debug function and the “outside
world”. It serves as an outlet for debug information flowing out of the debug function. Its function is to
represent a sink of outgoing data. The OC can be a single signal or a bus. The debug data stream enters
the Output Connection through a single Input pin, as depicted by the Output Connection symbol:

 USB 3.1 Debug Class 7/14/2015

- 27 -

OC

Figure 3-11: Output-Connection Icon

An Output Connection can represent outputs from the debug function other than a USB IN endpoint. The
example in Figure 3-10 shows two Output Connection on the Dfx unit, where one drives JTAG pins and
one drives a USB IN endpoint. If the debug stream is leaving the debug function by means of a USB IN
endpoint, then there is a one-to-one relationship between that endpoint and its associated Output
Connection.

3.5.3.1 Dfx Unit

The Dfx Unit is essentially a pair of units. One unit accepts n input streams, manipulates or processes the
streams in some manner, and routes the result to a single output stream. The other unit accepts a single
input, processes it, and creates m output streams (and the outputs need not all be the same). The symbol
for a Dfx Unit is shown below together with an example beneath it:

Dfx Unit

Memory
Access

TAP
Controller

JTAG In pins

JTAG Out pins

OUT Endpoint

IN Endpoint

IC

OC
M
u
x

Dfx Unit

IC

OC

External
Debug

Port
Interface

Debug Port In pins

Debug Port Out pins IC

OC

Example

Figure 3-12: Dfx Unit icon with two sets of 2 inputs together with an example

The example in Figure 3-12 shows general debug functionality within a Dfx Unit. This particular design
has a TAP controller with the ability to drive external JTAG pins, an interface to an external debug port,
and a memory read/write access sub-unit. Thus, the Dfx unit is essentially a general-purpose debug block.

Note that the above Dfx could alternatively be partitioned into smaller Dfx units – for example, one for the
TAP, one for the Memory-Access unit, etc. However, in this particular example, we assume that the Dfx
unit corresponds to a single IP block, which the host debugger needs to treat as a single “black box”
entity. (For example, the IP may have a single set of configuration registers, and thus the DTS needs to
access this logic as an entity in order to configure it.) This explains why the Dfx icon provides multiple-
inputs and multiple-outputs. See Appendix E: for more complicated scenarios.

The Debug Unit descriptor provides a field per output pin for the trace format. Thus, each output can have
a different format (including no format).

 USB 3.1 Debug Class 7/14/2015

- 28 -

Note that the Dfx unit need not only represent a hardware unit. It could also represent a debug software
application accessed via DxC.GP. For example, it could represent a GNU debugger, data logger,
configuration software, etc.

3.5.3.1 Select Unit

The Select unit selects one input stream from N data input pins and routes it to a single output pin. The
symbol for a Select Unit is:

Select Unit

Dfx Unit Dfx Unit Dfx Unit
Select
Unit

Select
Unit

Bypassed TAP unitExample

JTAG IN

JTAG OUT

Figure 3-13: Select Unit icon with an Example TAP chain

The example in the figure shows the select units bypassing the TAP chain, where each Dfx unit is a TAP
controller.

3.5.3.2 Trace-Router Unit

The Trace-Router unit redirects an input stream from a single data input pin on to 1 or more output pins
that can be individually enabled. For example, it can route traces with a specific IDs in one direction, and
traces with other IDs in a different direction. Note that fan out may be used if control and routing of the
individual output pins is not required. The symbol for a Trace-Router Unit is:

Trace-
Router Unit

Figure 3-14: Trace-Router Unit icon with 3 outputs

The trace format on all outputs can be different.

3.5.3.3 Trace-Processing Unit

The Trace Processing unit (TPU) merges 1 or more input streams, processes them (e.g., filtering) and
routes them to a single output stream. An example of a TPU is a MIPI STM. It has an Input Pin for each
source stream and a single Output Pin. The symbol for a Trace-Processing Unit is:

Trace
Processing

Unit

Figure 3-15: Trace Processing Unit icon with 3 inputs

An example of a TPU with a single input and single output is a trace convertor that maps an input trace
stream into an output stream that supports a different trace format.

 USB 3.1 Debug Class 7/14/2015

- 29 -

3.5.3.4 Trace-Generation Unit

The Trace Generation unit generates a single trace stream. The symbol for a Trace-Generation unit is:

Trace
Generation

Unit

Modem
Trace

Generation
Unit

Modem
Trace

Generation
Unit

Software
Trace

Processor
Instruction
Trace

Examples

Figure 3-16: Trace-Generation Unit Icon with an example

It is possible for a debug agent to generate multiple different traces that it sends to different debug ports.
For example, a modem may generate processor traces and firmware instrumentation traces, and these
traces go to different units (such as different Trace Processing units). We express this by using multiple
instantiations of the Trace-Generation Unit, as shown in the example above.

3.5.3.1 Trace-Sink Unit

A Trace-Sink unit absorbs a trace – for example, a memory buffer. The symbol for a Trace-Sink unit is:

Trace Sink
Unit

Figure 3-17: Trace-Sink Unit

A trace-Sink unit has a single Input pin and no output pins.

3.5.4 Debug Control of the Debug Units

Trace
Processing

Unit

Dfx Unit

Traces

Configure via
MMIO Access

TAP Controller

Configure
via MMIO

Configure
via TAP

Mail Box

DvC.Dfx

DvC.GP

Debug-Class Specific
Commands (Endpoint 0)

Debug
Driver

DvC.Trace

TS Debug
Application

Figure 3-18: Possible means of configuring a debug unit

There are many ways to configure the debug units. For example, Figure 3-18 shows six possible ways
of configuring a debug unit (in this case a Trace-Processing unit), as follows:

 USB 3.1 Debug Class 7/14/2015

- 30 -

1) Debug Class Specific commands: These use the default endpoint 0 to communicate with a debug
driver, which then configures the Trace-Processing unit.

2) Via DxC.GP: This interface communicates directly with a debug driver

3) Via an application running on the TS device

4) Via a “mailbox”: the Dfx unit uses the debug driver to configure the Trace-Processing unit via a
mailbox (e.g., a UART)

5) The Dfx unit may provide direct memory read and write capability that allows access to the
configuration registers in the Trace-Processing unit

6) Via TAP commands: the Dfx unit instructs a TAP Controller to scan in the configuration state into
the Trace-Processing unit.

Note: The Debug Class provides elementary read/write capability of the Debug units. Other Specification
bodies may provide their own set of commands that control a particular debug unit. For example, MIPI
may provide a set of commands for their MIPI STM unit. In addition, IP vendors may provide a set of
commands for their IP.

Section 5 provides more details on the Debug Class-specific commands.

 USB 3.1 Debug Class 7/14/2015

- 31 -

3.6 Debug Operational Model

3.6.1 Alternate Settings
There are a number of debug scenarios where we need to provide alternative capabilities:

1. To reuse endpoints for an alternative debug capability. For example, switching the endpoints
between Dfx and GP. This is of value in a cost-constrained implementation with only one endpoint
pair available for debug usage. The Alternate settings would switch the endpoints amongst the
different capabilities in a mutually-exclusive manner. See Section 3.6.2. Naturally, the DTS driver
will have to have the capability to handle these alternate interfaces.

2. To enable multiple debuggers to reside concurrently on a host, and to switch between them. For
example, during a debug session, the user may wish to rapidly switch between a commercial
debug tool and a proprietary tool, where each provides a different set of capabilities. See Section
3.6.5 for more information on multiple, mutually-exclusive debug tools.

There is a related requirement to initialize the debug function prior to switching to another debug
tool, so that the new debug tool sees the function in a known clean state. We use Alternate
Settings for this purpose also. See Section 3.6.5.1.

3. To select between different bandwidth options for isochronous traces. See Section 3.6.8.

These options are not mutually exclusive; they may be combined (see Figure 3-35 for an example).

This switching is achieved via the SET_INTERFACE request directed to the desired Interface with a different
bAlternativeSetting.

3.6.1.1 Alternative Settings Usage Notes

When the host configures the debug configuration, it uses the first default, Interface descriptors with the
bAlternativeSettings equal to zero. However, during operation, the host can send a SET_INTERFACE
request directed to the desired Interface with a different bAlternativeSetting (e.g., 1, 2, etc.) and thus
enable one of the other debug capabilities.

Typically, the operating system loads the driver based on the bDeviceClass/ bDeviceSubClass, and
bDeviceProtocol fields in the Device descriptor. However, a debug device tends to be a Composite device,
which has more than one Interface descriptor. In this case, the composite device sets the
Class/SubClass/Protocol fields in the Device Descriptor to 0, and defines the multiple drivers using the
Class/SubClass/Protocol fields in the various Interface descriptors. Thus, the OS loads a special
Composite driver, which walks through the Interface descriptors of a device, loading the appropriate driver
as a function of the bInterfaceClass/ bInterfaceSubClass/ bInterfaceProtocol values. See top of Figure
3-19 for an example.

 USB 3.1 Debug Class 7/14/2015

- 32 -

Device Descriptor
bDeviceClass = 0
bDeviceSubClass = 0
bDeviceProtocol = 0

Interface Descriptor
bInterfaceClass = A
bInterfaceSubClass = B
bInterfaceProtocol = C1

Alternate Setting 0

Interface Descriptor
bInterfaceClass = A
bInterfaceSubClass = B
bInterfaceProtocol = C2

Alternate Setting 1

Composite UASP Device

Since (Class, SubClass, Protocol) fields = (0, 0, 0) then the OS
uses fields in the Interface descriptor to select Composite driver

Composite UASP driver uses (Class, SubClass, Protocol) = (A, B, C1)
to select the primary driver.
If it wants to use alternative interface it calls new driver based on
(Class, SubClass, Protocol) fields = (A, B, C2) and issues a Set
Interface () to the device to switch to the Alternate Setting 1

Figure 3-19: Composite UASP (USB Attached SCSI Protocol) Device Example

Originally, the intent was for all alternate Interfaces to define the same InterfaceClass/
bInterfaceSubClass/ bInterfaceProtocol values in their Interface descriptors. Consequently, this means
that the device driver loaded for Alternate Interface 0 had to understand what the functions of the various
Alternate Interfaces are.

However, this approach proved too restrictive, and different device classes extended the capabilities. The
Debug class follows the approach adopted by the USB Attached SCSI Protocol (UASP) [6]. A summary
of this scheme is provided below to explain the concept:

All USB Storage products, Flash Drives, Thumb Drives, Hard Drives, and SSDs use a transfer
protocol called Bulk Only Transfer (BOT) protocol. This is a straightforward protocol and works
well for USB 2.0. However, USB 3.0 provides a new feature, called Bulk Streams, which reduces
protocol overhead by allowing multiple in-flight packets. The new UASP driver class supports
USB 3.0 Bulk Streams, offering greater performance than BOT. However, not all USB 3.0 devices
support Bulk Streams, and for backward compatibility with a USB 2.0 device, the USB 3.0 may
need to support BOT in addition to UAS (USB Attached SCSI).

For USB2 backward compatibility, the device shall present BOT as the primary interface (i.e.,
Alternate interface 0) and UAS (USB Attached SCSI) as the secondary alternate interface (i.e.,
Alternate interface 1). However, a device that does not need backward compatibility with BOT
shall only present UAS as alternate interface zero – in this case, there is no secondary Alternate
interface. In USB 2.0 systems, the BOT driver or an associated filter driver may need to issue a
SET_INTERFACE request for Alternate interface 1 and then allow the UAS driver to load. See Figure
3-19.

The UASP uses the bInterfaceProtocol field to select between BOT and UAS.

The Debug Class takes this approach a stage further and uses the bInterfaceSubClass to differentiate
between DxC.GP, DxC.Dfx, and DxC.Trace, and uses the bInterfaceProtocol value to select variants
within these capabilities.

Consequently, each Alternate interface in the Debug Class declares the same bInterfaceClass field, but
a different pair of bInterfaceSubClass and bInterfaceProtocol values. The driver would be loaded based
on the default 0th Alternate Interface. This version of the driver could then issue a SET_INTERFACE request
to switch the endpoints owned by the interface to the alternate debug capability.

Thus, for example, if the 0th Alternate-Interface driver is DvC.Dfx, then it will have the capability to switch
to another alternate interface driver such as DvC.Trace based on the bInterfaceSubClass field. See Figure
3-20.

 USB 3.1 Debug Class 7/14/2015

- 33 -

Device Descriptor
bDeviceClass = 0
bDeviceSubClass = 0
bDeviceProtocol = 0

Interface Descriptor
bInterfaceClass = 0xDC
bInterfaceSubClass = DvC.Dfx
bInterfaceProtocol = 0x01

Alternate Setting 0

Interface Descriptor
bInterfaceClass = 0xDC
bInterfaceSubClass = DvC.Trace
bInterfaceProtocol = 0x01

Alternate Setting 1

Composite Debug Device

Since (Class, SubClass, Protocol) fields = (0, 0, 0) then OS uses
fields in the Interface descriptor to select Composite driver

Composite Debug-class driver uses (Class, SubClass,
Protocol) to select the primary driver. In this example, it
selects the Dfx driver.
If it wants to use an Alternative interface it calls the new
driver based on (Class, SubClass, Protocol) fields, and calls
the DvC.Trace driver, and issues a Set Interface () to the
device to switch to the Alternate Setting 1

Figure 3-20: Composite Debug Class Device Example

3.6.2 Changing Debug Capabilities via Alternate Settings
An interface within a configuration may have alternate settings that redefine the number or characteristics
of the associated endpoints. DbC and DvC can both use Alternate settings. For example, a TS may
allocate one IN endpoint permanently to debug traces, and share a second pair of IN/OUT endpoints,
mutually-exclusively between a GNU debugger (via DxC.GP) and a TAP interface (via DxC.Dfx). Thus,
for the case of DvC, we have:

• Endpoint 1 Debug Trace
• Endpoint 2 has two, mutually exclusive, alternate settings:

1. Alternate Setting 0: Endpoint 2 GNU debugger via DvC.GP
2. Alternate Setting 1: Endpoint 2 JTAG interface via DvC.Dfx

Figure 3-21 illustrates the descriptors for this example:

Alternate Setting 1

Configuration
Descriptor

Device
Descriptor

Interface Descriptor
DvC.GP (GNU)

Interface Descriptor
DvC.Trace

IN Endpoint 2
Descriptor

Alternate Setting 0

OUT Endpoint 2
Descriptor

Interface Descriptor
DvC.Dfx (JTAG)

IN Endpoint 2
Descriptor

OUT Endpoint 2
Descriptor

IN Endpoint 1
Descriptor

Figure 3-21: Alternate Settings Example

Switching between Alternate settings does not affect any other interface. Thus, the debug trace interface
on endpoint 1 in Figure 3-21 is not affected by changing an alternate setting on endpoint 2.

3.6.3 Changing Debug Capabilities using Different Configurations
A debug device may use a different configuration instead of an alternate interface to share endpoints with
other functions. Figure 3-22 gives an example. This is similar to the prior example of Figure 3-21, in the
sense that one configuration provides Trace and a GNU debugger, while the other configuration provides
Trace and JTAG. However, switching between these two configurations requires all endpoint traffic to

 USB 3.1 Debug Class 7/14/2015

- 34 -

stop before selecting the other configuration. Thus debug tracing will stop during the changeover, unlike
the prior example using Alternate interfaces. Depending on the context, this may be a disadvantage. A
further disadvantage is that not all Operating Systems support multiple configurations. Consequently,
using different Configurations is not recommended.

Configuration
Descriptor

Device
Descriptor

Interface Descriptor
DvC.Trace

IN Endpoint 1
Descriptor

Configuration
Descriptor

Configuration 2

Interface Descriptor
DvC.Dfx (JTAG)

IN Endpoint 2
Descriptor

OUT Endpoint 2
Descriptor

Interface Descriptor
DvC.GP (GNU)

IN Endpoint 2
Descriptor

Configuration 1

OUT Endpoint 2
Descriptor

Interface Descriptor
DvC.Trace

IN Endpoint 1
Descriptor

Figure 3-22: Example of two configurations

 USB 3.1 Debug Class 7/14/2015

- 35 -

3.6.4 Interface Association Descriptor (IAD)
The USB 3.1 Debug Class supports Debug Control over the default endpoint 0. We need a mechanism
to associate the debug control operations with a particular debug unit, a particular capability, or with the
complete TS. For example, one may need to enable the voltage and clocks for a specific debug trace
source, or for a set of trace sources, or indeed for all of the debug functions within a SoC.

In addition, we need a mechanism to group a number of functions together. For example, a debug tool
may support both a kernel debugger and a stop-mode TAP debugger. It is not uncommon for a program
under development to go “into the weeds” and hang. In this situation, the kernel debugger is useless and
the TAP debugger is needed to break in and permit debug. Such a multi-function debugger could use the
DxC.Dfx interface for the Stop-mode debugger, and the DxC.GP interface for the kernel debugger.

This specification uses the Interface Association Descriptor (IAD) [7] for this purpose, although other
means could be used – refer to Section 3.6.6.

The Interface Association Descriptor (IAD) groups together two or more consecutive interfaces (and any
alternate settings associated with these interfaces) into a single function. We call such a collection a
Debug Interface Collection (DIC). See Figure 3-23.

Debug
Interface
Collection
(DIC)

Interface Association Descriptor (IAD)

Debug Control Interface Descriptor

Debug Attributes Descriptor

(Optional Topology Descriptors)

Debug Capability Descriptor (i.e., DxC.Trace, DxC.Dfx, or DxC.GP)

(Optional Interrupt Endpoint)

Debug Endpoint(s)
Multiple instantiations allowed within
the same type (DbC or DvC)

Figure 3-23: Debug Interface Collection

A DIC consists of four components:

1) The optional Debug Control requests and other features supported by the debug function. These
are defined by two descriptors:

a. The Debug-Control Interface descriptor, which is a standard USB interface descriptor
that characterizes the interface itself

b. The Debug-Attributes descriptor, which is in essence an extension of the Debug-Control
descriptor and provides specific details of the features supported by the debug function.

2) Optional topology information describing how the various debug units within the function
interconnect.

3) An optional Interrupt endpoint for the control capability. This could, for example, be used to enable
trace capture by the host when the smartphones screen is touched.

4) The debug capability or capabilities supported by the debug function (e.g., DvC.Trace) together
with their endpoints.

An IAD requires >1 interface, and thus a DIC must have two or more interface descriptors (e.g., Debug
Control and DvC.Trace).

The operating system calls a single composite driver per DIC, which will then call the appropriate drivers
for the associated debug functions (e.g., Dfx TAP access, trace capture, etc.).

A device shall use an Interface Association Descriptor to describe a Debug Interface Collection for each
device function that requires a Debug-Control Interface and one or more Debug Capability interfaces.

To help understand IADs and DICs, we will examine a few scenarios. Suppose there are two debug
functions using the DvC.Dfx and DvC.Trace interfaces, and that we have two separate debug tools for
these functions. It thus makes most sense to group each capability within a DIC using an IAD, as this will
ensure that the host calls a debug driver for each DIC. Consequently, each of the separate debug tools
will have their own driver. Figure 3-24 shows such an example, where two IADs create two DICs. One

 USB 3.1 Debug Class 7/14/2015

- 36 -

DIC consists of a Debug-Control Interface and a DvC.Dfx interface, while the other consists of a Debug-
Control Interface and a DvC.Trace interface. They are labeled as IAD 1 and IAD 2, and DIC 1 and DIC 2.

Run-Control DTS

Trace-Capture
DTS

DIC 1

DIC 2

Debug Control Interface

DvC.Dfx Interface

Debug Control Interface

DvC.Trace Interface

Host TS Device

IAD 1

IAD 2

Figure 3-24: Example showing two IADs grouping the Control with the appropriate debug

interface

Figure 3-25 shows an alternative grouping of the debug interfaces of Figure 3-24, where we use a single
IAD to group the trace and Dfx functions together. This makes most sense when we have a multi-function
debug tool that, for example, supports TAP and Trace. In this case, the IAD groups the DvC.Trace
interface with the DvC.Dfx run-control interface, so that the host evokes a single driver for the multi-
function debug tool.

Run-Control &
Trace Capture

DTS
DIC 1 Debug Control

DbC.Dfx interface
DbC.Trace interface

Host TS

IAD 1

Figure 3-25: Example showing a single IAD grouping the control for a DvC.Dfx and DvC.Trace

Finally, Figure 3-26 shows an example of a TS containing a Graphics unit, a main core, and a modem,
each with their own independent Dfx and trace capabilities. This scenario may occur when different IP
blocks are used in the implementation of the SoC, and each has its own dedicated debug tool.

Graphics
Run-Control &

Trace Capture DTS
DIC 1

Debug Control
DvC.Dfx interface
DvC.Trace interface

Host TS Device

Graphics

Main Core
 Run-Control &

Trace Capture DTS
DIC 2 Main

Core

Modem
 Run-Control &

Trace Capture DTS
DIC 3 Modem

IAD 1

Debug Control
DvC.Dfx interface
DvC.Trace interface

IAD 2

Debug Control
DvC.Dfx interface
DvC.Trace interface

IAD 3

Figure 3-26: TS device with three DICs

Note that IADs do not support nesting, and thus nesting multiple DICs via an IAD is not possible. Thus,
in Figure 3-26 we cannot have an IAD4 that groups IAD1, IAD2, and IAD3 together to feed a single driver.

One may now wonder how one decides between these various options. One possibility, in an Android-
based TS, is to use adb to create the appropriate descriptors, which become active and persistent in the

 USB 3.1 Debug Class 7/14/2015

- 37 -

next reboot of the system. Thus, for example, one could default to the scheme depicted in Figure 3-24,
and then later change the descriptors to the scheme shown in Figure 3-25 via adb. Alternatively, for an
implementation with permanent descriptors cast in ROM, one could use the SET_ALT_STACK command
(See 5.4.8) to access alternative descriptors. Thus one could provide basic, default descriptors in
hardware that become active at reset, and then use more extensive descriptors later after the OS has
booted. This will allow basic debug prior to the OS boot and extensive debug thereafter.

3.6.5 Multiple Mutually-Exclusive Host Drivers
An SoC may consist of multiple different IPs from different IP vendors (e.g., audio, graphics, modem,
etc.). Each IP vendor may provide a dedicated debug tool for only their IP, and no other. Consequently,
debugging such an SoC requires multiple debuggers. For convenience, it is desirable to have these debug
tools all installed on the same host platform, so that during a debug session one can switch between the
tools quickly. This requires that the multiple drivers serving the various debug tools are all resident on the
host.

Figure 3-27 shows one possible scheme for how two debuggers can mutually-exclusively access a single
TAP debug function. It provides a separate DIC for each debugger. Each DIC evokes a separate driver
on the host, thus allowing the drivers for the different tools to be both resident on the host at the same
time. Section 4.3.1.6 describes how this can be achieved by using different values for the
bInterfaceProtocol field of the interface descriptors.

Debugger 1
(e.g., Commercial)

DIC 1
Debug Control
DvC.Dfx interface
DvC.Trace interface

Host TS Device

Debugger 2
(e.g., Proprietary) DIC 2

TAP
unit

DIC 1
Dfx Driver

DIC 2
Dfx Driver

DIC 1
Trace Driver

Co
m

po
sit

e-
Dr

iv
er

IAD 1

Debug Control
DvC.Dfx interface

IAD 2

Mutually-exclusive
access

Figure 3-27: Multiple debuggers accessing common Debug-Function Example

Note that how the TAP unit is shared by the two debuggers is implementation specific and thus beyond
the scope of this document. Most TAP debug tools require complete ownership of the TAP network, and
thus cannot share the TAP network with another tool. In order to share a debug resource, some high-
level arbitration and lock mechanism is necessary. The USB 3.1 Debug Class specification provides a
mechanism to share the USB interfaces and functions, but how the tools actually share these resources
is beyond the scope of a USB class specification.

However, the scheme shown in Figure 3-27 requires endpoints for each Dfx interface, and is thus
wasteful. It would be better if the debuggers could share the same endpoints, since typically, debug
resources are restricted. The following, alternative scheme, of using Alternate settings is more efficient:

• Interface 1: Debug Trace
• Interface 2 has two, mutually exclusive, alternate settings:

1. Alternate Setting 0: DvC.Dfx for Debugger 1
2. Alternate Setting 1: DvC.Dfx for Debugger 2

Figure 3-28 illustrates the descriptors for this example. The default is Alternate Setting 0, and this driver
(or an associated filter driver) can issue a SET_INTERFACE request for Alternate Interface 1 and then allow
the driver for Debugger 2 to load. Similarly, debugger 2 can issue a SET_INTERFACE request for Alternate
Interface 0 and then allow the driver for Debugger 1 to reload.

 USB 3.1 Debug Class 7/14/2015

- 38 -

Alternate Setting 1

Configuration Descriptor

Device Descriptor

Interface Descriptor DvC.Dfx
(Commercial Debugger)

Interface Descriptor
DvC.Trace

IN Endpoint 2
Descriptor

Alternate Setting 0

OUT Endpoint 2
Descriptor

Interface Descriptor
DvC.Dfx (Proprietary Debugger)

IN Endpoint 2
Descriptor

OUT Endpoint 2
Descriptor

IN Endpoint 1
Descriptor

Figure 3-28: Alternate Settings used to select between multiple Debuggers on the same

Endpoints.

The above mechanism allows one to switch between different debug tools and debug functions within the
TS. However, this in itself is insufficient: we also need to place the debug function into a known state after
each SET_INTERFACE request, which is described in the next section.

3.6.5.1 Initializing the Debug Function prior to Debugger changeover

The Network Control Model (NCM) devices class [8] solves the initialization problem described above by
using Alternate settings to place the network aspects of a function in a known state. Essentially, Alternate
setting 0 is purely a “reset/init” setting, while Alternate Setting 1 is the operational setting. Thus, toggling
between Alternate Setting 0 and 1 will reset the network. In addition, NCM uses commands to set
parameters before switching to the operational setting, so that the network initializes to a known, desired
state.

The USB 3.1 Debug Class uses a similar approach:

• Alt Setting 0: Master Debugger. This Master could be an “inert” driver that provides no debug
capability and is simply a mechanism to switch between tools. Alternatively, it could provide
debugger functionality.

• Before switching to another debugger, the Master first issues debug commands to init/reset the
desired debug function(s) to a known state. Ideally, the TS should provide a service, via the Set
Service debug command to initialize the function.

• Alt Setting >0 for the Slave Debuggers

Figure 3-29 gives an example. Alternate Setting 0 evokes a Master application on the host that, in this
example, uses the DvC.GP interface to access a Debug driver on the TS. This driver provides a service
to initialize the Dfx function.

 USB 3.1 Debug Class 7/14/2015

- 39 -

Alternate Setting 1

Configuration Descriptor

Device Descriptor

DvC.GP Interface

Alternate Setting 0

DvC.Dfx Interface

IN Endpoint 2 OUT Endpoint 2

Alternate Setting 2

DvC.Dfx Interface

IN Endpoint 2 OUT Endpoint 2

Debugger 1Master Debugger 2

Dfx Debug
Function

TS
SW Debug Driver Initialize

Figure 3-29: Master Switch with two Slave Debuggers

The Master in this example provides no Dfx capability – the two slave debuggers on Alternate Settings 1
and 2 provide that support. On enumeration, the host evokes the Master. The debug user can now select
one of the two debuggers. The Master achieves this by issuing a Set Alternate standard command to the
device and then initializing the Dfx unit before evoking the driver corresponding to the new Alternative
setting.

Later, to switch in a different debugger, it repeats the sequence:

• Alt Setting 0

• Debug command to init/reset the new desired debug function(s)

• Issues Set Alt Setting ≠0 to the device and instantiates the new driver on the host for the new
debugger application.

The Master in Figure 3-29 could have been an actual Dfx debugger, in which case it would have used the
DvC.Dfx capability instead of the DvC.GP capability.

Note that although the USB 3.1 Debug Class provides a mechanism to switch between debug tools via a
Master, it is beyond the scope of a USB Class specification to specify such a Master. This requires a new
standard to define the necessary services for the various industry tools.

Figure 3-30 shows a more elaborate descriptor example that supports four different debug tools per
debug capability. For example, a lab environment may use a proprietary debug tool for the DxC.Trace,
DxC.Dfx, and DxC.GP capabilities. However, occasionally the lab debugger may need to use a
Commercial tool for some or all of the debug capabilities. They would then use the Set Alternate
capability to switch in the alternative tool.

Note that the TS does not know or care which tools are on the host – it simply provides the capability for
the host to have up to 4 tools installed. Different users will install different tools. For example, the
modem debug team may wish to have their modem debug tool as the primary, default tool for
DxC.Trace, DxC.Dfx, and DxC.GP. Occasionally, the bug may require debugging different portions of
the TS, and then they may switch to a Core or Audio debug tool. These secondary tools may also
provide access to the DxC.Trace, DxC.Dfx, and DxC.GP capabilities.

 USB 3.1 Debug Class 7/14/2015

- 40 -

Device

Configuration

IAD

Debug Attributes

Interface (Debug Control)

Bulk IN Endpoint

Interface (DbC.Dfx)
Protocol = 0

Bulk IN Endpoint

Bulk OUT Endpoint

Interface (DbC.Dfx)
Protocol = 1

Alt Interface = 0 Alt Interface = 1

Bulk IN Endpoint

Bulk OUT Endpoint

Interface (DbC.Dfx)
Protocol = 2

Alt Interface = 2

Bulk IN Endpoint

Bulk OUT Endpoint

Interface (DbC.Dfx)
Protocol = 3

Alt Interface = 3

Bulk IN Endpoint

Interface (DbC.Trace)
Protocol = 0

Bulk IN Endpoint

Interface (DbC.Trace)
Protocol = 1

Alt Interface = 0 Alt Interface = 1

Bulk IN Endpoint

Interface (DbC.Trace)
Protocol = 2

Alt Interface = 2

Bulk IN Endpoint

Interface (DbC.Trace)
Protocol = 3

Alt Interface = 3

Dfx

Trace

Bulk IN Endpoint

Interface (DbC.GP)
Protocol = 0

Bulk IN Endpoint

Interface (DbC.GP)
Protocol = 1

Alt Interface = 0 Alt Interface = 1

Bulk IN Endpoint

Interface (DbC.GP)
Protocol = 2

Alt Interface = 2

Bulk IN Endpoint

Interface (DbC.Trace)
Protocol = 3

Alt Interface = 3

GP

Bulk OUT Endpoint Bulk OUT Endpoint Bulk OUT Endpoint Bulk OUT Endpoint

Example Use Scenarios

IAD

Debug Attributes

Interface (Debug Control)

Bulk OUT Endpoint

IAD

Debug Attributes

Interface (Debug Control)

bInterfaceProtocol 0 1 2 3

Scenario 0

Scenario 1

Scenario 3

Proprietary Debug
Tool Not Used Not Used

Scenario 2

Not Used Not Used Not Used

Not Used Not Used

Scenario 4

Modem Debug Tool

Graphics Debug Tool

Android Debug tool
suite

Sensor-Hub Debug
tool

Not Used

Commercial Debug
tool

Commercial Debug
tool

Commercial Debug
tool

Commercial Debug
tool

Proprietary Debug
Tool

Proprietary Debug
Tool

Commercial Debug
tool

Figure 3-30: Example showing support for Multiple Debug tools

Figure 3-30 shows a few example scenarios:

• Scenario 0: Lab based debug using a proprietary debug tool for the DxC.Dfx, DxC.Trace and
DxC.GP capabilities, which has access to proprietary debug logic within the TS. This tool could
have extensive access to the primary core. Occasionally, the debugger switches to a
Commercially-available tool for the DxC.Dfx, DxC.Trace and DxC.GP capabilities, because this
tool provides better access to the remainder of the SoC. For example, the proprietary tool may
only support traces and Dfx with the main core, while the commercial tool captures traces and
provides Dfx support with all of the debug units within the SoC.

 USB 3.1 Debug Class 7/14/2015

- 41 -

• Scenario 1: Customer debug using only a commercial debug tool

• Scenario 2: Modem debug lab with the Modem debug tools accessing the Dfx, Trace and GP
capabilities of the Modem logic. Occasionally, the debugger switches to a Commercially-
available tool for the DxC.Dfx, DxC.Trace and DxC.GP capabilities of the APE, when the bug
appears to extend beyond the modem logic.

• Scenario 4: General debug of the OS and applications using Android and SW tracing tools.
Occasionally, the debugger may need to debug other issues such as the sensor hub.

3.6.6 Enumerating Interface Collections
Different USB device classes have developed different means of enumerating interface collections:

• Vendor-supplied callback routines
• Union-Function descriptors (UFD). This method is used by the Wireless Communication device

class
• Interface Association Descriptor
• Legacy Audio method

These, sometimes incompatible mechanisms, have led to complexities in current smartphones that
integrate a number of classes. For example, a smartphone device could integrate debug and wireless-
communication devices together, where the Debug Class uses IADs and the latter uses UFDs. These two
mechanisms cannot be intermixed, and instead IADs or UADs have to be used for all devices. This is a
known issue for device-driver developers, and is the same problem as trying to integrate Video with a
wireless-communication device in a smartphone (this is because the Debug class uses the same IAD
mechanism as the Video class or the AV class).

In addition, the support for UFD’s and IAD’s is inconsistent across operating systems, and it is not unusual
for the device to provide numerous different descriptor solutions for the various possible host operating
systems (some current generation smartphones provide 9 or more options). This Debug Class
specification specifies IADs, but an actual driver on a device is free to use some other method to
enumerate interface collections. This is outside the scope of this document.

 USB 3.1 Debug Class 7/14/2015

- 42 -

3.6.7 Debug-Control Interface
As explained in Section 3.5.4, there are a number of possible mechanism for controlling the debug units,
which are all optional:

1. DxC.Dfx interface using TAP or some other mechanism
2. DxC.GP using a software driver that access the debug-units configuration registers via MMIO
3. Debug-Control Interface via the default endpoint 0 control endpoints.

A TS need not provide any means of controlling the debug functions via the USB. For example, a shipping
device may always provide default trace capability that is always enabled once configured.

This section describes the Debug Control method, which has the capability to control any particular or
groups of units within a debug function or multi-function. For example, one has the ability to enable the
power for the complete TS, or a particular DIC, or a particular unit or units within a DIC. To make these
objects accessible, the debug function shall expose a single Debug-Control Interface. This interface can
contain the following endpoints:

• A Control endpoint for manipulating TS, DIC, and Unit settings and retrieving the state of the
debug function (for example, the debug state at the end of a debug session). This endpoint is
mandatory, and the default endpoint 0 is used for this purpose.

• An interrupt IN endpoint for status returns (for example, when a debug breakpoint fired). This
endpoint is optional.

A device shall use an Interface Association Descriptor to describe a Debug Interface Collection for each
device function that requires a Debug-Control Interface and one or more Debug interfaces. (This
requirement is necessary to satisfy the IAD specification, which requires >1 interface).

The Interface Association Descriptor shall always be returned as part of the device’s complete
configuration descriptor in response to a GET_DESCRIPTOR (Configuration) request. The Interface
Association Descriptor shall be located before the Debug-Control Interface and its associated Debug
Interface (including all alternate settings). All of the interface numbers in the set of associated interfaces
shall be contiguous (there can be no gaps in the list of interface numbers).

The Debug-Control interface is the single entry point to access the internals of the debug function. Thus,
any Debug-Control request for the DIC or a Unit within the DIC shall be directed to the Debug-Control
interface of the debug function. Figure 3-31 provides an example. The Debug-Control interface is the
single entry point for the request, and thus the request is shown targeting interface1. The figure shows a
read request (i.e., GET_CONFIG_DATA) of a global configuration register in the SoC (i.e., the complete TS).
This SoC contains many different registers, shown labelled as Configuration, Power-management, etc.
Some of these registers pertain to the complete TS, some to the complete DIC, and some to a particular
Unit. This example is targeting the complete TS because the wValue field is 0 (see Section 5.3.2 “Request
Examples” for more information). The wValue and wIndex fields of the Debug Request are used to direct
the command to control the complete TS, or the complete DIC, or a specific Unit within a DIC.

 USB 3.1 Debug Class 7/14/2015

- 43 -

GET_CONFIG wIndex = 0x0001 Data

Debug Request to SoC Data Structure

Configuration Descriptor

Interface 1 Descriptor (Debug Control)
Debug Attributes Descriptor

Interface Association Descriptor 1

Interface 2 Descriptor (DvC.Trace)
Endpoint IN (for Debug Trace)

DIC 1

Device Descriptor

SoC (TS)
DIC 1 Data Structure Config

Register
Control

Config Register
ControlDebug Unit 1

(Trace Processing)

wValue = 0

Debug Unit 1 Descriptor (Trace Processing)

UnitID = 0x00
Interface = 0x01

wValue = 0 (Global)

Error Control
Power-Mgmt

Control

Config Register
Control

Info Control
Info Control

Info Control

Power-Mgmt
Control

Power-Mgmt
Control

DvC.Trace

Figure 3-31: Example of a Debug Control targeting the Global Configuration Register Control

Table 3-3 lists the available Debug requests.

Table 3-3: Supported Debug Commands

Request Description

GET/SET_CONFIG_DATA,

SET_CONFIG_DATA_SINGLE

This requests reads or writes the configuration registers in the TS,
DIC, or specific Unit (e.g., Trace-Processing unit)

GET/SET_CONFIG_ADDRESS This request reads or writes the Address used by the GET or
SET_CONFIG_DATA commands

GET/ SET_ALT_STACK An SoC contains multiple cores, and any number of these could
support the USB stack. In addition, debug may have a special
hardware stack for this purpose. This command allows the host to
select an alternative core or hardware for the USB stack support.
The GET command also returns status on when the OS has booted
so that the host knows when it can use the normal OS USB stack.

GET/SET_OPERATING_MODE This request reads or configures the power-management mode for
the TS, DIC, or specific Unit. For example, it can place the device
into a debug power-mode.

GET/SET_TRACE This requests sets or reads the vendor-specific trace configuration.
The vendor can define one of 255 possible trace configurations.
For example, Trace Configuration 1 may enable all traces within
the TS, while Trace configuration 2 only enables the modem
traces. This register is not a bit mask but a number corresponding
to a set of enabled traces.

SET_BUFFER This command performs basic operations on a trace buffer (e.g.,
flush, initialize).

GET_BUFFER This command reads the buffer size for the TS, DIC, or specific
Unit (e.g., Trace-Processing unit)

SET_RESET This command resets the TS, DIC, or debug unit to its default state.
This is useful if the debug logic has hung.

GET_INFO This provides general information on the capabilities and support
for the various Debug Class commands in the TS, DIC, or specific
unit. Note that this is not information pertaining to the Debug

 USB 3.1 Debug Class 7/14/2015

- 44 -

Function as such, but information pertaining to the supported
debug commands and their capabilities.

GET_ERROR This reports status on a debug request (e.g., success, fail, etc).
This does not contain error information pertaining to a debug
operation per se, but rather to the debug control requests.

Full descriptions of the Debug Control requests are given in Section 5.

3.6.7.1 Control Endpoint

The Debug Class uses endpoint 0 (the default pipe) as the standard way to control the debug function
using class-specific requests. These requests are directed to the complete TS, to a DIC, or to a Unit within
a Debug Function. The format and contents of these requests are detailed in Section 5.

USB Control transfers minimally have two transaction stages: Setup and Status. A control transfer may
optionally contain a Data stage between the Setup and Status stages (see Figure 3-32 for an example).
The Setup stage contains all information necessary to address a particular entity, specify the desired
operation, and prepare for an optional Data stage. A Data stage can be host-to-device (OUT transactions),
or device-to-host (IN transactions), depending on the direction and operation specified in the Setup stage
via the bmRequestType and bRequest fields.

In the context of the Debug Class specification, SET_* requests will always involve a Data stage from host
to device, and GET_* requests will always involve a Data stage from device to host.

The device shall use Protocol stall (and not Function stall) during the Data or Status stages if the device
is unable to complete the Control transfer. The reasons for using Protocol stall include unsupported
operations, invalid target entity, unexpected Data length, or invalid Data content. The device shall update
the value of Request Error Control, and the host may use that control to determine the reason for the
Protocol stall (see Section 5.4.13 "GET_ERROR"). The device shall not NAK, NRDY, or STALL the Setup
transaction.

Typically, the host will serialize Control Transfers, which means that the next Setup stage will not begin
until the previous Status stage has completed. However, in situations where the Setup transaction is sent
before the completion of the previous control transfer, then the device shall abandon the previous control
transfer.

Due to this command serialization, it is important that the duration of control transfers (from Setup stage
through Status stage) be kept as short as possible. For this reason, as well as the desire to avoid polling
for device status, this specification defines an interrupt status mechanism to convey status changes
independently of the control transfers that caused the state change. This mechanism is described in
Section 3.6.7.2, "Status Interrupt Endpoint". Any control that requires more than 10ms to respond to a
SET_* request (referred to as “Slow control”), or that can change independently of any external SET_*
request (“Self-Generated control”), shall send a Control-Change status interrupt. These characteristics
will be reflected in the GET_INFO response for that control.

If a SET _* request is issued to a Slow Control (i.e., >10ms slow response) with unsupported operations,
invalid target entity, unexpected data Length or invalid data content, the device shall use Protocol stall
since the device is unable to complete the Control transfer. The device shall update the value of the
Request Error Control (see Section 5.4.13 "GET_ERROR").

In the case of a SET_* request with valid parameters to an Slow Control, the Control transfer operation
shall enter the Status stage immediately after receiving the data transferred during the Data stage. Once
the Status stage has successfully completed, the device shall eventually send a Control Change Interrupt
that will reflect the outcome of the request:

• If the request succeeded, the Control Change Interrupt will advertise the new value (see in
3.6.7.2, "Status Interrupt Endpoint").

• If the request could not be executed, the device shall send a Control Change Interrupt using the
Control Failure Change mechanism to describe the reason for the failure

 USB 3.1 Debug Class 7/14/2015

- 45 -

The amount of time between the end of a successful Status stage and the Control-Change interrupt is
implementation specific. For instance, a transition from a normal (non-debug), power state to a power
mode that powers up the debug logic may take hundreds of milliseconds.

The following flow diagrams show the Setup, Data and Status stages of SET_OPERATING Control
Transfers. The example on the left successfully completes within 10ms. The example on the right takes
longer, and thus the device issues a Control-Change Interrupt as soon as the operation completes.

Host Device

Setup stage

Data stage

Status stage

≤ 10ms

Host Device

Setup stage

Data stage

Status stage

> 10ms

Control-Transfer Example 1 Control-Transfer Example 2

State
Change

Control
Transfer

State
Change

Control-Change
Interrupt

Figure 3-32: Control Transfer Examples

3.6.7.2 Status Interrupt Endpoint

The Debug-Control interface can support an optional IN interrupt endpoint to inform the Host about the
status of the different addressable entities (units and interfaces) inside the debug function. The interrupt
endpoint, if present, is used by the entire Debug Interface Collection to convey status information to the
Host. It is considered part of the Debug-Control interface because this is the anchor interface for the DIC.

Possible uses for the interrupt endpoint include:

• The device supports debug breakpoints or debug events (e.g., pressing a virtual button on a
smartphone screen may start a debug trace). Hardware debug breakpoints of the main core are
difficult to support via the Interrupt breakpoint, because the debug breakpoint may halt the core
preventing the USB handler from supporting the Interrupt transaction. However, an
implementation may choose to use a secondary core in an SoC, which is not being utilized by the
application being debugged, to provide the necessary support for the Interrupt transaction.

• The device implements any Self-Generated controls (controls supporting device initiated
changes). For example, a debug device may automatically change a trace source upon some
event (e.g., low battery, flight-mode, GPS was enabled, the core powered down, etc.), or it may
dynamically request more available trace bandwidth (e.g., instructing the host debugger to turn
off some other debug sources) based on new circumstances (e.g., graphics rendering started for
WebGL content).

• The device implements any Slow controls (i.e., the device requires more than 10ms to respond
to a debug Control request).

The interrupt packet is a variable-size data structure depending on the originator of the interrupt status.
The bStatusType and the bOriginator fields contain information about the originator of the interrupt. The
bEvent field contains information about the event triggering the interrupt. If the originator is the Debug-
Control Interface, the bSelector field reports which control issued the interrupt (e.g., Config, Power, etc.)

Any addressable entity inside a debug function can be the originator of an interrupt.

 USB 3.1 Debug Class 7/14/2015

- 46 -

The contents of the bOriginator field shall be interpreted according to the code in the bits <3:0> of the
bStatusType field. If the originator is the Debug-Control Interface, the bOriginator field contains the Unit
ID of the entity that caused the interrupt to occur. A bOriginator field set to zero indicates the virtual entity
interface, which is used to report global Debug-Control Interface changes to the Host. This scheme is
unambiguous because Units are not allowed to have an ID of zero. If the originator is any debug capability
DxC.Dfx, DxC.GP, or DxC.Trace interface), then the bOriginator field contains the interface number of
this interface.

If the originator is the Debug-Control Interface, the bAttribute field indicates the type of Control change.

The contents of the bEvent field shall also be interpreted according to the code in bStatusType<3:0>. If
the originator is a DxC.GP, DxC.Dfx or DxC.Trace interface, there are additional debug events as defined
in the table below – e.g., pressing a virtual button on a Smartphone may start trace generation.

For all originators, there is a Control-Change event defined. Controls that support this event will trigger
an interrupt when a host-initiated or externally-initiated control change occurs. The interrupt shall only be
sent when the operation corresponding to the control changes is completed by the device.

A control shall support Control-Change events if any of the following is true:

• The Control state can be changed independently of the host control (e.g., on the Smartphone, a
virtual button disables a debug-power mode).

• The Control can take longer than 10ms from the start of the Data stage through the completion
of the Status stage when transferring to the device (i.e., for a SET_* operation)

If a control is required to support Control-Change events, the event shall be sent for all SET_* operations,
even if the operation can be completed within the 10ms limit (and thus appears to be unnecessary). The
device indicates support for Control-Change events for any particular control via the GET_INFO attribute.

Table 3-4, Table 3-5, and Table 3-6 specify the format of the Status packet

Table 3-4: Status Packet Format

Offset Field Size
(Bytes)

Value Description

0 bStatusType 1 BitMap/

Number

<3:0>: Originator

<0>: Debug-Control Interface

<1>: Any of the possible DxC.Dfx interfaces

<2>: Any of the possible DxC.Trace interface

<3>: Any of the possible DxC.GP Trace interface

<7:4>: reserved

1 bOriginator 1 Number Unit ID or interface that is reporting the interrupt

When the originator is a Debug-Control Interface, the rest of the structure is:

Table 3-5: Status Packet Format (Debug-Control Interface as Originator)

Offset Field Size
(Bytes)

Value Description

2 bEvent 1 Number 0x00: Control Change

Otherwise: reserved

 USB 3.1 Debug Class 7/14/2015

- 47 -

3 bAttribute 1 Number Specify the type of control change:

0x00: Control Value change

0x01: Control Info change

0x02: Control failure change

Otherwise: reserved

5 bValue 1 Number bAttribute: Description

0x00 Equivalent to GET_CCONFIG_DATA

0x01 Equivalent to GET_INFO

0x02 Equivalent to GET_ERROR

Otherwise: reserved

When the originator is a DxC.Dfx, DxC.GP, or DxC.Trace interface, then the remainder of the structure
is:

Table 3-6: Status Packet Format (DxC.Dfx, DxC.GP, or DxC.Trace as Originator)

Offset Field Size
(Bytes)

Value Description

2 bEvent 1 BitMap/

Number

All originators:

<3:0>: reserved

<7:4>: Vendor specific

3 bValue 1 Number Debug Event:

0x00: Debug “Button” released

0x01: Debug “Button” pressed

Otherwise: reserved

3.6.7.3 Hardware Trigger Interrupts

One possible usage of the Status-Interrupt endpoint is for hardware triggers to notify host software that a
debug breakpoint/event occurred. A breakpoint could occur on an instruction match, data match, debug
button press, etc. When the hardware detects a debug event, the Status-Interrupt endpoint will generate
an interrupt originating from the relevant DxC.Dfx, DxC.GP, or DxC.Trace interface. The event triggering
the interrupt (button press or release) is indicated in the interrupt packet. The default, initial state of the
button is the "release" state.

The device specifies whether it supports hardware triggers, and how the host software should respond to
hardware-trigger events. These are specified in the class-specific Debug-Attributes descriptor (i.e.,
bmSupportedFeatures field) within the relevant DxC.Dfx, DxC.GP, or DxC.Trace interface. See Section
4, "Descriptors".

3.6.8 DxC.Trace Interface
The DxC.Trace interface sends debug traces from the trace function to the Host. It is optional. A debug
function can have zero or more DxC.Trace interfaces associated with it, each possibly carrying data of a
different nature and format. Each DxC.Trace interface can have one isochronous or Bulk IN data endpoint
for the data trace. Appendix C: describes a possible data format for the traces.

 USB 3.1 Debug Class 7/14/2015

- 48 -

There are a number of debug trace scenarios that require use of Alternate settings. These are:

• Case1: To select different bandwidths for isochronous traces. This is the typical usage case for
alternate settings (e.g., video streaming in the Video class)

o In this case, the bInterfaceClass = DxC.Trace, and the bInterfaceProtocol are the same
value in all of the Alternate settings

• Case 2: To select between different drivers for trace capture. For example, during a debug
session, the user may wish to rapidly switch between a commercial debug tool and a proprietary
tool, where each provides a different set of capabilities. See Section 3.6.5 for more information
on multiple, mutually-exclusive drivers.

o In this case, the bInterfaceClass = DxC.Trace, and the bInterfaceProtocol will be a
different value for the different Alternate settings. Each Alternate setting will thus evoke
a different driver

• Case 3: This is similar to case 2, but in this case, it selects between alternate debug capabilities.
A TS may have a restricted set of endpoints available for debug usages, and uses alternate
settings to share these endpoints amongst different tools in a mutually-exclusive manner.

o In this case, the bInterfaceClass will be a different value for each of the different Alternate
Settings (e.g., DbC.Trace and DbC.Dfx).

These options are not mutually exclusive, and may be combined. We give an example later (see Figure
3-35).

3.6.8.1 Alternate Settings – Case 1

Case 1 is when the Alternate setting selects between various different isochronous bandwidths.

An isochronous interface provides guaranteed bandwidth. However, a host may not be able to satisfy the
requested bandwidth if it has already allocated bandwidth to another isochronous interface. For this
reason, an isochronous interface needs to provide a set of bandwidth requirements (e.g., 50MB, 100MB,
& 200MB) to allow the host application the flexibility to select the next-best bandwidth option.

Thus, the rule is: A DvC.Trace interface with isochronous endpoints shall have alternate settings, which
the host can use to change the bandwidth requirements that an active isochronous pipe imposes on the
USB.

In addition, such an endpoint shall incorporate a zero-bandwidth, default alternate setting (alternate
setting zero)2. This setting gives the host software the option to temporarily relinquish USB bandwidth by
switching to this alternate setting if required. For example, this may occur if a video application requires
isochronous transfers and there is insufficient link bandwidth for both the current debug isochronous traffic
and the video traffic to run concurrently. The zero-bandwidth, alternate setting for the isochronous
interface shall not contain a non-zero bandwidth DvC.Trace isochronous data endpoint descriptor3.

Figure 3-33 shows a possible example.

2 A Bulk endpoint is acceptable as a zero-bandwidth alternate setting. That is, the zero bandwidth setting is implied by the omission of an
isochronous endpoint for alternate 0
3 This statement only applies if one uses a zero-bandwidth isochronous endpoint instead of a Bulk endpoint for the zero bandwidth
setting.

 USB 3.1 Debug Class 7/14/2015

- 49 -

Device

Configuration
Alt. Setting 0

Alt. Setting 1

Alt. Setting n

Alternate Settings
1 to n (Alt Setting

0 is the default)

Interface (Debug Class)
Sub-Class = DvC.Trace

Bulk IN Endpoint

Interface (Debug Class)
Sub-Class = DvC.Trace

Interface (Debug Class)
Sub-Class = DvC.Trace

Isoch IN Endpoint

Isoch IN Endpoint

Bandwidth = 0

E.g., Bandwidth = 100MB/s

E.g., Bandwidth = 200MB/s

Figure 3-33: Example of DvC.Trace Descriptors

Debug traces vary significantly in bandwidth requirements. For instance, software messages (e.g., printf-
type messages) typically require low bandwidth (2-30MB/s), whereas hardware traces from bus watchers,
and processor-instruction traces can consume considerable bandwidth (800MB/s or more). During a
debug session, the debugger may have configured the device to only send out software messages,
hardware messages, or both. Consequently, an isochronous DvC.Trace interface should support a range
(greater than two) of alternate interface settings with varying bandwidths. By doing so, the host would be
able to select an appropriate alternate setting for a given debug-trace scenario that best utilizes the bus
bandwidth.

3.6.8.1 Alternate Settings – Case 2 and Case 3

Case 2 is when the Alternate setting selects between a number of different Debug trace drivers. Case 3
is similar, except that now the alternate setting selects between different debug capabilities (e.g., between
DxC.Trace and DxC.Dfx). Either of these cases allows the sharing of different debug tools (including their
drivers) across the same endpoints. Figure 3-34 shows the endpoints being shared across trace and Dfx.

Device

Configuration
Alt. Setting 0

Alt. Setting 1

Interface (Debug Class)
Sub-Class = DvC.Trace

Bulk IN Endpoint

Interface (Debug Class)
Sub-Class = DvC.Dfx

Bulk IN Endpoint

Bulk OUT Endpoint

Figure 3-34: Example of Alternative setting for DvC.Trace and DvC.Dfx

Figure 3-35 is a more extensive example that uses Cases 1, 2, and 3. The first set of Alternate settings
evoke host driver A. This is for an isochronous trace and is an example of Case 1. The interfaces for this
case have bInterfaceSubClass = DxC.Trace and bInterfaceProtocol = 0.

 USB 3.1 Debug Class 7/14/2015

- 50 -

Device

Alt. Setting 0

Protocol = 0

Configuration

Interface DvC.Trace

Bulk IN Endpoint
Alt. Setting
1 to N

Protocol = 0
Interface DvC.Trace

Isoch IN Endpoint

Triplet A
bInterfaceClass = 0xDC
bInterfaceSubClass = DvC.Trace
bInterfaceProtocol = 0

Host Driver A

Alt. Setting
N+1

Protocol = 1
Interface DvC.Trace

Bulk IN Endpoint
Alt. Setting
N+2 to M

Protocol = 1
Interface DvC.Trace

Isoch IN Endpoint

Triplet B
bInterfaceClass = 0xDC
bInterfaceSubClass = DvC.Trace
bInterfaceProtocol = 1

Alt. Setting
M+1

Protocol = 0
Interface DvC.Dfx

Bulk IN Endpoint Triplet C
bInterfaceClass = 0xDC
bInterfaceSubClass = DvC.Dfx
bInterfaceProtocol = 0Bulk OUT Endpoint

(for Trace Debugger 1)

Host Driver B
(for Trace Debugger 2)

Host Driver C
(for Dfx Debugger 1)

Case 1

Case 1

Case 2

Case 3

Figure 3-35: DvC.Trace Example using multiple different types of Alternate settings

The second set of Alternate settings in Figure 3-35 evoke host driver B. The interfaces in this example
are also for an isochronous trace, but this time they evoke a different trace driver. Thus, these two sets
of interfaces (corresponding to Triplets A and B) are examples of Case 2. The interfaces for these two
sets of interfaces have different values for bInterfaceProtocol, as highlighted in Figure 3-35. Note that
within each of these two sets of interfaces we have examples of Case 1.

The third set of Alternate settings is an example of Case 3 where the Alternate setting selects a Dfx host
driver C. In this case, the bInterfaceSubClass field of the Interface descriptor is now equal to DvC.Dfx.

3.6.8.2 DvC.Trace Isochronous Trace Comments

Certain debug scenarios require the debug traces to share bandwidth with normal USB traffic (for
example, when debugging a smartphone that is acting as a mass-storage device). Bulk transfers share
the link bandwidth, and thus the debug trace will receive whatever bandwidth is left over. Isochronous
transfers on the other hand, guarantee a minimum bandwidth, allowing the debugger to choose the
appropriate bandwidth for a debug trace via an alternate setting.

There is no negotiation involved between the debugger and the TS when assigning bandwidth (unlike, for
example, the Video class). The debuggers know the type of traces they are capturing (i.e., software
messages, hardware messages, processor traces, etc.) and can thus choose an alternate setting that
provides sufficient bandwidth.

The advantages of using isochronous transfers for debug traces are:

• Certain debug traces, such as processor-instruction traces, require a minimum, guaranteed
bandwidth to be useful. Such traces typically contain internal synchronization points that allow
them to recover from an occasional loss of trace, but if these gaps become too frequent then the
trace becomes worthless. When debug is sharing the USB bus with another function (e.g., mass
storage), and both are in Bulk mode, then a burst of activity by a non-debug function could ruin
the debug trace. If the debug sighting requires a non-debug function to be active, and this function
robs the debug trace of its necessary bandwidth, then this could prevent debug of the sighting.

• Generally, it is better to guarantee sufficient bandwidth for a quality debug trace, and hope that
the remaining USB bandwidth is sufficient to provoke the bug scenario. The quality of a debug

 USB 3.1 Debug Class 7/14/2015

- 51 -

trace is paramount because processor-instruction traces can take many hours (even a day) to
process. At the time of debug capture, one knows if the trace contains the bug sighting, and thus
one can keep repeating the test until it does. The converse scenario of capturing a bad trace for
the bug sighting will waste many hours/days before one discovers that it is necessary to repeat
the test.

There are disadvantages to using isochronous. Debug traces can be very bursty with a high average
bandwidth. This requires large buffers to smooth out the traffic. The minimum isochronous service-interval
period is 125µs, which requires a 48KB debug trace buffer to sustain the bandwidth in the case of sporadic
debug traces. For some implementations, dedicating a 48KB buffer for debug could be prohibitive. Thus
some other solution is needed to reduce the size of the debug trace buffer. Appendix C: describes such
a solution. However, the buffer cannot be too small because isochronous traffic accounts for 80% of the
service interval. Figure 3-36 gives an example of a processor-instruction trace. This is typically bursty, as
shown in the figure. If the device provides a trace buffer that is too small (e.g., smaller than 16KB), then
portions of the trace will be lost every service interval. Such gaps in the trace can make it useless.

USB3 isochronous
transfer

Time à

MIPs

Idle USB3 isochronous
transfer Idle USB3 isochronous

transfer Idle USB3 isochronous
transfer Idle USB3 isochronous

transfer Idle

Buffer fills

This portion of
trace is lost

48KB (96us)
About 384K inst.

at 1bit/inst.

29us (14KB equivalent)
Thus need about 16KB buffer

to cover this idle period

Figure 3-36: Lost processor-instructions trace segments caused by inadequate trace buffers

 USB 3.1 Debug Class 7/14/2015

- 52 -

4 Descriptors

4.1 Descriptor Layout Overview
Device

Configuration

IAD Debug Interface
Collection 1

Interface (Debug Class)
Sub-Class = DvC.Control

Alt. Setting 0

Alt. Setting 1

Alt. Setting nAlternate Settings
1 to n (Alt Setting

0 is the default)

Class-Specific Descriptor

Standard Descriptor

Bulk IN Endpoint

Bulk OUT Endpoint

Interface (Debug Class)
Sub-Class = DvC.Trace

Bulk IN Endpoint

Interface (Debug Class)
Sub-Class = DvC.Trace

Interface (Debug Class)
Sub-Class = DvC.Trace

Isoch IN Endpoint

Isoch IN Endpoint

Sub-class = DvC.GP

Output Connection Desc

Debug Topology
Descriptors
(Optional)

Debug Attributes Desc

Debug Unit Descriptor

Input Connection Desc

Interface (Debug Class)
Sub-Class = DvC.Dfx

DvC Debug

IAD

Interface (Debug Class)
Sub-Class = DvC.Control

Debug Attributes Desc

Interface (Normal)

Bulk OUT Endpoint

Bulk IN Endpoint

Interface (Debug Class)

Bulk IN Endpoint

Bulk OUT Endpoint

Debug Interface
Collection 2

Figure 4-1: Debug-Descriptor Sample Layout

Figure 4-1 shows an example descriptor layout for the DvC Debug capability. DbC is identical except that
it does not support non-debug “normal” USB interfaces.

Figure 4-1 shows all three debug interfaces (DvC.Dfx, DvC.Trace, and DvC.GP). It assumes isochronous
traffic for the debug traces, and thus shows a number of alternate settings for the various bandwidth
options. In addition, the example shows the device supporting a “normal”, non-debug function. It also

 USB 3.1 Debug Class 7/14/2015

- 53 -

shows an IAD forming a DIC out of the Debug Control, DvC.Dfx, and the DvC.Trace interfaces. There is
a second DIC for the DvC.GP capability. The DICs shown in this figure are purely examples, and other
DIC configurations are possible.

The Debug Class allows for multiple configurations and multiple alternate settings (see Sections 3.6.1
and 3.6.2). One reason for this flexibility is because a TS may only have a very small number of endpoints
available for debug, and would thus need to share them via alternate settings or multiple configurations.

The Debug Class supports a number of Debug Class-specific descriptors. It contains an IAD followed by
a Debug-Control Interface descriptor, followed by a Debug-Attributes descriptor. See Figure 3-23. The
Debug-Attributes descriptor describes which debug features the DIC supports. Next, there are optional
topology descriptors followed by an optional interrupt endpoint (not shown in Figure 4-1). Finally, the DIC
contains a Debug Capability interface descriptor or descriptors (e.g., DxC.Trace and/or DxC.Dfx and/or
DxC.GP) together with their corresponding endpoints.

4.1.1 Class-Specific Topology Descriptors
Figure 4-2 is an example of a simple debug topology that is merging and selecting traces from a number
of sources. Associated with each debug unit (e.g., Core, Merge unit, etc.) is an optional Debug Class-
specific descriptor that provides the following information:

• A unique Unit ID that identifies each of the debug units in the topology. The Unit ID = 0 is reserved
for accessing a “virtual” unit corresponding to the complete TS or a Debug-Interface collection.
See the Control Section 5 for more details.

• Type of debug unit (e.g., Trace-Generation unit, Trace-Processing unit, etc.)
• Sub-type of debug unit (e.g., audio, graphics, core, modem for a Trace-Generation unit)
• Unit ID of an Alias debug unit. For example, a trace-generator unit can only generate a single

output trace, but a functional unit may create multiple output streams (e.g., a core may generate
software messages from the firmware and the OS, and a processor-instruction trace). The Alias
field links this descriptor to the Unit ID of the same physical unit, thus informing the debugger that
they are the same functional unit. If we need to alias more than two units, then we arbitrarily
chose one as the reference.

 USB 3.1 Debug Class 7/14/2015

- 54 -

Unit ID= 5

GUID

 HW Trace

OS Trace

Unit ID= 6

GUID

Trace
Processing

Unit 2
(Proprietary
trace format)

etc

Trace
Processing

Unit 1
(MIPI STM)

Sink Unit
(e.g., Memory)

Main Core

Bus Watcher

Modem

Tr
ac

e
P

ro
ce

ss
in

g
U

ni
t 3

(T

ra
ce

 S
el

ec
to

r)

Trace Format = MIPI STPv2
StreamID = 3

Trace Format = Proprietary
StreamID = 73

Need GUID because IP block
may implement a non-standard

version of a Protocol

Unit ID= 4

Unit ID= 3

Unit ID= 1

Unit ID= 7

GUID

GUID GUID

GUID

ARM PFT trace

Trace Format = Proprietary StreamID = 73

Modem ETM traceConfiguration
Registers

Base
Address

Trace Format =
ARM ETM v3

Trace Format =
ARM PFM

External trace

IC

Trace Format = Proprietary
StreamID = 69

Unit ID= 8

Trace Format =
Pass-through
StreamID = 0xFFFF

Unit ID

Debug Unit Descriptor

Base Address (of Config Reg)
GUID

Trace Format (on O/P)

Unit Type (e.g., Trace-Source Unit)
Unit Sub-Type (e.g., Core, Modem)

Input Pin 0 connection

of Output Pins

of Input Pins

Input Pin N connection

Input pins

Source ID of Trace Stream

Trace Format = Proprietary StreamID = 84

Control Mask
Length of Auxiliary Data

Proprietary Data
(Vendor or Other Standards)

Auxiliary Data
(optional)

Main Core

Unit ID= 2

GUID

Unit ID= 9

Unit ID of Alias

Aliased

Figure 4-2: Debug-Unit Descriptor Example

• Number of input pins and their connectivity. The connectivity defines the Unit ID and the output
pin ID of the source driving the input pin.

• Number of output pins
• Trace Format on the output pins of the unit. Each output pin can have a different Trace format.

They are listed in order in the descriptor fields.
• Stream ID of the output trace. This is implementation dependent. For example, it could denote

the identifier of the trace source (e.g., Master ID for a MIPI STPv1 trace). There is a StreamID
per output trace, listed in order.

• Control Mask – this defines the Debug Class-specific commands that the debug unit supports
• Optional Auxiliary Data:

o Base Address of the Debug Configuration registers

 USB 3.1 Debug Class 7/14/2015

- 55 -

o A Global-Unique Identifier (GUID) for the debug unit
o Supplementary debug data – a vendor &/or a Standards body could provide additional

information in this field

Note that in the figure there are two instantiations of the same Main core. The Alias ID associates these
debug units together. This is necessary because a Trace Generator unit can only generate a single output.
However, in this example, the main core is actually generating two debug traces: a software
instrumentation trace from the OS, and a processor-instruction trace. Consequently, two Trace Generator
icons are required to define these traces.

The first Debug Class descriptors is the optional Debug-Control descriptor, followed by its associated
Debug-Attributes descriptor, followed by the optional debug-topology (Input-Connection, Output-
Connection, and Debug-Unit) descriptors. The debug-topology descriptors apply to all of the Debug
interfaces (i.e., DxC.Dfx, DxC.Trace, and DxC.GP) within a DIC. The wTotalLength field in the Debug-
Attributes descriptor defines the total size for the immediately following Debug Class-specific descriptors.

Note that the GUID in the topology descriptors is for the particular debug unit (e.g., Trace-Processing
unit). This allows the debugger to recognize different variants of a specific IP block. For example, a
particular IP block maybe an early adaptor of a protocol, and thus may not fully satisfy the protocol
standard. The Debug Attributes descriptor provides the global GUID, which could, for example, be used
as a unique link to a XML file describing additional information on the SoC.

The StreamID is an identifier that denotes information about the trace stream. For example, it could
denote the identifier of the trace source. For example, it could be a trace from a particular core or it could
be the instrumentation trace from the operating system or the application running on the core.

Typically the identifier denoting the trace source remains static throughout a debug session. However, it
may change during a debug session when there are more trace sources than can be expressed by the
identifier field of the trace protocol. Consequently, the TS may reassign the trace identifier during a debug
session. The Stream ID field of the descriptor provides the initial assignment of the trace identifier. For
some implementations this could be a static assignment that never varies; while for others it could be a
dynamic value that can vary depending on when the descriptors are accessed (e.g., during USB
enumeration). In other words, for some implementations the descriptors could be constantly updated by
a debug application running on the TS, and the Host can access the updated descriptors during a debug
session via a GET_DESCRIPTOR command.

It is implementation dependent how the TS informs the debugger of a reassignment of the stream ID
should the implementation support dynamically varying StreamIDs. One option is for the debugger to
periodically poll with a USB standard GET_DESCRIPTOR request. Alternatively, the debugger could
periodically issue Debug Class-specific GET_CONFIG request to an implementation-specific configuration
register throughout the debug session.

Figure 4-3 is an example implementation showing the MIPI STM unit of Figure 4-2. The two input traces
to the MIPI STM have StreamIDs (i.e., Master IDs) of 84 and 73, while the output of the MIPI STM has a
StreamID of 3. The StreamID for the output of the MIPI STM unit in Figure 4-3 corresponds to the Master
ID of the output MIPI STP trace. This output trace is the merged result of the two input streams, and thus
the StreamID identifier’s of the input traces is actually embedded within the output trace – see Figure 4-3.

The Stream ID number space is unique to each trace stream. Thus in this particular example, the
StreamID values are all different for the three different traces. However, it is possible that all three traces
have the same value by happenstance. For example, all three traces shown in Figure 4-3 could have the
same value for StreamID = 5, 5, and 5, instead of 84, 73, and 3. The fact that the StreamID is the same
is pure coincidence and does not imply any correlation between the three traces.

 USB 3.1 Debug Class 7/14/2015

- 56 -

 HW Trace

OS Trace

Trace
Processing

Unit 1
(MIPI STM)

Trace Format = MIPI STPv2;
StreamID = 3

Trace Format = Proprietary; StreamID = 73

Trace Format = Proprietary; StreamID = 84

Merged Trace Data
from:

Trace Format =
MIPI STPv2

StreamID = 3

• HW trace
(StreamID = 84)

• OS trace
(streamID = 73)

Figure 4-3: StreamID Example

4.2 xHCI-Compliant DbC Standard Descriptors
The USB3.1 Debug Class supports the legacy, xHCI-compliant DbC. Please refer to the xHC specification
for details of these Descriptors [3].

4.3 Debug Standard Descriptors

4.3.1 USB 2.0 Descriptors
If the device provides USB 2.0 debug support then it shall support the following standard USB 2.0
descriptors for DxC:

• Device: Each USB device has one device descriptor (per USB Specification).

• Configuration: Each USB device has at least one default configuration descriptor, which
supports at least one interface. (That is, multiple configurations are allowed, but not
recommended – see Section 3.6.2).

• Interface: The device shall support at least one debug interface. Some devices may support
additional (normal, non-debug) interfaces to provide other capabilities (e.g., Mass storage).

• Endpoint: The device shall support at least one of the debug endpoint sets, in addition to the
default pipe that is required of all USB devices (see Table 4-1):

Table 4-1: DxC Debug Endpoints
Debug Capability Endpoint Data Type
DxC.Trace IN Bulk, Isochronous
DxC.Dfx
 IN, OUT Bulk
DxC.GP
 IN, OUT Bulk

Debug Control IN, OUT
Control

Interrupt (optional)

Some devices may support additional endpoints to provide other non-debug capabilities. The
host shall use the first reported endpoints for the selected interface.

 USB 3.1 Debug Class 7/14/2015

- 57 -

• String: The device shall supply a unique serial number.

The rest of this section describes the standard USB device, configuration, interface, endpoint, and string
descriptors for the device. For superseding information about these and other standard descriptors, see
Chapter 9, “USB Device Framework,” of the USB Specification [4].

4.3.1.1 USB 2.0 Device Descriptor

Because debug functionality always resides at the Interface level, this class specification does not define
a specific debug Device descriptor.

If a Debug Class device uses an Interface Association Descriptor in order to describe a Debug Interface
Collection, then it shall set the bDeviceClass, bDeviceSubClass and bDeviceProtocol fields to 0xEF,
0x02, and 0x01 respectively. This set of class codes defines the Multi-interface Function Class codes.

If there is no IAD, then the device descriptor shall indicate that class information is to be found at the
interface level. Therefore, the bDeviceClass field of the device descriptor shall contain zero so that
enumeration software looks down at the interface level to determine the Interface Class. The
bDeviceSubClass and bDeviceProtocol fields shall be set to zero.

All other fields of the device descriptor shall comply with the definitions in section 9.6.1 “Device” of USB
Specification [4]. There is no class-specific Device descriptor.

4.3.1.2 USB 2.0 Device-Qualifier Descriptor

The Device-Qualifier descriptor is required for all USB 2.0 high-speed capable devices. The rules that
apply for setting the bDeviceClass, bDeviceSubClass and bDeviceProtocol fields in the Device
Descriptor apply for this descriptor as well. All other fields of the device qualifier descriptor shall comply
with the definitions in section 9.6.2 “Device Qualifier” of USB Specification [4].

4.3.1.3 USB 2.0 Configuration Descriptor

The Configuration descriptor for a device containing a debug function is identical to the standard
Configuration descriptor defined in section 9.6.3 “Configuration” of USB Specification [4]. There is no
class-specific configuration descriptor.

4.3.1.4 Other_Speed_ Configuration Descriptor

The Other_Speed_Configuration descriptor is required for USB 2.0 devices that are capable of operating
at both full-speed and high-speed modes. It is identical to the standard Other_Speed_Configuration
descriptor defined in section 9.6.4 “Other_Speed_Configuration” of USB Specification [4].

The Debug Class recommends High-speed only.

 USB 3.1 Debug Class 7/14/2015

- 58 -

4.3.1.5 Interface Association Descriptor

A device shall use an Interface-Association Descriptor to describe a Debug-Interface Collection. See
Section 3.6.4 for more details and examples.

When using an IAD, the iFunction field in the IAD and the interface field in the Standard Debug Class
Interface descriptor for this Debug-Interface Collection shall be equal.

Table 4-2 defines the Interface-Association Descriptor.

Table 4-2: Interface Association Descriptor

Part Offset
(Byte)

Size
(Bytes) Description Value

bLength 0 1 Numeric expression specifying the size of
this descriptor in bytes.

Number

bDescriptorType 1 1 INTERFACE ASSOCIATION Descriptor Constant

bFirstInterface 2 1 Interface number of the first Debug-Control
Interface that is associated with this
function

Number

bInterfaceCount 3 1 Number of Debug interfaces that are
associated with this function. The interface
numbers in the set of associated interfaces
are contiguous (there can be no gaps in
the list of interface numbers). The count
includes the first Debug-Control interface
and all its associated Debug interfaces
(i.e., DxC.Dfx, DxC.Trace).

Number

bFunctionClass 4 1 Class code 0xDC

CC_DEBUG.
See
Appendix A:

bFunctionSubClass 5 1 Sub-class code SC_DEBUG.
See
Appendix A:

bFunctionProtocol

6 1 Protocol code PC_DEBUG
See
Appendix A:

iFunction 7 1 Index of string descriptor describing this
function. The value is zero if there is no
string descriptor.

xxh

The USB 3.1 specification strongly recommends that device implementations utilizing the IAD use the
Multi-Interface Function class codes in the device descriptor. This allows simple and easy identification
of these devices and allows on some operating systems, installation of an upgrade driver that can parse
and enumerate configurations that include the IAD. The Multi-Interface Function class is documented at
http://www.usb.org/developers/docs.

http://www.usb.org/developers/docs

 USB 3.1 Debug Class 7/14/2015

- 59 -

The class and subclass fields of the IAD are not required to match the class and subclass fields of the
interfaces in the interface collection that the IAD describes. However, Microsoft recommends that the first
interface of the collection have class and subclass fields that match the class and subclass fields of the
IAD. Table 4-3 indicates which fields should match.

Table 4-3: IAD and Interface Descriptor Matching

IAD field Corresponding field of the 1st Interface Value

bFunctionClass bInterfaceClass CC_DEBUG

bFunctionSubclassClass bInterfaceSubClass SC_DEBUG

Typically, a DIC will have start with a Debug-Control Interface descriptor, and thus the Class field will be
DCh for both the IAD and the Debug-Control Interface, and the SubClass = SC_DEBUG_CONTROL = 0x08.

The bFirstInterface field of the IAD indicates the number of the first interface in the function. The
bInterfaceCount field of the IAD indicates how many interfaces are in the interface collection. Interfaces
in an IAD interface collection shall be contiguous (there can be no gaps in the list of interface numbers),
and so a count with a first interface number is sufficient to specify all of the interfaces in the collection.

4.3.1.6 USB 2.0 Interface Descriptor

This section defines the Interface Descriptor for the Debug class.

Table 4-4: USB 2.0 Standard Interface Descriptor for the Debug Class

Part Offset
(Byte)

Size
(Bytes) Description Value

bLength 0 1 Numeric expression specifying the size of
this descriptor in bytes.

09h

bDescriptorType 1 1 Interface Descriptor Type (assigned by
USB)

04h

bInterfaceNumber 2 1 Number of the interface. A zero-based
value identifying the index in the array of
concurrent interfaces supported by this
configuration

xxh

bAlternateSetting 3 1 Value used to select alternate setting for
the interface identified in the prior field.

xxh

bNumEndpoints 4 1 Number of endpoints used by this interface
(excluding endpoint zero). This number is
0 or 1 depending on whether the optional
status interrupt endpoint is present

xxh

bInterfaceClass 5 1 Class code 0xDC

(Diagnostic
Class)

 USB 3.1 Debug Class 7/14/2015

- 60 -

Part Offset
(Byte)

Size
(Bytes) Description Value

bInterfaceSubClass 6 1 Sub-class code: Debug Capability

DbC.GP, DbC.Dfx, DbC.Trace

DvC, DvC.Dfx, DvC.Trace

Debug Control

SC_DEBUG.
See
Appendix A:

bInterfaceProtocol 7 1 Protocol code: PC_DEBUG
See
Appendix A:

iInterface 8 1 Index of string descriptor describing this
interface.

xxh

The Interface descriptor of a Debug Class device includes a Sub-class field and a Protocol field, as shown
in Figure 4-4.

 USB 3.1 Debug Class 7/14/2015

- 61 -

Diagnostic Class
(0xDC)

0x02: DbC.GP

32-255: reserved

bInterfaceClass bInterfaceSubClass bInterfaceProtocol

1: GNU Remote-Debug Command Set

0x03: DbC.Dfx

0x04: DbC.Trace

0x00
0x01

reserved (See Note 1)

1: USB2 Compliance Device
reserved

0x08: Debug Control

0-15: DTS/Dfx 0-15

2-15: DTS/GP 2-15

0-15: DTS/Trace 0-15

0-15: DTS/Control 0-15

32-255: reserved
16-31: Vendor Defined

32-255: reserved
16-31: Vendor Defined

0: DTS/GP0

0x05: DvC.GP

32-255: reserved

1: GNU Remote-Debug Command Set

0x06: DvC.Dfx

0x07: DvC.Trace

0-15: DTS/Dfx 0-15

2-15: DTS/GP 2-15

0-15: DTS/Trace 0-15

16-31: Vendor Defined

32-255: reserved
16-31: Vendor Defined

32-255: reserved
16-31: Vendor Defined

0: DTS/GP 0

32-255: reserved
16-31: Vendor Defined

Note 1: The xHCI-Compliant DbC specifies bInterfaceSubClass = 0x00. Thus, bInterfaceClass =
0XDC, bInterfaceSubClass = 0x00 can point to a legacy xHCI-Compliant DbC device.

16-31: Vendor Defined

Figure 4-4: Diagnostic Class, Sub-Class, and Protocol partitioning

The subclass field defines the debug capability. The Protocol field defines is used to define different
instantiations of debug interface (e.g., DvC.GP0, DvC.GP1, etc.), or to support different debug tools via
the Set Alternate interfaces (see Section 3.6.5) in the first 16 entries, and the following 16 are vendor
defined. The actual debug tools in the first 16 entries are also vendor defined. The 16 DTS slots allow up
to sixteen different drivers to be resident on the host machine corresponding to sixteen different
debuggers.

It is not-unusual to have multiple debuggers in the lab, with varying capabilities. For example, one TAP
debugger could be a commercial offering while another is a vendor-proprietary tool that provides access
to proprietary data structures. Thus, for DxC.Dfx, the TS vendor may choose to use bInterfaceProtocol =
1 for one of these debuggers and bInterfaceProtocol = 2 for the other. This will result in the host
instantiating two different drivers, which will simplify the coexistence of two debuggers on a single host.
See Section 3.6.5.

The assignment of Protocol fields for DbC.GP matches that of the original xHCI DbC. For compatibility,
DvC.GP uses the same assignment.

 USB 3.1 Debug Class 7/14/2015

- 62 -

4.3.1.7 USB 2.0 Endpoint Descriptors

The endpoint descriptor is identical to the standard endpoint descriptor defined in section 9.6.6
“Endpoint” of USB Specification [4].

4.3.2 USB 3.1 Standard Descriptors
The USB 3.1 descriptors are defined in the USB 3.1.0 specification and are not duplicated here.

4.4 Debug Class-Specific Descriptors

4.4.1 Introduction
There are a number of Debug Class-specific descriptors associated with the various debug capabilities
(DxC.Dfx, DxC.Trace, and DxC.GP). Figure 4-5 shows an example implementation of an SoC device,
which also provides debug connectivity to an external modem, allowing the debug logic within the SoC to
configure and capture debug traces from the Modem. The right-hand-side of the figure shows the standard
and class-specific descriptors associated with these debug hooks. The yellow and blue shaded
descriptors are the class-specific descriptors. These class-specific descriptors define the capabilities of
the debug hooks (e.g., whether the core can create processor traces or not), and how these hooks are
interconnected.

DvC.Dfx

 OUT Endpoint

IN Endpoint

DvC.Trace
 IN Endpoint

TAP
Controller

Mem
Access

External
Access

Modem
(External)

SoC TS

Config.

To JTAG pins (TAP
controller is master)

IC OC

Configuration Descriptor

Interface 1 Descriptor (Debug Control)

Endpoint Descriptor Bulk IN

Debug-Unit Desc: Trace Processing Unit (1)

Debug-Unit Desc: Trace-Gen (Graphics)
Debug-Unit Desc: Trace-Gen (Core)

Debug-Unit Desc: Trace Processing Unit (3)

Debug-Unit Desc: Trace-Gen (Video)

Endpoint Descriptor Bulk OUT

Debug Attributes Descriptor
Input Connection Descriptor ßUSB3

Debug Unit Descriptor: Dfx Unit
Output Connection Descriptor àUSB3

Input Connection Desc. ß(Ext. Modem)
Output Connection Desc. à(Ext. Modem)

Interface 3 Descriptor (Debug Control)

Endpoint Descriptor Bulk IN

Debug Attributes Descriptor
Output Connection Descriptor àUSB3

Debug-Unit Desc: Trace-Gen (Audio)

Core

Graphics

Video

Audio

Trace
Proc. Unit

(1)

Trace
Proc. Unit

(2)

Trace
Processing

Unit (3)

OC

Dfx Unit
OC

IC

OC

IC

Input Connection Desc. ß(JTAG pins)
Output Connection Desc. à(TAG pins)

Interface 2 Descriptor (DvC.Dfx)

Interface 4 Descriptor (DvC.Trace)

Debug-Unit Desc: Trace Processing Unit (2)

Interface Association Descriptor IAD2

Interface Association Descriptor IAD1

DIC 1

DIC 2

DIC 1

DIC 2

Figure 4-5: Debug Topology and Descriptor Hierarchy Example 1

The example in Figure 4-5 uses the DvC.Dfx and DvC.Trace capabilities. The class-specific descriptors
are shaded the same color as their corresponding debug logic.

 USB 3.1 Debug Class 7/14/2015

- 63 -

Note that the example in Figure 4-5 shows hardware debug units. However, one can use the topology to
describe the interconnection of software applications (e.g., GNU debugger, data loggers, etc.). These
would most naturally use the DxC.GP interface.

The example in Figure 4-5 shows the debug interfaces grouped into a pair of Debug-Interface Collections
using Interface Association Descriptors. IAD1 group Interface 1 and 2, while IAD2 groups Interfaces 3
and 4. These two DICs will connect to two different drivers in the host. Alternatively, Figure 4-6 uses a
single IAD to group together interfaces 1, 2, and 3. In this case, a single driver in the host will control all
of the debug interfaces. We recommend the grouping of Figure 4-5 rather than Figure 4-6 when the two
debug functions are independent. However, Figure 4-6 is appropriate if the implementation uses an IP
block for complete Dfx/Trace unit and the Dfx needs to deal with this IP block as an entity (e.g., when
using a vendor’s IP for a composite debug block with an associated debugger).

Note that a device may ship with the descriptors corresponding to Figure 4-5 and the user can change
them to those of Figure 4-6 via Android adb or some other similar mechanism.

The DvC.Dfx interface in either Figure 4-5 or Figure 4-6 communicates with a Dfx unit, which in this
example contains a TAP controller, a memory-access unit, and an external-access unit that interfaces to
a modem outside the SoC. This outbound path allows the Dfx unit to configure the modem to generate
debug traces. The modem traces return on the inbound path.

The DvC.Trace portion consists of four agents generating traces (graphics, core, video, and audio units).
The Trace-Processing unit 1 combines the traces from the graphics, core, and video units. The Trace-
Processing unit 2 packetizes the single audio traces into a standard trace format. The Trace-Select unit
chooses between the two possible traces streams.

The Output Connection (OC) and an Input Connection (IC) define inputs and outputs to the debug logic.
Three of these Connections connect to the USB 3.1 endpoints, two connect to an external modem, and
the final two connect to the JTAG pins on the device. The later capability allows the TAP controller to act
as a JTAG master and control external chips via a JTAG chain.

The class-specific, Debug-Unit descriptors defines the capabilities of the debug unit (e.g., whether the
unit is a trace-generator unit, or a Trace-Processing unit, etc.) It also defines the type of the debug unit
(e.g., Audio unit, graphics unit, modem, etc.).

The example in Figure 4-5 shows a generic Dfx Unit, which consists of three sub components (i.e., TAP
controller, memory-access unit, and external-access unit). There are no specific descriptors for these sub
components. Thus, the debugger will treat the Dfx unit as single entity.

Note that an implementation may choose to define a Debug-Unit descriptor of type Dfx for each of these
sub-components. This is implementation specific. For some designs, it may be preferable to treat these
3 sub-components as independent Dfx units, while for others it may be preferable to treat these as a
single, combined unit.

 USB 3.1 Debug Class 7/14/2015

- 64 -

DvC.Dfx

 OUT Endpoint

IN Endpoint

DvC.Trace
 IN Endpoint

TAP
Controller

Mem
Access

External
Access

Modem
(External)

SoC TS

Config.

To JTAG pins (TAP
controller is master)

IC OC

Configuration Descriptor

Interface 1 Descriptor (Debug Control)

Debug-Unit Desc: Trace Proc. Unit (1)

Debug-Unit Desc: Trace-Gen (Graphics)
Debug-Unit Desc: Trace-Gen (Core)

Debug-Unit Desc: Trace Proc. Unit (3)

Debug-Unit Desc: Trace-Gen (Video)

Debug Attributes Descriptor
Input Connection Descriptor ßUSB3

Debug Unit Descriptor: Dfx Unit
Output Connection Descriptor àUSB3

Input Connection Desc. ß(Ext. Modem)
Output Connection Desc. à(Ext. Modem)

Endpoint Descriptor Bulk IN

Output Connection Descriptor àUSB3

Debug-Unit Desc: Trace-Gen (Audio)

Core

Graphics

Video

Audio

Trace Proc
Unit (1)

Trace Proc
(2)

Trace
Processing

Unit (3)

OC

Dfx Unit
OC

IC

OC

IC

Input Connection Desc. ß(JTAG pins)
Output Connection Desc. à(TAG pins)

Interface 3 Descriptor (DvC.Trace)

Debug-Unit Desc: Trace Proc. Unit (2)

Interface Association Descriptor 1

Endpoint Descriptor Bulk IN
Endpoint Descriptor Bulk OUT

Interface 2 Descriptor (DvC.Dfx)

DIC 1

Figure 4-6: Debug Topology and Descriptor Hierarchy Example 2

4.4.2 Debug-Control Interface Descriptors
The optional Debug-Control Interface descriptors contain all relevant information to fully characterize the
corresponding Debug function. There are two descriptors associated with debug control:

1. Debug-Control Interface descriptor: This is a standard USB interface descriptor that characterizes
the interface itself. This descriptor is optional.

2. Debug-Attributes descriptor: This is a class-specific interface descriptor that provides additional
information concerning the internals of the debug function. It specifies the revision level and lists

 USB 3.1 Debug Class 7/14/2015

- 65 -

the general debug capabilities of the complete TS. This descriptor is mandatory if the associated
Debug-Control Interface descriptor exists.

The topology of the debug function is defined by zero or more of the following optional descriptors in any
order:

o Input Connection descriptor

o Output Connection descriptor

o Debug Unit Descriptor

The Debug Control requests can manipulate/control any of the units within the above topology, or the DIC
that encompasses this topology, or even the complete TS that encompasses one or more DICs.

The Debug-Control interface has no dedicated endpoints associated with it. It uses the default pipe
(endpoint 0) for all communication purposes, except for optional event notification, in which case the
interrupt endpoint is used. Class-specific debug control requests are sent using the default pipe.

The Debug-Control Interface may use multiple alternate setting. For example, when sharing an endpoint
between GP and Dfx, as per the example in Section 3.6.2, then each capability may require different
Debug Commands, and would thus need different Debug Control and Debug Attributes descriptors.

The standard Debug-Control Interface descriptor is identical to the standard interface descriptor defined
in section 9.6.5 "Interface" of USB Specification Revision 2.0, except that some fields have dedicated
values (see Table 4-5).

Table 4-5: Standard Debug-Control Interface Descriptor

Part Offset
(Byte)

Size
(Bytes) Description Value

bLength 0 1 Numeric expression specifying the size of
this descriptor in bytes.

09h

bDescriptorType 1 1 INTERFACE 04h

bInterfaceNumber 2 1 Index of this interface xxh

bAlternateSetting 3 1 Value used to select alternate setting for
the interface identified in the prior field.

xxh

bNumEndpoints 4 1 1 optional endpoint (interrupt endpoint) xxh

bInterfaceClass 5 1 CC_DEBUG DCh

bInterfaceSubClass 6 1 SC_DEBUG_CONTROL 80h

bInterfaceProtocol 7 1 Not used. Set to
PC_PROTOCOL_UNDEFINED

00h

iInterface 8 1 This is a TAG that has to match the
iFunction field in the Debug Interface
Collection IAD.

xxh

 USB 3.1 Debug Class 7/14/2015

- 66 -

4.4.3 Debug-Attributes Descriptor
The Debug Control & Debug-Attributes interface descriptors contain all relevant information to fully
characterize the corresponding debug function. The standard, Debug-Control interface descriptor
characterizes the interface itself, whereas the class-specific Debug-Attributes interface descriptor
provides pertinent information concerning the internals of the debug function. It specifies revision level
information and lists the capabilities of each Unit and Terminal.

This Debug-Attributes descriptor is located immediately after the Debug-Control Interface descriptor and
is mandatory if the Debug-Control Descriptor exits. Thus, the Debug-Attributes descriptor is always paired
with the Debug-Control descriptor.

Table 4-6 defines the Debug-Attributes descriptor.

Table 4-6: Debug Class Debug-Attributes Descriptor

Part Offset
(Byte)

Size
(Bytes) Description Value

bLength 0 1 Numeric expression specifying the size of
this descriptor in bytes.

Number

bDescriptorType 1 1 CS_INTERFACE 24h

bDescriptorSubType 2 1 DC_DEBUG_ATTRIBUTES 04h

bcdDC 3 2 Revision number of Debug Class
specification that this TS/DIC is based on.

0100h

(rev 1)

wTotalLength 5 2 Total size of the topology and interrupt
class-specific descriptors for this debug
function. It does not include the debug
Capability descriptors (e.g., DxC.Dfx)

Number

bTSorDIC 7 1 Defines whether this descriptor pertains to
the complete TS or to a DIC

0: DIC

1:TS

Otherwise: reserved

Number

bmSupportedEvents

8 1 Defines if debug interrupt events are
supported (i.e., triggers, hot button):

D0: Debug Event supported on TS if true

D1: Debugger starts trace capture if
debug “button” asserts and D0 is 1.

D2: D3: reserved

D4-D7: Vendor specific

Bitmap

bControlSize 9 1 Size of the bmControls field, in bytes: n Number

 USB 3.1 Debug Class 7/14/2015

- 67 -

Part Offset
(Byte)

Size
(Bytes) Description Value

bmControl

(See Section 5.1 for
more information)

10 n A bit set to 1 indicates that the following
Debug-Control requests are supported
by the DIC/TS depending on the setting of
bTSorDIC. Note that a Debug unit within
the TS or DIC may support completely
different debug commands – these are
defined in the corresponding field of the
Debug-Unit descriptor.

D0: SET_CONFIG_DATA_SINGLE

D1: SET_CONFIG_DATA

D2: GET_CCONFIG_DATA

D3: SET_CONFIG_ADDRESS

D4: GET_CONFIG_ADDRESS

D5: SET_ALT_STACK

D6: GET_ALT_STACK

D7: SET_OPERATING_MODE

D8: GET_OPERATING_MODE

D9: SET_TRACE_CONFIGURATION

D10: GET_TRACE_CONFIGURATION

D11: SET_BUFFER

D12: GET_BUFFER

D13: SET_RESET

D(n*8-1)..14: reserved

If SET_CCONFIG_ADDRESS is not supported
but SET/GET_CCONFIG_DATA is supported,
then Configuration address defaults to
value 0.

Bitmap

bAuxDataSize 10+n 1 This field defines the size of the next two
fields. If there is no auxiliary data then = 0,
otherwise 24.

Number

qBaseAddress 11+n 8 Base Address to the Configuration
registers of the DIC or the TS depending
on the value of bTSorDIC.

A Base Address = 0 is used to indicate that
there is no Base Address.

Constant

hGlobalID 19 + n 16 Identifier for the complete TS or DIC
depending on the value of bTSorDIC. For
example, this could be the GUID for the
TS.

Constant

 USB 3.1 Debug Class 7/14/2015

- 68 -

Part Offset
(Byte)

Size
(Bytes) Description Value

wVendorDataSize 10+n or

35+n

2 This field defines the size of the remaining
bytes in the descriptor in bytes: q

Number

Vendor Data 12+n or

37+n

q Vendor defined data (q bytes) Number

The bcdDC is the revision of Debug Class specification that this TS/DIC is based upon. Note that a DIC
may contain a DxC.Trace interface and a DxC.Dfx interface that each support a different revision of the
specification. In this case, the DIC requires Debug-Unit descriptors for the Trace and Dfx to state which
revision they support. For example:

• DIC containing Trace and Dfx interfaces, and the DIC itself only supports Rev 1.0 Debug
Commands (e.g., Rev 1.0 commands to power-on the debug logic).

 Thus, Debug Attribute (bTSorDIC = 1, bcdDC = 1.0)
o Debug-Unit Descriptor for Trace unit supports rev 2.0 & thus has bcdDC = 2.0
o Debug-Unit Descriptor for Dfx unit supports rev1.0 & thus has bcdDC = 1.0

The wTotalLength field reflects the total length in bytes of all the descriptors that are used to fully describe
the debug function, which is the topology and any interrupt descriptor. Thus, all Debug-Unit descriptors,
all Input-Connection and Output-Connection descriptors, together with the Interrupt descriptor.

The bTSorDIC is used to define whether this Debug-Attributes descriptor pertains to the complete TS or
the DIC. In particular, this is used to define Debug Commands that are specific to the TS or to a DIC. For
example, it may only be possible to Power-on/off all the debug logic within a TS but not power-on/off
individual DICs. Thus, to allow this capability, we need the following:

TS: Debug Control & Attributes (bTSorDIC) = TS and bmControl allows Operating Modes

DIC: Debug Control & Attributes (bTSorDIC) = DIC & bmControl does not allow Operating Modes

Figure 4-7 shows an example where there is a pair of Debug-Control and Debug Attributes descriptors
defining the capability of the complete TS, and a pair of Debug-Control and Debug Attributes descriptors
defining the capability of a DIC.

 USB 3.1 Debug Class 7/14/2015

- 69 -

DIC Related
Information

Interface Association Descriptor (IAD)

Debug Control Interface Descriptor (bTSorDIC = DIC)

Debug Attributes Descriptor

(Optional Topology Descriptors)

Debug Capability Descriptor (i.e., DxC.Trace, DxC.Dfx, or DxC.GP)

(Optional Interrupt Endpoint)

Debug Endpoint(s)

Debug Control Interface Descriptor

Debug Attributes Descriptor (bTSorDIC = TS)
TS Related
Information

DIC

Figure 4-7: Example of TS and DIC Debug Control & Attributes descriptor usage

The bmSupportedEvents field indicates if the TS or DIC supports Interrupts for breakpoints, low-power-
transitions, etc. If supported, then an Interrupt interface is mandatory. The Debug Class only supports IN
endpoints for the Interrupt interface, and thus the TS can only send out interrupts to the DTS, but not vice-
versa. If the DTS needs to communicate with the TS, it can use the Debug-Control Interface.

The bmControl field is a bitmask indicating which commands the DIC (if bTSorDIC = 0) or TS (if
bTSorDIC=1) supports. The optional Debug-Unit descriptors define the Debug Commands supported by
the optional individual debug units.

A non-zero wAuxDataSize indicates that the descriptor contains an auxiliary debug data structure for the
remainder of the descriptor starting immediately after the wAuxDataSize field. This data structure consists
of a number of fields:

• Input and Output buffer sizes for the DIC
• Address to this data structure in the qBaseAddress field
• The GUID for this TS in the hGlobalID field. The hGlobalID provides an ID (e.g., GUID) for the

complete debug entity (and not for this particular DIC). Thus if there are multiple DICs, then each
Debug Attributes descriptor should provide the same information (or the subsequent descriptors
should provide zero Auxiliary Data). Otherwise, if each Auxiliary data structure is different in the
various DICs, then the interpretation is vendor-specific.

The hGlobalID could, for example be used as a unique link to a XML file providing additional
debug information on the debug entity.

• Optional supplementary data. This data could be proprietary to a vendor or defined via a
standards body.

Following the Debug-Attribute descriptor are zero or more class-specific descriptors. There is at least one
Debug Class-specific descriptor if the bTotalLength value exceeds the bLength field. These class-specific
descriptors are the optional debug-topology descriptors. The layout of the topology descriptors depends
on the type of Unit or Connection they represent.

Note: A Standards body will want to create a set of Debug commands for their particular Dfx/Trace unit.
It is unlikely (at least for the foreseeable future) that a Standards group will want to create debug
commands for the complete DIC or TS. Consequently, the Debug Class specification only provides
support for Vendor data and not for Standards bodies. Instead, the Debug-Unit descriptor provides this
support (see later). This shortcoming could be addressed in a future revision of the Debug Class
specification should this be necessary.

The Debug-Control Interface may use multiple alternate settings, and thus each of these alternate settings
will have an associated Debug-Attributes descriptor. There is no Alternate Settings field in the Debug-

 USB 3.1 Debug Class 7/14/2015

- 70 -

Attributes descriptor because the Debug-Control and the Debug-Attributes descriptors are always paired
with each other:

Debug-Control (Alt.Setting = 0) Debug-Control (Alt.Setting = 1)
Debug-Attributes descriptor A Debug-Attributes descriptor B

4.4.4 Input-Connection Descriptor
The Input-Connection descriptor describes functional aspects of the Input-Connection to the device.

The value in the bConnectionID field uniquely identifies an Input-connection. No other Unit or Connection
within the same DIC may have the same ID. For example, each Connection and each Unit within a DIC
shall have a unique ID, but different DICs can reuse the same ID.

The bConnectionType field defines where the Input Connection connects. This could be a USB OUT
endpoint, an external debug-in connection, etc.

The bAssocConnection field associates an Output Connection to this Input Connection, effectively
implementing a bi-directional Connection pair. For instance, this would link the JTAG input and output
pins. If the bAssocConnection field is used, both associated Connections shall belong to the bi-directional
Connection Type group. If no association exists, the bAssocConnection field shall be set to zero.

The Host software can treat the associated Connections as being physically or logically related. In many
cases, one Connection cannot exist without the other. An index to a string descriptor is provided to further
describe the Input-Connection.

The IC may be carrying traces. The trace format is defined by the (optional) dTraceFormat field. This field
is at the end of the descriptor, and thus if the IC does not carry traces then this field is not required. In this
case, the bLength = 07h, otherwise it is 0Bh.

The optional dStreamID provides information on the ID of the trace. For example, this could be the Master
ID for a MIPI STP trace.

Table 4-7 describes the Input-Connection descriptor:

Table 4-7: Input Connection Descriptor

Part Offset
(Byte)

Size
(Bytes) Description Value

bLength 0 1 Numeric expression specifying the size of this
descriptor in bytes.

07h or
0Bh

bDescriptorType 1 1 CS_INTERFACE 24h

bDescriptorSubType 2 1 DC_INPUT_CONNECTION 01h

bConnectionID 3 1 A non-zero constant that uniquely identifies the
Connection within the debug capability
(DxC.Dfx or DxC.Trace).

Constant

 USB 3.1 Debug Class 7/14/2015

- 71 -

Part Offset
(Byte)

Size
(Bytes) Description Value

bConnectionType 4 1 Constant that characterizes the type of
Connection.

0: USB OUT endpoint

1: Debug Port input pin (Control, e.g., JTAG)

2: Debug Port input pin (Data)

3: Debug Port input pin (Data or Control)

4 – 127: reserved

Constant

bAssocConnection 5 1 ID of the Output Connection to which this Input
Connection is associated, or zero (0) if no such
association exists.

Constant

iConnection 6 1 Index of a string descriptor, describing the Input
Connection

Constant

dTraceFormat

(optional field)

7 4 Trace Format on the input pins to the Debug
Unit. See Table 4-11

Constant

dStreamID

(optional field)

11 4 ID for the output trace (e.g., Master ID for MIPI
STP). The TS may change this value during a
debug session.

A Stream_ID = 0xFFFF indicates that there is no
Stream_ID.

Constant

4.4.5 Output Connection Descriptor
The Output Connection descriptor describes functional aspects of the Output Connection to the host.

The value in the bConnectionID field uniquely identifies an Output Connection. No other Unit or
Connection within the same debug capability may have the same ID. For example, each Connection and
each Unit within DxC.Dfx shall have a unique ID, but DxC.Dfx and DxC.Trace can reuse the same ID.

The bConnectionType field defines where the Output Connection connects. This could be a USB IN
endpoint, an external debug out connection, etc.

The bAssocConnection field associates an Input Connection to this Output Connection, effectively
implementing a bi-directional Connection pair. For instance, this would link the JTAG input and output
pins. If the bAssocConnection field is used, both associated Connections shall belong to the bi-directional
Connection Type group. If no association exists, the bAssocConnection field shall be set to zero.

The Host software can treat the associated Connections as being physically related. In many cases, one
Connection cannot exist without the other. An index to a string descriptor is provided to further describe
the Output Connection.

The following table describes the Output Connection descriptor:

 USB 3.1 Debug Class 7/14/2015

- 72 -

Table 4-8: Output Connection Descriptor

Part Offset
(Byte)

Size
(Bytes) Description Value

bLength 0 1 Numeric expression specifying the size of
this descriptor in bytes.

09h

bDescriptorType 1 1 CS_INTERFACE 24h

bDescriptorSubType 2 1 DC_OUTPUT_CONNECTION 02h

bConnectionID 3 1 A non-zero constant that uniquely
identifies the Connection within the debug
debug capability (DxC.Dfx or DxC.Trace).

Constant

bConnectionType 4 1 Constant that characterizes the type of
Connection.

0: USB IN endpoint

1: Debug Port output pin (Control)

2: Debug Port output pin (Data)

3: Debug Port output pin (Data or Control)

4 – 127: reserved

Constant

bAssocConnection 5 1 ID of the Input Connection to which this
Output Connection is associated, or zero
(0) if no such association exists.

Constant

wSourceID 6 2 ID of the Unit or Connection to which the
Input Pin of this Output Connection is
connected in the first byte, and the output
pin is in the second byte.

Constant

iConnection 8 1 Index of a string descriptor, describing the
Output Connection

Constant

4.4.6 Debug-Unit Descriptor
This descriptor defines the type of debug unit (e.g., Dfx unit, Trace-Processing unit, Trace-Generation
unit, etc.) together with connectivity information describing which output pins on which debug units are
driving the input pins on this unit. Figure 4-8 gives an example interconnect between four Dfx Units and
Table 4-9 defines the Debug-Unit descriptor fields.

The value in the bUnitID field of the Dfx-Unit descriptor uniquely identifies the debug Unit. No other Unit
or Connection within the same DIC may have the same ID.

The bSourceID field describes the input connectivity for this Debug Unit. It contains the ID of the Unit or
Connection to which this Debug Unit connects via its Input Pin, together with the output pin driving this
input pin (see Figure 4-8)

The bDebugUnitType defines the type of debug unit (e.g., Trace-generation unit, Trace-Router unit, etc).

 USB 3.1 Debug Class 7/14/2015

- 73 -

The Debug-Unit Descriptor allows the hardware designer to define any arbitrary debug functionality that
the class driver passes to the host debugger application. This could be some special debug hardware, or
debug associated hardware, such as authentication, or a test-pattern generator, that is not covered by
this specification. This could also be a software application or structure.

The bNrInPins field defines the number of input pins. The wSourceID defines the connectivity of each of
these input pins. The wSourceID consists of a pair of bytes: the first defines the unit ID driving this input,
while the second byte defines the actual output pin driving the signal.

The bNrOutPins field defines the number of output pins.

Figure 4-8: Example interconnect between a number of Dfx Units

The dTraceFormat fields define the trace format for each of the output pins of the debug unit. Note that
the inputs to the Dfx unit could each have a different trace format, which the Dfx unit may convert into a
set of different formats on its output pins. See Figure 4-2 for an example.

The dStreamID give the source of a Trace/Stream Protocol. This value may change during a debug
session. Debug Software running on the TS may thus update this value. See Section 4.1.1 for more
details.

The qBaseAddress provides a 64-bit address to the Configuration registers in the debug unit.

The bmControls field is a bitmap, indicating the availability of certain debug controls for the debug unit
stream. For future expandability, the number of bytes occupied by the bmControls field is indicated in the
bControlSize field. The bControlSize field is permitted to specify a value less than the value needed to
cover all the control bits (including zero), in which case the unspecified bmControls bytes will not be
present and these control bits are implicitly zero.

A non-zero wAuxDataSize indicates that the descriptor contains a data structure for supplemental debug
data. This data structure consists of:

• The qBaseAddress field pointing to a implementation-specific, Debug-Data structure
• A GUID for this debug unit in the hIPID field. The hIPID provides an ID (e.g., GUID) for the actual

implementation of the debug unit. For example, a certain IP block may have implemented an
early version of a protocol and may thus suffer from a number of limitations. The hIPID allows
the debugger to recognize such units and act accordingly.

Dfx Unit
Unit ID = 4

O/P Pin = 1

Dfx Unit
Unit ID = 6

O/P Pin = 1

Dfx Unit
Unit ID = 3

Dfx Unit
Unit ID = 7

Input Pin1 connects to
(Unit ID, O/P Pin) = (4,1)

I/P Pin = 1

I/P Pin = 2

Input Pin1 connects to
(Unit ID, O/P Pin) = (3,1)

O/P Pin = 2

Input Pin1 connects to
(Unit ID, O/P Pin) = (3,3)

Input Pin3 connects to
(Unit ID, O/P Pin) = (3,4)

O/P Pin = 1

I/P Pin = 4

I/P Pin = 1

I/P Pin = 3O/P Pin = 1

O/P Pin = 3
O/P Pin = 4

OC

OC connects to (Unit ID,
O/P Pin) = (6,1)

IC

Input Pin 3 connects to
(Unit ID, O/P Pin) = (8,1)

I/P Pin = 3

Unit ID = 8

I/P Pin = 2

Fanout
allowed

Input Pin2 connects to
(Unit ID, O/P Pin) = (3,1)

 USB 3.1 Debug Class 7/14/2015

- 74 -

A non-zero wStandardsDataSize indicates that the descriptor contains a data structure for supplemental
debug data defined by a Standards body. See Section 4.5 for more details and examples. A Standards
body can define a debug unit, and there could be many debug units within a TS defined by different
standards. This data structure consists of:

• An identifier, bStandardsID, indicating the Standards body
• Standards Data, which is a data structure defined by the Standards body.

A non-zero wVendorDataSize indicates that the descriptor contains a data structure for supplemental
debug data defined by the vendor. For example, the vendor may need to know the state of the TS prior
to the start of a debug session. They may use this data field for this purpose.

Note that the standard GET_DESCRIPTOR request can fetch at most 64KB. Thus the complete descriptor,
including any Standards body’s and Vendor’s extensions must not exceed this limit.

An index to a string descriptor (iDebugUnitType) is provided to further describe the Debug Unit.

The following table defines the Debug-Unit descriptor:

Table 4-9: Debug Unit Descriptor

Part Offset
(Byte)

Size
(Bytes) Description Value

bLength 0 1 Numeric expression specifying the size of
this descriptor in bytes.

41 + 2p

bDescriptorType 1 1 CS_INTERFACE 24h

bDescriptorSubType 2 1 DC_DEBUG_UNIT 03h

bcdDC 3 2 Revision number of Debug Class
specification that this Debug Unit is based
on.

0100h

(rev 1)

bUnitlD 3 1 A non-zero constant that uniquely
identifies the Debug Class unit.

Constant

 USB 3.1 Debug Class 7/14/2015

- 75 -

Part Offset
(Byte)

Size
(Bytes) Description Value

bDebugUnitType

4 1 0: Un-defined unit

1: Dfx Unit

2: Select Unit

3: Trace-Router Unit

4: Trace-Processing Unit

5: Trace-Generation Unit

6: Trace-Sink Unit

7: Control Unit

8-63: reserved

64:95: Vendor Specific

96:127: For use by Standards body

128-255: reserved

xxh

bDebugSubUnitType 5 1 E.g., Audio, GFX, Core, Modem, etc. – see
Table 4-10.

bAliasUnitID 6 1 ID of the Debug Unit to which this debug
unit is associated, or zero (0) if no such
association exists.

For example, a Trace-Generator unit only
has a single output and thus can only
generate a single output trace. However, a
CPU core may generate multiple trace
streams, e.g., software messages from the
OS and also processor-instruction traces.
In this case, there will be two Trace-
Generator units, and the bAliasUnitID field
would link these together, indicating that
they are the same physical device. This
information maybe useful for the DTS
when it is powering on/off debug units.

If 3 or more units need to be aliased
together, then arbitrarily choose one as the
reference unit that the others will alias to.

Constant

bNrInPins 7 1 Number of Input Pins on this Unit: p Constant

wSourceID(1) 8 2 ID of the Unit or Connection to which the
first Input Pin of this Debug Unit is
connected in the first byte, and the output
pin is in the second byte.

Constant

⁞ ⁞ ⁞ ⁞

 USB 3.1 Debug Class 7/14/2015

- 76 -

Part Offset
(Byte)

Size
(Bytes) Description Value

wSourceID(p) 8 + 2(p-
1)

2 ID of the Unit or Connection to which the
pth Input Pin of this Debug Unit is
connected in the first byte, and the output:
pin is in the second byte.

Constant

bNrOutPins 8 + 2p 1 Number of Output Pins on this Unit: q Constant

dTraceFormat(1) 9 + 2p 4 Trace Format on the first output pins for the
Debug Unit. See Table 4-11

Constant

dStreamID(1)

13+2p 4 ID for the the above output trace (e.g.,
Master ID for MIPI STP). The TS may
change this value during a debug session.
It is implementation specific how the
Debugger reads the new value at the end
of the debug session.

0xFFFF: Null (no StreamID)

Constant

⁞ ⁞ ⁞ ⁞

dTraceFormat(q) 9 + 2p +
8q

4 Trace Format on the qth output pins for the
Debug Unit. See Table 4-11

Note: If all outputs have the same trace
then all of these fields will be the same.

Constant

dStreamID (q)

13+2p
+ 8q

4 ID for the output trace (e.g., Master ID for
MIPI STP).

0xFFFF: Null (no StreamID)

Constant

bControlSize 17+2p
+ 8q

1 Size of the bmControls field, in bytes: n Number

 USB 3.1 Debug Class 7/14/2015

- 77 -

Part Offset
(Byte)

Size
(Bytes) Description Value

bmControl

(See Section 5.1 for
more information)

18+2p
+ 8q

n A bit set to 1 indicates that the mentioned
Debug-Control request is supported:

D0: SET_CCONFIG_DATA_SINGLE

D1: SET_CONFIG_DATA

D2: GET_CCONFIG_DATA

D3: SET_CONFIG_ADDRESS

D4: GET_CONFIG_ADDRESS

D5: reserved

D6: reserved

D7: SET_OPERATING_MODE

D8: GET_OPERATING_MODE

D9: reserved

D10: reserved

D11: SET_BUFFER

D12: GET_BUFFER

D13: SET_RESET

D23..D14: reserved

D31..D24: Vendor-specific

If SET_CONFIG_ADDRESS is not supported
but SET/GET_CONFIG_DATA is supported,
then Configuration address defaults to
value 0.

Bitmap

bAuxDataSize 18+2p
+ 8q+n

1 This field defines the size of the next two
fields. If there is no auxiliary data then = 0,
otherwise 24.

Number

qBaseAddress 19+2p
+ 8q+n

8 Base Address to the configuration
registers of the debug IP block.

If there are no configuration registers then
qBaseAddress = 0

Constant

hGUID 27+2p
+ 8q+n

16 Global-unique identifer (GUID) for the IP Constant

wStandardsDataSize 45+2p
+ 8q+n

2 This fields defines the size of the next two
fields, which are p bytes in size.

If there is no Standards data then p = 0.

Number

 USB 3.1 Debug Class 7/14/2015

- 78 -

Part Offset
(Byte)

Size
(Bytes) Description Value

bStandardsID 47+2p
+ 8q+n

1 0: Data format is not a Standard

1: MIPI Standards Organization

2: IEEE Standards Organization

otherwise: reserved

Number

Standards Data 48+2p
+ 8q+n

p-1 Standards data. For example, which
Specification, bit mask for supported
commands, buffer sizes, etc.

Size is (p-1) bytes

Constant

wVendorDataSize 47+2p
+8q+n
+p

2 This field defines the size of the remaining
bytes in the descriptor in bytes: q

Number

Vendor Data 49+2p
+8q+n
+p

q Vendor defined data (q bytes) Number

iDebugUnitType 49+2p
+8q+n
+p+q

1 Index of a string descriptor, identifing the
Debug Unit (and Sub-unit) type

Index

 USB 3.1 Debug Class 7/14/2015

- 79 -

Table 4-10: Debug Sub-Unit Type

Part Description Value

bDebugSubunitType Constant that characterizes the subtype of
Unit:
0: Not defined (Null unit)
1: CPU
2: Graphics
3: Video
4: Imaging
5: Audio
6: Modem
7: Bluetooth
8: Power-Management agent
9: Security agent
10: Sensor Unit
11: Bus-Watcher
12: Location (GNSS, GPS, Glonass)
13: Trace Compressor
14: TAP Controller
15: Memory Access Unit
16: Configuration Unit
17 - 62: reserved
63: Other
64: SW Trace Logger
65: SW Router
66: SW Unit
67: SW Configuration Unit
68: SW Debugger
69 - 127: reserved
128 - 191: Vendor Specific
192-254: reserved
255: Standards Body

Constant

Table 4-11: dTraceFormat

dTraceFormat

<31:24>

Type/

Vendor

dTraceFormat

<23:0>
Value

0x00 N/A 0: Pass-through (no change of trace format)
1: Debug Header Format (see Appendix C:)
2: Debug Footer Format (see Appendix C:)
3 - 4: reserved
5: Use GUID for trace format (i.e., Proprietary
trace format)
6: UTF8 string format
Otherwise: reserved

Constant

 USB 3.1 Debug Class 7/14/2015

- 80 -

dTraceFormat

<31:24>

Type/

Vendor

dTraceFormat

<23:0>
Value

0x01 Intel Vendor defined Constant

0x02 ARM ARM defined Constant

0x03 ST Vendor defined Constant

0x04 TI Vendor defined Constant

0x05 Qualcomm Vendor defined Constant

0x06 AMD Vendor defined Constant

0x07-0x7F reserved Constant

0x80 MIPI
Standards

MIPI defined Constant

0x81
Nexus

Standards
Nexus defined Constant

Otherwise reserved Constant

4.5 Standards-Body Support
Standard bodies can extend the Debug Class to support a new debug function by defining extensions to
the Debug-Unit descriptor. Figure 4-9 shows an example of a new debug unit, a Bus-Watcher, which
sends trace packets to the DxC.Trace interface when it observes specific bus traffic. The standards-body
could define a set of commands pertinent to this unit, such as SET_MATCH_ADDRESS, SET_MATCH_DATA,
and SET_ENABLE_BUS_WATCHER. This Debug Class specification does not define these new commands;
instead, it allows a standards body to define these commands and capabilities as an adjunct to this
specification.

 USB 3.1 Debug Class 7/14/2015

- 81 -

HOST
(DTS)

Debug Target (TS)

DxC.Trace

Debug Commands De
bu

gg
er

New Debug Unit
(e.g., Bus-Watcher)

defined by a Standards
Body

Figure 4-9: New Debug Function created by a Standards Body accessed via the Debug Class

A standards body shall use a Debug Unit descriptor to define its commands and capabilities. See Figure
4-10. Note that the Debug-Attributes descriptor also defines commands, but these are Debug Class-
specific, and a standards body cannot change or extend these. Furthermore, the Debug-Attribute
descriptor defines the commands pertinent to the TS or DIC level; the Debug-unit descriptor defines
commands pertinent to a debug unit. Hence, a standards body cannot define commands for the TS or the
DIC; it can only define commands for a Debug unit.

Configuration Descriptor

Interface 1 Descriptor (Debug Control)
Debug Attributes Descriptor

Interface Association Descriptor 1

Interface 2 Descriptor (DxC.Dfx)
Endpoint IN
Endpoint OUT

The Debug-Class specific
commands itemized in the
Debug Attributes descriptor
pertain to the TS or the DIC

Device Descriptor

TS

Debug Unit Desc. (Standards Body)

DIC

Debug Unit
(Standards Body)

DxC.Dfx

The Debug Unit Descriptor
defines the Standards Body’s
Debug unit. The commands
itemized in this descriptor
pertain to the Standards body
Debug unit.

Figure 4-10: Standards bodies can only define commands at the Debug-unit level

For illustrative purposes, Table 4-12 shows the fields of the Debug-Unit descriptor pertinent to a
Standards body. The hypothetical values are for a Dfx unit defined by the MIPI Standards body.

Table 4-12: Debug-Unit Descriptor fields for an Example Standard Body’s Dfx Unit

Part Value Description

bDebugUnitType 0 A Dfx Unit

bDebugSubUnitType 255 Standards Body

…

wStandardsDataSize 6 The next 6 bytes of the descriptor pertain to the
Standards body

bStandardsID 1 A MIPI standard

 USB 3.1 Debug Class 7/14/2015

- 82 -

Part Value Description

Standards Data Number 5 Byte Data structure defined by the MIPI Standards
organization.

For example, this data structure could define the
Specification version number; a bit mask for supported
commands; etc. See Table 4-13 for an example of a 5-
Byte structure.

…

Table 4-13 is a hypothetical example of a possible Standards-Data structure, given purely for illustrative
purposes. This example provides a specification version number, a bitmask for the supported commands
together with a size field defining this length of thus bitmask. The tabulated commands are hypothetical
and are given purely as an example.

Table 4-13: Example of Standards Data

Part Offset
(Byte)

Size
(Bytes) Description Value

bcdStandard 0 2 Revision of Standards body
specification.

0100h

bStandCntrlSize 2 1 Size of the bmStandControl field, in
bytes: n

Number

bmStandControl 3 2 A bit set to 1 indicates that the
mentioned Standard-body specific
Control request is supported:

D0: SET_INITIALIZE

D1: SET_ADDRESS_TRIGGER

D2: GET_ADDRESS_TRIGGER

D3: SET_DATA_TRIGGER

D4: GET_DATA_TRIGGER

D5: reserved

D6: reserved

D7: SET_START

D8: SET_HALT

D9..D15: reserved

Bitmap

A TS may contain multiple, different debug units, each defined by a different Standards body. Figure 4-11
shows an example of a TS containing two such debug units.

 USB 3.1 Debug Class 7/14/2015

- 83 -

Configuration Descriptor

Interface 1 Descriptor (Debug Control)
Debug Attributes Descriptor

Interface Association Descriptor 1

Interface 2 Descriptor (DxC.Dfx)
Endpoint IN
Endpoint OUT

Device Descriptor

TS

Debug Unit Desc. (Standards Body A)

DIC 1

Debug Unit
(Standards Body A)

DxC.Dfx

This Debug-Unit descriptor
describes the capabilities of the
Debug Unit defined by Standard
Body A

DIC 2

Debug Unit
(Standards Body B)

DxC.Trace

Interface 3 Descriptor (Debug Control)
Debug Attributes Descriptor

Interface Association Descriptor 2

Interface 4 Descriptor (DxC.Trace)
Endpoint IN

Debug Unit Desc. (Standards Body B)

This Debug-Unit descriptor
describes the capabilities of the
Debug Unit defined by Standard
Body A

Figure 4-11: A TS containing two Debug units defined by different Standards bodies

 USB 3.1 Debug Class 7/14/2015

- 84 -

5 Class-Specific Requests

5.1 Introduction
The Debug Class-specific requests are an optional set of commands that allow the debugger to perform
basic operations on the debug logic via the default endpoint. These include reads and writes (i.e., GET
and SET) of data structures (e.g., configuration registers); the enabling of power-management modes; the
selection of a particular trace generation configuration; the ability to select a backup core for the USB
stack on the TS in case the main OS hangs4; and so on. Table 5-1 lists the available commands.

4 Presumably, the TS will use hardware decode for this request, otherwise it defeats the purpose of providing this command

 USB 3.1 Debug Class 7/14/2015

- 85 -

The Debug Commands are completely optional, but if they are supported then the following descriptors
are mandatory:

• If TS supports ANY debug commands then

o (Debug Command Interface + Debug Attributes) Descriptor are mandatory

 Debug Attributes defines the supported TS commands

o GET_INFO & GET_ERROR are mandatory to TS, DIC, or Unit even if there is no DIC
or Unit (i.e., fail safe if the SW mistakenly targeted the wrong thing).

• If DIC supports ANY debug commands then

o IAD is mandatory to create DIC

o (Debug Command Interface + Debug Attributes) Descriptor are mandatory

 Debug Attributes defines the supported DIC commands

o GET_INFO & GET_ERROR are mandatory to TS, DIC, or Unit

• If a Debug Unit supports ANY debug commands then

o IAD is mandatory to create DIC containing the Unit

o (Debug Command Interface + Debug Attributes) Descriptor are mandatory for the
DIC containing the Unit

 Debug Unit Descriptor defines the supported Unit commands

o GET_INFO & GET_ERROR are mandatory to TS, DIC, or Unit

Figure 5-1 is an example showing which of the various bmControl fields of the Debug Attributes and the
Debug-Unit descriptors define the commands supported by that particular level (TS, DIC, or Debug Unit).

DvC.Trace
 IN Endpoint

Interface 1 Descriptor (Debug Control)

Debug-Unit Desc: Trace Processing Unit (1)

Debug-Unit Desc: Trace-Gen (Graphics)
Debug-Unit Desc: Trace-Gen (Core)

Debug-Unit Desc: Trace-Gen (Video)

Debug Attributes Descriptor (TS)

Interface 2 Descriptor (Debug Control)

Endpoint Descriptor Bulk IN

Debug Attributes Descriptor (DIC)

Output Connection Descriptor àUSB3

Debug-Unit Desc: Trace-Gen (Audio)

Core

Graphics

Video

Audio

Trace
Proc. Unit

(1)

Trace
Proc. Unit

(2)

Trace Processing
Unit (3)

OC

Interface 3 Descriptor (DvC.Trace)

Debug-Unit Desc: Trace Processing Unit (2)

Interface Association Descriptor IAD1

DIC 1

DIC 1

Device Descriptor
Configuration DescriptorTS Power-Management Unit

DIC Power-Management Unit
bmControl defines

supported DIC
Debug Commands

bmControl of Debug-
Unit Desc. defines
supported Debug
Unit Commands

Etc.

bmControl defines
supported TS Debug

Commands

TS

TS

Figure 5-1: Which bmControl field defines the Debug Control for the TS, DIC, and Unit level

The Debug Class only supports a basic, limited set of debug requests, because there is considerable
variation in the debug hooks provided by the chip vendors, and thus it is difficult to define more extensive
commands. For example, a bus-watcher requires address, command, and data filters, but there is
considerable variation in the number of such filters, their masking capabilities, and so on. Furthermore,

 USB 3.1 Debug Class 7/14/2015

- 86 -

some bus-watchers observe proprietary sideband signals, while others provide event counters with
varying outcomes, and so on. Consequently, it is difficult to develop a set of generic debug commands
that are applicable to the majority of designs.

Nonetheless, the set of requests provided are still valuable, and a Standards body could develop their
own set of commands, using these as a basis. The current set of commands allow the following useful
scenarios:

• The Debug-Control interface allows for a low-cost debug trace solution using a single DxC.Trace
endpoint. In this scenario, the debugger uses the default endpoint 0 to configure and enable the
TS to generate debug traces. Otherwise, the debugger would require additional endpoints to
provide a means to configure the device, such as a COM-type interface via DxC.GP or a TAP-
type interface via DxC.Dfx. Such a single-endpoint, debug solution is very attractive for low-cost
devices.

• A TS may support just the Debug-Control interface and no other DxC interface. In this case, there
will be no endpoints used for debug apart from the default endpoint 0. Figure 5-2 shows a possible
scenario. In this example, the Debug Class specific SET_CONFIG_DATA requests configure the
Trace Unit and later extract trace data from the memory buffer.

Traces

USB3 Hardware
Controller

HOST
(DTS)

Traces

USB Device (TS)

D
eb

ug
ge

r

Endpoint 0 IN

Endpoint 0 OUT

Debug-Class-specific
Commands

Trace
Processing

Unit

Debug Driver

Configure Trace-Processing unit via
TAP controller using MMIO reads/writes

Memory

Read Memory

Figure 5-2: Debug Example using only the Debug-Control Interface

5.2 Debug-Control Overview
The Debug-Control requests may target the complete TS, or a particular DIC, or a specific Unit. For
example, the debugger may wish to power-down all of the debug-related logic in the complete TS; or
perhaps, the debugger may wish to power-down the trace logic but leave the TAP logic powered on; or
the debugger may wish to power-down the debug-trace logic associated with the graphics unit, but
maintain power on all the other trace-generation units. Table 5-1 shows whether the Debug Control
requests target the Global entity (i.e., complete TS), a Local entity (i.e., DIC) or a Specific entity (i.e.,
Debug unit).

Table 5-1: Debug-Control Request Resolution

Debug Control Request Global

(Complete TS)

Local

(DIC)

Specific

(Debug Unit)

SET/ GET_CONFIG_DATA

SET_CONFIG_DATA_SINGLE

Yes Yes Yes

SET/GET_CONFIG_ADDRESS Yes Yes Yes

SET/GET_OPERATING_MODE Yes Yes Yes

SET/GET_TRACE Yes Yes Yes

SET/GET_ALT_STACK Yes N/A N/A

SET/GET_BUFFER Yes Yes Yes

 USB 3.1 Debug Class 7/14/2015

- 87 -

Debug Control Request Global

(Complete TS)

Local

(DIC)

Specific

(Debug Unit)

SET_RESET Yes Yes Yes

GET_INFO Yes Yes Yes

GET_ERROR Yes Yes Yes

The actual commands supported by the TS, DIC or Debug unit are defined via the bmControl fields in the
Debug-Attributes descriptor for the TS and for the DIC, and in the Debug-Unit descriptor for the debug
unit. Thus, after enumeration, the debugger will know which commands are supported by which entities.
See Figure 5-1 for an example.

If a Debug unit supports a command, then this does not imply that the DIC also supports this command.
For example, a DIC may consist of a collection of Trace-Processing units, some of which provide the
ability to be powered-down. However, the DIC itself may not provide the facility to be completely powered
down. Thus, the bmControl field of the Debug-Attribute descriptor is not inclusive of its children debug
units.

The Debug-Attribute Descriptor may have the bmControl = 0, indicating that the DIC supports no Control
requests. In this case, the Debug-Control descriptors simply define the debug topology and the trace
format.

If a device supports any Debug Control Requests then it shall support the mandatory requests (i.e., Get
Error & Get Info). If a debug function does not support a certain request, it shall indicate this by Stalling
the control pipe when that request is issued to access the function.

5.3 Request Layout
The following paragraphs describe the general structure of the SET and GET requests. Subsequent
paragraphs detail the use of the SET/GET requests for the different request types

5.3.1 Request Layout
The SET requests are used to set an attribute of a Control inside an entity of the debug function, and the
GET requests read the attribute inside the entity. Table 5-2 shows the fields for a USB request as used
by the Debug class.

Table 5-2: SET and GET Requests

bmRequestType bRequest wValue wIndex wLength

00100001

SET_CONFIG_DATA
SET_CONFIG_DATA_ADDRESS
SET_ ALT_STACK
SET_OPERATING_MODE
SET_TRACE
SET_BUFFER
SET_RESET

See following
paragraphs.

Typically use
wValue<7:0> to
select between
Global and

See following
paragraphs.

Typically used
to select
between Local
and Specific

Length of
the Data
Paramet
er block

 USB 3.1 Debug Class 7/14/2015

- 88 -

bmRequestType bRequest wValue wIndex wLength
10100001 GET_CONFIG_DATA

GET_CONFIG_DATA_ADDRESS
GET_ALT_STACK
GET_OPERATING_MODE
GET_TRACE
GET_ BUFFER
GET_INFO
GET_ERROR

Local entity
(see Table 5-5)

wValue<15:8>
typically used
for sub-
commands

unit (see
Table 5-5)

The bmRequestType field specifies that this is a SET request (D7=0) or a GET request (D7=1). It is a
class-specific request (D6..5=01), directed to a Debug interface (D4..0=00001).

The bRequest field contains a constant that identifies which attribute of the addressed Control is to be
modified. Possible attributes for a Control are:

• Write and Read to the Debug Data Structure/Configuration register (SET_CONFIG_DATA,
GET_CONFIG_DATA)

• Write and Read the Power Mode control (SET_OPERATING, GET_OPERATING)
• Set a Trace configuration (SET_TRACE, GET_TRACE)
• Access Buffer size information in the Debug Function (SET_BUFFER, GET_BUFFER)
• Restore the Debug function to its default state (SET_RESET)
• Read the Error state pertaining to the USB command (GET_ERROR)
• Read the Information state pertaining to the available USB commands (GET_INFO)

If the addressed Control or entity does not support modification of a certain attribute, the control pipe shall
gracefully ignore the request by indicating a Stall when an attempt is made to modify that attribute.

The wValue field interpretation is qualified by the value in the wIndex field. These two fields are typically
used to select between the TS (Global), DIC (Local) or a specific Debug unit. See Table 5-3. Depending
on what entity is addressed, the layout of the wValue field changes. Later sections describe the contents
of the wValue field for each entity separately.

The low byte of the wIndex field specifies the interface to be addressed, and the high byte specifies the
Unit ID of the debug unit or zero. If the wIndex is addressing an interface, then the virtual entity "interface"
can be addressed by specifying zero in the high byte (i.e., Unit ID = 0). In general, one can make a request
to a global structure (e.g., the configuration registers for the complete TS), a local structure within a DIC,
and a specific structure within a debug unit (e.g., see Table 5-5).

Table 5-3: Debug Command Selection of TS, DIC, and Unit

Command Target wValue wIndex

TS 00 00 00 ii

Where ii is the interface number
of any arbitrary Debug-Control
Interface in any DIC in the TS.

DIC interface #ii 00 01 00 ii

Where ii is the interface number
of the desired Debug-Control
Interface.

Unit #uu of DIC #ii xx xx (Don’t care)

Note: Unit ID = 0 is reserved for
accessing the complete TS or a

uu ii

 USB 3.1 Debug Class 7/14/2015

- 89 -

DIC. Hence, the wValue is
ignored if uu ≠ 0

Section 5.3.2 gives examples to clarify the addressing capabilities.

The values in wIndex shall be appropriate to the recipient. Only existing entities in the debug function can
be addressed, and only appropriate interface numbers may be used. If the request specifies an unknown
unit ID or an unknown interface then the control pipe shall indicate a stall.

The actual parameter(s) for the SET/GET request are passed in the data stage of the control transfer.
The length of the parameter block is indicated in the wLength field of the request. The layout of the
parameter blocks are given later.

5.3.2 Request Examples
Figure 5-3 and Figure 5-4 illustrate and explain how the Debug commands access the TS, a DIC, or a
specific debug unit. Figure 5-3 illustrates how to access a specific Debug unit, while Figure 5-4 illustrates
how to access a specific DIC. The explanation within Figure 5-4 also explains how to access the complete
TS.

wIndex<15:8> wIndex<7:0>
Debug Unit ID

≠ 0
Interface ID =

bInterfaceNumber

• wIndex<7:0> is the Interface ID (i.e., bInterfaceNumber) of
the Debug-Control Descriptor within the desired DIC

• Thus, the Interface ID indirectly defines the desired DIC
• A non-zero Debug-Unit ID defines the debug unit within this

DIC
• E.g., to access the Trace Processing unit of DIC1, the

wIndex = 0x0100 (i.e., Debug-unit ID = 1 & Interface ID = 0)

SET/GET Request wIndex Data

Debug Request to a specific Debug Unit:

Configuration Descriptor

Interface Descriptor (Debug Control); bInterfaceNumber = 0
Debug Attributes Descriptor

Interface Association Descriptor 1

Interface Descriptor (DvC.Trace); bInterfaceNumber = 1
Endpoint IN DIC 1

Device Descriptor

wValue

Debug Unit Descriptor (Trace Processing Unit, UnitID = 1)

Figure 5-3: Debug Control accessing a specific Debug Unit

A non-zero wIndex<15:8> field defines the desired debug unit that the debug command is targeting. If
wIndex<15:8> = 0 (i.e., Unit ID = 0), then the command is targeting the TS or the DIC, where the

 USB 3.1 Debug Class 7/14/2015

- 90 -

wValue<1> bit defines whether the command is targeting the complete TS or a specific DIC. When
targeting the TS, then the command is free to point to any of the DICs within the TS.

wIndex<15:8> wIndex<7:0>
Debug Unit ID

= 0
Interface ID =

bInterfaceNumber

SET/GET Request wIndex Data

Debug Request to a specific DIC or the complete TS:

Configuration Descriptor

Interface Descriptor (Debug Control); bInterfaceNumber = 0
Debug Attributes Descriptor

Interface Association Descriptor 1

Interface Descriptor (DvC.Trace); bInterfaceNumber = 1
Endpoint IN

DIC 1

Device Descriptor

wValue

Debug Unit Descriptor (Trace Processing Unit, UnitID = 1)

Interface Descriptor (Debug Control); bInterfaceNumber = 2
Debug Attributes Descriptor

Interface Association Descriptor 1

Interface Descriptor (DvC.Dfx); bInterfaceNumber = 3
Endpoint IN

DIC 2Debug Unit Descriptor (Dfx Unit, UnitID = 1)

Endpoint OUT

wValue
TS: wValue<1> = 0
DIC: wValue<1> = 1

• A Debug-Unit ID = 0 indicates that the command is
targeting a specific DIC or the complete TS

• The wValue<1> defines if accessing DIC or TS

• If accessing a DIC, then wIndex<7:0> is the Interface ID
(i.e., bInterfaceNumber) of the Debug-Control Descriptor
within the desired DIC

• For example, to access DIC2, the wIndex = 0x0002 (i.e.,
Debug-unit ID = 0 and the Interface ID = 2). In addition,
wValue<1> = 1 to access a specific DIC

Figure 5-4: Debug Control accessing a specific DIC or the complete TS

Figure 5-5 is an example of a GET_CONFIG_DATA request to a global data structure. This is the highest-
level data structure corresponding to the complete debug entity (i.e., the TS, which may consist of a
collection of chips if the debug topology spans multiple chips).

Note that an access to the global data structure via any of the Debug-Control Interface descriptors (e.g.,
interface 1 and 3 in Figure 5-5) aliases to the same data structure.

GET Config wIndex = 0x0001 or 3 Data

Debug Request to a Global Data Structure

Configuration Descriptor

Interface 1 Descriptor (Debug Control)
Debug Attributes Descriptor

Interface Association Descriptor 1

Interface 2 Descriptor (DvC.Trace)
Endpoint IN

Interface 3 Descriptor (Debug Control)
Debug Attributes Descriptor

Interface 4 Descriptor (DvC.Dfx)
Endpoint IN
Endpoint OUT

Interface Association Descriptor 2

DIC 1

Device Descriptor

TS
DIC 1 Data Structure

TS
Data

Structure/
Config

Registers

DIC 1
Config Registers

MIPI STM
Config Reg

Debug Unit 1
(MIPI STM)

wValue = 0

Debug Unit 1 Descriptor (MIPI STM)

Debug Unit 1 Descriptor (TAP controller)

DIC 2 Data Structure

DIC 2
Config Registers

TAP Controller
Config Reg

Debug Unit 1
(TAP Controller)

UnitID = 0x00
Interface = 0x01

wValue = 0 (TS)

DIC 2

wValue = 0 (TS)

UnitID = 0x00
Interface = 0x03

Figure 5-5: Debug Request to Global Configuration Registers

Note that one can also target a Debug Command directly if there is a Debug-Control Interface & Debug-
Attributes descriptor pair dedicated to the TS, as per the example in Figure 4-7. In this case, we

 USB 3.1 Debug Class 7/14/2015

- 91 -

specifically address that Debug-Control Interface using the scheme shown below in Figure 5-6 (i.e.,
wValue = 0x0001 and wIndex points to the Debug-Control Interface associated with the TS).

Figure 5-6 is an example of a GET_CONFIG_DATA request to a local (DIC) data structure. Unlike the
previous global request, an access to a specific Debug-Control Interface descriptor (e.g., interface 1 or 3
in Figure 5-6) access the data structure for that corresponding DIC. This figure shows two examples of
GET_CONFIG_DATA: one to interface 1 and a second example (in dotted arrows) to interface 3.

GET_CONFIG wIndex = 0x0001 or 3 Data

Debug Request to DIC Data Structure

Configuration Descriptor

Interface 1 Descriptor (Debug Control)
Debug Attributes Descriptor

Interface Association Descriptor 1

Interface 2 Descriptor (DvC.Trace)
Endpoint IN

Interface 3 Descriptor (Debug Control)
Debug Attributes Descriptor

Interface 4 Descriptor (DvC.Dfx)
Endpoint IN
Endpoint OUT

Interface Association Descriptor 2

DIC 1

Device Descriptor

TS
DIC 1 Data Structure

TS
Data

Structure/
Config

Registers

DIC 1
Config Registers

MIPI STM
Config Reg

Debug Unit 1
(MIPI STM)

wValue = 0x0001

Debug Unit 1 Descriptor (MIPI STM)

Debug Unit 1 Descriptor (TAP controller)

DIC 2 Data Structure

DIC 2
Config Registers

TAP Controller
Config Reg

Debug Unit 1
(TAP Controller)

UnitID = 0x00
Interface = 0x01

wValue = 0x0001 (DIC)

DIC 2

wValue = 0x0001 (DIC)

UnitID = 0x00
Interface = 0x03

Figure 5-6: Debug Request to DIC Configuration Registers

Figure 5-7 is an example of a GET_CONFIG_DATA request to a specific data structure within a debug unit
(e.g., a MIPI STM unit). This is the lowest-level data structure corresponding to a specific Unit ID. In this
case, the wIndex defines the Unit ID within a particular DIC.

GET_CONFIG wIndex = 0x0101 Data

Debug Request to Debug Unit Data Structure

Configuration Descriptor

Interface 1 Descriptor (Debug Control)
Debug Attributes Descriptor

Interface Association Descriptor 1

Interface 2 Descriptor (DvC.Trace)
Endpoint IN

Interface 3 Descriptor (Debug Control)
Debug Attributes Descriptor

Interface 4 Descriptor (DvC.Dfx)
Endpoint IN
Endpoint OUT

Interface Association Descriptor 2

DIC 1

Device Descriptor

TS
DIC 1 Data Structure

TS
Data

Structure/
Config

Registers

DIC 1
Config Registers

MIPI STM
Config Reg

Debug Unit 1
(MIPI STM)

wValue = x

Debug Unit Desc. UnitID = 1 (MIPI STM)

Debug Unit Desc. UnitID = 1 (TAP Cont.)

DIC 2 Data Structure

DIC 2
Config Registers

TAP Controller
Config Reg

Debug Unit 1
(TAP Controller)

UnitID = 0x01
Interface = 0x01

UnitID = 1 (i.e., Debug Unit 1)

DIC 2

UnitID = 1
(i.e., MIPI

STM)

Figure 5-7 Debug Request to Debug-Unit Configuration Registers

 USB 3.1 Debug Class 7/14/2015

- 92 -

5.4 Debug Control Requests

5.4.1 SET_CONFIG_DATA and GET_CONFIG_DATA Overview
Figure 5-8 shows an example of a SET_CONFIG_DATA, GET_CONFIG_DATA, and a
SET_CONFIG_DATA_SINGLE command. These commands provide read and write access to the memory
space.

64-bit wide

Memory

SET_DATA

SET Conf ig Single wIndex wLength (of Parameter block)wValue

Byte Address <63:0>

Data <63:0>
Maskreserved

GET Conf ig wIndex wLength (of Data Block)wValue Configuration Address<63:0>

SET Conf ig wIndex wLength (of Parameter block)wValue

Byte 0

Byte wLength -1

0x0000 0000 0000 0000

0xFFFF FFFF FFFF FFF8

SET_DATA

GET_DATA

Figure 5-8: Example of SET_CONFIG_DATA, SET_CONFIG_DATA_SINGLE, and

GET_CONFIG_DATA access of Memory space

The SET_CONFIG_DATA_SINGLE command writes a contiguous, byte-masked data value, from 0 to 8 bytes
in size, to a 64-bit byte address. The address, data and byte mask are contained within the 32B Parameter
block.

The SET_CONFIG_DATA command writes N contiguous data bytes to the 32-bit aligned, 64-bit byte address
specified by the Configuration Address register. The SET_CONFIG_ADDRESS and the
GET_CONFIG_ADDRESS commands read and write this register. The wLength field in the
SET_CONFIG_DATA command defines the number of bytes to write.

The GET_CONFIG_DATA command reads N contiguous bytes starting at the 32-bit aligned, 64-bit byte
address specified by the Configuration Address register. The wLength field in the GET_CONFIG_DATA
command defines the number of bytes to read.

5.4.2 Debug Commands and Operating Modes
Debug commands are intended for configuration of the debug units at the start of a debug session and
for “housekeeping” tasks during a debug session. They are not intended for general debug. Of course,
the Get/Set Configuration data can read/write memory, but there are no debug commands for stop-mode
or run-mode operations (e.g., Set breakpoint, Single-step, etc.). These should be done via DxC.Dfx or
DxC.GP as appropriate.

The UBS device hardware controllers support either software or hardware decode of the debug control.
The simplest implementation uses software decode, where the device hardware controller interrupts the
USB stack, and software performs the operation. Hardware decode, on the other hand, performs the
debug request in hardware without disturbing the OS. This is preferable for debug.

Note that a DbC is a standard USB device, in the sense that it supports a Default Control endpoint, which
responds to standard USB requests, e.g. SET_ADDRESS, GET_DESCRIPTOR, GET_CONFIGURATION, etc.
Typical DbC implementations provide hardware support for these commands and thus implementations

 USB 3.1 Debug Class 7/14/2015

- 93 -

may choose to extend this hardware to include the additional debug commands. From a debug
perspective, this is the preferred implementation.

If a debug function does not support a certain request, it must indicate this by stalling the control pipe
when that request is issued to the function.

5.4.3 SET_CONFIG_DATA_SINGLE
The SET_CONFIG_DATA_SINGLE command writes a contiguous, byte-masked data value, from 0 to 8 bytes
in size, to a 64-bit byte address. The address, data and byte mask are contained within the 32B Parameter
block.

Table 5-4: SET_CONFIG_DATA_SINGLE Control Request

Offset

(Byte)

Field Size

(Bytes)

Value Description

0 bmRequestType 1 0x21 D7 = 0 à Host to device

D6..5 = 01 à Class request

D4..0 = 00001 à Recipient is interface

1 bRequest 1 0x02 SET_CONFIG_DATA_SINGLE

2 wValue 2 Number wValue<15:8>: reserved

wValue<7:0>: See Table 5-5

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID

wIndex <7:0> = Interface ID

6 wLength 2 Number Parameter Block Length:

• 32B for Debug Class specific parameter block
• Variable-length for Vendor specific.

Table 5-5 defines the selection between these 2 options

The wIndex and wValue fields define whether the access is to the Global, Local, or a Specific unit (see
Table 5-5). In addition, these fields define whether the access is a 64-bit access using an architected 32B
data parameter block, or if the data-parameter block is vendor specific.

Table 5-5: SET & GET_CONFIG_DATA Debug Data Structure Selection

wIndex<15:8> wValue<7:0> Debug Data Structure

UnitID = 0

0x00 (Debug Class defined Parameter Block)

0x01 (Vendor defined Parameter Block)

Global (i.e., the complete TS, for
example the SoC)

0x02 (Debug Class defined Parameter Block)

0x03 (Vendor defined Parameter Block)

Otherwise: reserved

Local (i.e., DIC)

 UnitID ≠ 0

0x00 (Debug Class defined Parameter Block)

0x01 (Vendor defined Parameter Block)

Otherwise: reserved

Specific (i.e., Debug unit)

The Debug Class specific SET_CONFIG_DATA Parameter block (see Table 5-5) is 32 Bytes in size and
consists of the following, little-endian format:

 USB 3.1 Debug Class 7/14/2015

- 94 -

reserved

Byte Address<63:32>

Byte Address<31:0>

Data<63:32>

Data<31:0>

Data Byte Mask<7:0>

reserved

reserved

reserved

Byte Address 00

MS Byte Address

Figure 5-9: Debug Class Specific Parameter Block for SET_CONFIG_DATA Request

The address within the parameter block is a quad-word aligned 64-bit address and thus address<2:0>
are ignored.

5.4.4 SET_CONFIG_DATA
The SET_CONFIG_DATA command writes N contiguous data bytes to the 32-bit aligned, 64-bit byte address
specified by the Configuration Address register. The SET_CONFIG_ADDRESS and the
GET_CONFIG_ADDRESS commands read and write this Configuration-Address register. The wLength field
in the SET_CONFIG_DATA command defines the number of bytes to write.

Table 5-6 defines the SET_CONFIG_DATA command.

Table 5-6: SET_CONFIG_DATA Control Request

Offset

(Byte)

Field Size

(Bytes)

Value Description

0 bmRequestType 1 0x21 D7 = 0 à Host to device

D6..5 = 01 à Class request

D4..0 = 00001 à Recipient is interface

1 bRequest 1 0x01 SET_CONFIG_DATA

2 wValue 2 Number wValue<15:8>: reserved

wValue<7:0>: See Table 5-5

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID

wIndex <7:0> = Interface ID

6 wLength 2 Number Parameter Block Length:

Number of data bytes in the parameter block. The
number of bytes equals wLength+1. Thus, the
SET_CONFIG_DATA can write from 1 to 64KB.

The wIndex and wValue fields define whether the access is to the Global, Local, or a Specific unit (see
Table 5-5).

5.4.5 GET_CONFIG_DATA
The GET_CONFIG_DATA command reads N contiguous bytes starting at the 32-bit aligned, 64-bit byte
address specified by the Configuration Address register. The wLength field in the GET_CONFIG_DATA
command defines the number of bytes to read, from 1 to wLength+1. The SET_CONFIG_ADDRESS and the
GET_CONFIG_ADDRESS commands read and write this register. The data is in little-endian format.

 USB 3.1 Debug Class 7/14/2015

- 95 -

Table 5-7: Get Config Data Control Request

Offset

(Byte)

Field Size

(Bytes)

Value Description

0 bmRequestType 1 0xA1 D7 = 1 à Device to Host

D6..5 = 01 à Class request

D4..0 = 00001 à Recipient is interface

1 bRequest 1 0x81 GET_CONFIG_DATA

2 wValue 2 Number wValue<15:8>: reserved

wValue<7:0>: See Table 5-5

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID

wIndex <7:0> = Interface ID

6 wLength 2 Number Parameter Block Length.

Size of the data to be fetched in bytes, from 1
byte up to a maximum, of 64KB (i.e., wLength
+1)

5.4.6 SET_CONFIG_ADDRESS
This command writes to the 64-bit, Dword aligned byte Configuration Address register. The architecture
defines a Configuration Address per Global, Local, or per Specific debug unit via the wIndex and wValue
fields (see Table 5-5). However, an implementation may choose to alias these three memory spaces into
a single Configuration Address registers, thus defining a single, unified address space.

If the TS does not support this command then the Configuration Address defaults to the value 0.

Table 5-8: SET_CONFIG_ADDRESS Control Request

Offset

(Byte)

Field Size

(Bytes)

Value Description

0 bmRequestType 1 0x21 D7 = 0 à Host to device

D6..5 = 01 à Class request

D4..0 = 00001 à Recipient is interface

1 bRequest 1 0x03 SET_CONFIG_ADDRESS

2 wValue 2 Number wValue<15:8>: reserved

wValue<7:0>: See Table 5-5

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID

wIndex <7:0> = Interface ID

6 wLength 2 0x0008 Parameter Block Length = 8

The parameter block contains the 64-bit, Dword aligned
address to place in the Configuration Address register

 USB 3.1 Debug Class 7/14/2015

- 96 -

5.4.7 GET_CONFIG_ADDRESS
This command reads from the 64-bit Configuration Address register.

Table 5-9: GET_CONFIG_ADDRESS Control Request

Offset

(Byte)

Field Size

(Bytes)

Value Description

0 bmRequestType 1 0xA1 D7 = 1 à Device to device

D6..5 = 01 à Class request

D4..0 = 00001 à Recipient is interface

1 bRequest 1 0x83 GET_CONFIG_ADDRESS

2 wValue 2 Number wValue<15:8>: reserved

wValue<7:0>: See Table 5-5

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID

wIndex <7:0> = Interface ID

6 wLength 2 0x0008 Parameter Block Length = 8 bytes

Read all 8 bytes of the 64-bit, Dword-aligned address in
the Configuration Address register.

5.4.8 SET_ ALT_STACK
Typical SoC’s contain many cores, where one or more may support the USB stack. For example, during
initial boot, a secondary core may provide basic USB device support for downloading new firmware or
Operating System images. Later, the main OS takes over and provides the USB stack after it has booted.
It is advantageous to allow the DTS to switch between these various USB stacks as necessary. For
example, if the main OS hangs, then switching the USB stack to a secondary core will allow debug to
continue.

The SET_ALT_STACK command is optional, and selects between the various options defined by the
GET_ALT_STACK vendor specific. See the GET_ALT_STACK section.

Table 5-10: Set_ Alt_Stack Control Request

Offset

(Byte)

Field Size

(Bytes)

Value Description

0 bmRequestType 1 0x21 D7 = 0 à Host to device

D6..5 = 01 à Class request

D4..0 = 00001 à Recipient is interface

1 bRequest 1 0x04 SET_ALT_STACK

2 wValue 2 0x0000 Not used (This command only applies to the complete
TS and not to a DIC or debug unit)

4 wIndex 2 Number This numbers selects one of the options supported by
the GET_ALT_STACK

6 wLength 2 0x0000 No Parameter Block

 USB 3.1 Debug Class 7/14/2015

- 97 -

5.4.9 GET_ALT_STACK
This command returns information on the state of the various “cores” within the SoC that support a USB
stack. Because SoC designs vary considerably, then this capability is vendor specific. However, we
provide an example usage as a guide.

Table 5-11: GET_ALT_STACK Control Request

Offset

(Byte)

Field Size

(Bytes)

Value Description

0 bmRequestType 1 0xA1 D7 = 1 à Device to Host

D6..5 = 01 à Class request

D4..0 = 00001 à Recipient is interface

1 bRequest 1 0x84 GET_ALT_STACK

2 wValue 2 0 Not used (This command only applies to the complete
TS and not to a DIC or debug unit)

4 wIndex 2 0 Not used

6 wLength 2 Number Parameter Block from 1 byte up to a maximum, of 64KB
(i.e., wLength +1). This is vendor specific, but see Table
5-12 for an example.

The Debug Class specific GET_ALT_STACK Parameter block is a 2-Byte bitmask:

Table 5-12: Example GET_ALT_STACK Parameter Block

Bit Description

<0> Running on USB Stack 1

<1> USB Stack 1 is available

<2> Running on USB Stack 2

<3> USB Stack 2 is available

<4> Running on USB Stack 3

<5> USB Stack 3 is available

<6> Running on USB Stack 4

<7> USB Stack 4 is available

Table 5-12 is for an implementation that supports four alternate USB stacks, labelled 1 to 3. The even
bits <0, 2, 4, and 6> are mutually exclusive and indicate which Stack is active. For example, the main
core could be USB Stack 0, while the boot core could be USB Stack 1. Clearly, only 1 USB stack can be
running at a time.

The odd bits <1, 3, 5, & 7> indicate if the associated core that can run the USB stack is available. For
example, it has booted and is not in a powered-down, inactive state.

Table 5-13 defines the corresponding values for wIndex in the SET_ALT_STACK. Each pair of consecutive
bits corresponds to the different USB stacks. The DTS selects which USB Stack it wishes to use next by
setting one of the even bits <0, 2, etc.> The DTS host then performs a USB reset, forcing the TS to use
the new USB Stack for enumeration. Consequently, the TS must preserve the information on which USB
Stack to use when a USB Reset occurs.

 USB 3.1 Debug Class 7/14/2015

- 98 -

The odd bits of Table 5-13 allow the DTS to tell a core it can go back to sleep if it wishes to – in other
words, the DTS no longer need the core to be active. For example, an SoC may go into a sleep state
where the USB hardware logic is alive but the rest of the chip is in a low-power state. In this case, the
“USB Stack N is available” bit of the active USB Stack of Table 5-12 will be 0 indicating that the core is
asleep. The DTS this asserts the corresponding even bit of Table 5-13 when it needs to wake up the core
in order to perform a debug operation; and then later sets the odd bit, when it has finished with the debug
operation.

Table 5-13 Example SET_ALT_STACK wIndex

Bit Description

<0> Use USB stack 1 for the debug capabilities

<1> Allow USB Stack 1 to go to sleep if required.

<2> Use USB stack 2 for the debug capabilities

<3> Allow USB Stack 2 to go to sleep if required.

<4> Use USB stack 3 for the debug capabilities

<5> Allow USB Stack 3 to go to sleep if required.

<6> Use USB stack 4 for the debug capabilities

<7> Allow USB Stack 5 to go to sleep if required.

5.4.10 SET_OPERATING_MODE
The SET_OPERATING_MODE is used to control the voltage, clocks, initialization, etc. of the TS, DIC, or
Debug Unit. This command thus defines whether the debug logic is available for use or not. The
SET_OPERATING_MODE selects a specified debug operating mode, and then the software or hardware in
the TS, DIC, or Debug Unit places the debug hardware in the desired mode.

 USB 3.1 Debug Class 7/14/2015

- 99 -

DvC.TraceOC

DIC 1

TS Power-Management Unit

DIC 1 Power-Management Unit

Core
traces,
etc

TS

Trace Proc. Unit 2

Power-Manag.
Unit

Trace Proc. Unit 1

DvC.Dfx
OC

DIC 2

Dfx Unit

Power-Manag.
Unit

IC

Control logic

Trace Funct.
logic

DIC 1 Control logic

Power-Manag.
Unit

Control logic

Trace Funct.
logic

Modem
traces

TS Control Logic

Control logic

Dfx Functional
logic

DIC 2 Power-Management UnitDIC 2 Control logic

Figure 5-10: SET_OPERATING_MODE Example

Figure 5-10 shows an example of a TS consisting of two DICs: one for the DvC.Trace capability and one
for the DvC.Dfx capability. In this example, each of the TS, DICs, and Debug units have an associated
Power-Management unit, allowing fine-grain control of which unit(s) are powered-on. An actual
implementation may provide less capability, but this example shows extensive capability for the purpose
of illustration.

Note that each entity (TS, DIC or Debug unit) can allow power-management of the debug control logic
(and any associated configuration registers) as well as of the “main” debug functional hardware (e.g., the
trace-merge hardware). Thus, for example, one can power down the debug control capability while
keeping the trace hardware powered on.

Consider, for example, the scenario where the DTS is only capturing traces from the core in Figure 5-10,
and the DTS wishes to power down all the remaining debug logic to avoid excessive battery drain of the
TS. In this case, the DTS will do the following:

• Disable the power being applied to the Debug-command logic for the TS, DIC1, DIC2, Trace-
Processing unit 1, Trace-Processing unit 2, and the Dfx Unit. This assumes that the debug control
logic and associated configuration registers are in a separate sub-power well that is distinct from
the trace and Dfx logic in the debug units. Admittedly, this is unlikely in current-generation parts,
but is being considered here for the purpose of illustration.

• Disable the Trace Processing unit 1 hardware associated with the Modem traces, since the DTS
is not interested in these traces.

• Disable the Dfx unit hardware logic since the DTS is only interested in core traces and is thus not
using the Dfx interface.

The SET_OPERATING_MODE (Debug-Operating mode) request can target the TS Control Interface, or the
Control/capability interfaces within a DIC. Thus, for example, the SET_OPERATING_MODE (Debug-
Operating mode) can power off the Debug-Control logic associated with the Debug trace but still keep the
debug trace hardware powered-on.

At the other extreme, a TS may need to turn on/off all of the debug logic, and it would be inconvenient to
have to individually enable/disable each DIC and Debug Unit. For this reason, the SET_OPERATING_MODE
supports a Debug-All mode, which turns all of the debug logic on or off.

 USB 3.1 Debug Class 7/14/2015

- 100 -

The SET_OPERATING_MODE request configures the operating mode in the Global (TS), Local (DIC), or
Specific debug unit as specified by the wIndex and wValue fields (see Table 5-16). Thus, if we are only
interested in capturing traces from a specific unit (e.g., the modem) then this command allows us to enable
the power and clocks in the specific unit or DIC that contains the relevant logic. An implementation may
choose to not support this level of granularity. For example, an implementation may choose to enable the
power for all of the debug logic in a TS, even though the SET_OPERATING_MODE command targeted a
particular DIC within the TS.

A device may choose to not provide the SET_OPERATING_MODE control. In this case, it shall default to the
equivalent of the Debug-All-mode = ON for all of the supported debug logic within the TS.

The operating modes are defined in the Table 5-14:

Table 5-14: SET_OPERATING_MODE Definitions

Mode Description

Debug All 0: Debug-All mode = OFF

1: Debug-All mode = ON

Certain SoC will only provide the capability to enable/disable all of the
debug hardware (i.e., Traces, Dfx, Control, etc.) and nothing less. In
this case, the SET_OPERATING_MODE (Debug-Logic mode = ON/OFF)
enables/disables all of the debug logic within the TS.

Note that the other modes allow fine-grain enabling/disabling of the
power to individual debug components.

An SoC may choose to use the Debug-All = ON mode similarly to a
UART Wakeup. In this case, if the SoC has gone to sleep, then it will
awaken when the DTS issues a Debug-All mode = ON. If the TS
supports preservation of debug state across a wakeup, then it set the
Graceful-Wakeup-Supported bit in the parameter block of Table 5-17.

This mode is optional.

 USB 3.1 Debug Class 7/14/2015

- 101 -

Mode Description

Debug Operating

0: Debug-Operating mode = OFF

1: Debug-Operating mode = ON

The SET_OPERATING_MODE (Debug-Operating) request can target the
TS Control Interface, or the Control or Capability interfaces within a
DIC. In this way, this request can power on/off the Trace, Dfx, or GP
hardware capability or the Debug Control logic associated with the TS,
DIC or debug unit.

The DTS uses the SET_OPERATING_MODE (Debug-Operating = ON)
command to place the Command or Functional component of the TS,
DIC or Debug Unit into a fully functional mode with regards the
supported Debug capability. Thus, to the DTS, the specified debug
command or capability appears to be fully functional even though
portions of the SoC (including the debug logic) could be asleep.

For example, when the Debug-Operating Mode = ON, a TS may keep
the debug logic always powered up; or it may choose to power-down
the debug logic, but awaken it automatically and transparently
whenever it receives a command from the DTS. In either case, the DTS
will be under the impression that the debug commands or capability
associated with the TS, DIC, or Debug unit is seamlessly, always
available.

Debug-Operating Mode = OFF means that the targeted hardware is
powered down, and thus not operational. However, in this mode, the
SET_OPERATING_MODE command should provide support for the DTS
to set Debug-Operating mode = ON, thus allowing subsequent re-
enabling of the debug operations. If the TS does not provide this
support, then it will STALL the request.

This mode is optional.

Debug Emulate Low-Power

This command affects the debug logic within the complete TS, within
the DIC, or within a specific Debug unit as defined by Table 5-16.

In this mode, the device emulates the steps it takes to transition
between low-power states, but does not actually power down the
hardware. Thus, the device goes through the motions, but does not
actually change the power state. This avoids the TS having to save
debug state that would be lost during an actual power transition.

This mode is optional.

Graceful Degrade In this mode, the TS, DIC or Debug Unit are allowed to autonomously
disable functionality. For example, a DIC may stop generating traces
when the device’s battery power becomes too low. The TS, DIC, or
Debug unit should issue an interrupt to notify the DTS whenever it
disables any debug functionality.

This mode is optional.

 USB 3.1 Debug Class 7/14/2015

- 102 -

Mode Description

Force Debug There are situations where the DTS needs to inform the TS not to
disable the debug logic. For example, enabling all of the debug logic in
a SoC may place it outside the safe operating mode of the device. A
lab debugger may require the device to be in this potentially damaging
state, because this may be the only way to debug a sighting.

In addition, forcing a debug unit to be on, prevents the power-
management logic from powering it off when in the Graceful-Degrade
mode (e.g. when the battery is running low). Presumably, the power-
management logic will instead power down some other logic in this
scenario.

This mode is optional, and will probably be fused off in a production
part.

Close Debug At the end of a debug session, the DTS may need to send a command
to the TS, DIC or Debug Unit to gracefully disable the debug logic.
Otherwise, for example, a trace buffer may overflow and hang the SoC
if it is not gracefully disconnected prior to a USB3 link disconnect.

Table 5-15 defines the SET_OPERATING_MODE Control request.

Table 5-15: SET_OPERATING_MODE Control Request

Offset

(Byte)

Field Size

(Bytes)

Value Description

0 bmRequestType 1 0x21 D7 = 0 à Host to device

D6..5 = 01 à Class request

D4..0 = 00001 à Recipient is interface

1 bRequest 1 0x05 SET_OPERATING_MODE

2 wValue 2 Number wValue<15:8>: reserved

wValue<7:0>: See Table 5-16

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID

wIndex <7:0> = Interface ID

6 wLength 2 0x0004 Device Operating Mode Parameter Block. 4–byte
Bitmap. See Table 5-17

Table 5-16: SET & GET OPERATING MODE Debug Structure

wIndex<15:8> wValue<7:0> Debug Structure

UnitID = 0

0x00 Global (i.e., TS)

0x02

Otherwise: reserved

Local (i.e., DIC)

 UnitID ≠ 0
0x00

Otherwise: reserved

Specific (i.e., Debug unit)

The Debug Class specific SET OPERATING Parameter block is a 2-Byte bitmask Table 5-17.

 USB 3.1 Debug Class 7/14/2015

- 103 -

Table 5-17: Device Operating-Mode Parameter Block

Bit Description Read/Write

<0> Debug-All mode RW

<1> Debug-All supported R

<2> Graceful-Wakeup-Supported R

<3> reserved

<4> Debug-Operating mode RW

<5> Debug-Operating mode supported R

<6> Debug Emulate low-power RW

<7> Debug Emulate low-power mode supported R

<8> Graceful-Degrade RW

<9> Graceful-Degrade mode supported R

<10> Force-Debug RW

<11> Force-Debug mode supported R

<12> Device uses power supplied by USB. RW-opt

<13> Device uses power supplied by Battery RW-opt

<14> Device uses power supplied by AC RW-opt

<15> Close Debug RW

<16> Close Debug mode supported R

<31:17> Vendor-specific operating modes RW-opt

The bit fields in the parameter block provides Information regarding operating modes and power sources:

• D16, D11, D9, D7, D5, D2, D1 define whether the TS, DIC, or the Debug unit supports the
specified operation mode

• D15, D10, D8, D6, D4, D0 enable/disabled the specified operation mode in the TS, DIC, or Debug
unit. These bits are mutually exclusive. The behavior if multiple bits are enabled is undefined

• D14..D12 indicates which power source is currently used in the USB device. These bits are
mutually exclusive. The behavior if multiple bits are enabled is undefined.

The bits D14..D12 are set by the device and are usually informational. However, it is
recommended that the TS allows the debugger to force the device to use a different power
source, which is why these bits are designated as RW-opt (Read & Write-optional). For example,
when debugging over USB, the device will normally be charging over the USB cable instead of
using its internal battery. However, during a battery-consumption test, one needs to force the
device to use its internal battery.

• D31..D17 are vendor-specific operating modes

5.4.11 GET_OPERATING_MODE
This Control request reads the parameter block in the specified debug unit.

 USB 3.1 Debug Class 7/14/2015

- 104 -

Table 5-18: GET_OPERATING_MODE Control Request

Offset

(Byte)

Field Size

(Bytes)

Value Description

0 bmRequestType 1 0xA1 D7 = 1 à Device to Host

D6..5 = 01 à Class request

D4..0 = 00001 à Recipient is interface

1 bRequest 1 0x85 GET_OPERATING_MODE

2 wValue 2 Number wValue<15:8>: reserved

wValue<7:0>: See Table 5-16

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID

wIndex <7:0> = Interface ID

6 wLength 2 0x0004 Device Power Mode Parameter Block. 4–byte Bitmap.
See Table 5-17

5.4.12 GET_INFO
The GET_INFO request queries the capabilities and status of the specified control. This command is
mandatory if a device supports at least one Debug Command.

Table 5-19: GET_INFO Control Request

Offset

(Byte)

Field Size

(Bytes)

Value Description

0 bmRequestType 1 0xA1 D7 = 1 à Device to Host

D6..5 = 01 à Class request

D4..0 = 00001 à Recipient is interface

1 bRequest 1 0x87 GET_INFO

2 wValue 2 Number wValue<15:8>: reserved

wValue<7:0>: See Table 5-16

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID

wIndex <7:0> = Interface ID

6 wLength 4 0x0004 GET_INFO Parameter Block. See Table 5-17

When issuing the GET_INFO request, the wLength field shall always be set to a value of 1 byte. The result
returned is a bit mask reporting the capabilities of the control. The bits are defined as:

Table 5-20: GET_INFO Parameter Block

Bit Field Description Bit state

<0> 1 = Supports SET_CONFIG_DATA_SINGLE Capability

<1> 1 = Supports Set_Config_Data Capability

<2> 1 = GET_CONFIG_DATA Capability

<3> 1 = SET_CONFIG_ADDRESS Capability

<4> 1 = GET_CONFIG_ADDRESS Capability

 USB 3.1 Debug Class 7/14/2015

- 105 -

Bit Field Description Bit state

<5> 1 = SET_ALT_STACK Capability

<6> 1 = GET ALT STACK Capability

<7> 1 = SET OPERATING MODE Capability

<8> 1 = GET OPERATING MODE Capability

<9> 1 = SET TRACE CONFIGURATION Capability

<10> 1 = GET TRACE CONFIGURATION Capability

<11> 1 = SET BUFFER Capability

<12> 1 = GET BUFFER Capability

<13> 1 = SET RESET Capability

<28:14> reserved (Set to 0) --

<29> 1=Disabled due to automatic mode (under device control) State

<30> 1= Self-Generated Control (see Section 3.6.7.2, "Status Interrupt
Endpoint")

Capability

<31> 1= Slow Control (see Section 3.6.7.2, "Status Interrupt Endpoint") Capability

5.4.13 GET_ERROR
This read-only control indicates the status of each host-initiated request to a Unit or interface of the debug
function. If the device is unable to fulfill the request, it will indicate a Stall on the control pipe and update
this control with the appropriate code to indicate the cause. This control will be reset to 0 (i.e., No Error)
upon the successful completion of any control request (including requests to this control). Slow control
requests are a special case, where the initial request will update this control, but the final result is delivered
via the Status Interrupt Endpoint (see sections 3.6.7.2, "Status Interrupt Endpoint"). This command is
mandatory if a device supports at least one Debug Command.

Table 5-21: GET_ERROR Control Request

Offset

(Byte)

Field Size

(Bytes)

Value Description

0 bmRequestType 1 0xA1 D7 = 1 à Device to Host

D6..5 = 01 à Class request

D4..0 = 00001 à Recipient is interface

1 bRequest 1 0x88 GET_ERROR

2 wValue 2 Number wValue<15:8>: reserved

wValue<7:0>: See Table 5-16

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID

wIndex <7:0> = Interface ID

6 wLength 2 0x1 ERROR CODE Parameter Block. See Table 5-22

 USB 3.1 Debug Class 7/14/2015

- 106 -

Table 5-22: Error Code Parameter Block

Offset

(Byte)

Field Size

(Bytes)

Value Description

0 bRequestErrorCode 1 Number 0x00: No error

0x01: Not ready

0x02: Wrong state

0x03: Insufficient Power Available

0x04: Max Power Violation

0x05: Operating-mode unavailable

0x06: Out of range

0x07: Invalid unit

0x08: Invalid control

0x09: Invalid Request

0x0A: Permission denied

0x0B-0xFE: reserved

0xFF: Unknown

The bit field in the parameter block provides status information regarding error conditions:

• No error: The request succeeded.

• Not ready: The device has not completed a previous operation. The device will recover from this
state as soon as the previous operation has completed.

• Wrong State: The device is in a state that disallows the specific request. The device will remain
in this state until a specific action from the host or the user is completed.

• Insufficient Power available: The actual Operating Mode of the device is insufficient to complete
the Request. For example:

o The TS may be able to support a request when AC powered but not when battery
powered (or when the battery is almost dead).

o The TS is in an operating mode where the Trace DIC is powered-off thus preventing
access to the configuration register via the SET_CONFIG_DATA command. The debugger
may need to first change the operating mode and then resubmit the request.

• Max Power Violation: The requested debug operation would exceed the maximum operating
conditions of the TS and was denied

• Operating-mode unavailable: The operating mode requested is not available

• Out of Range: Result of a SET_CONFIG_DATA Request when attempting to write to a non-
existent/out-of-range address.

• Invalid Unit: The Unit ID addressed in this Request is not assigned.

• Invalid Control: The Control addressed by this Request is not supported.

• Permission Denied: The request was denied by the security state.

• Invalid Request: This Request is not supported by the Control.

 USB 3.1 Debug Class 7/14/2015

- 107 -

A request to an unauthenticated debug unit, DIC or TS stalls the command and reports an Invalid Control
or Permission Denied depending on the implementation.

5.4.14 SET_TRACE
The SET_TRACE request enables one of 255 trace configurations. SET_TRACE (0) disables traces. The
actual traces enabled is vendor specific and beyond the scope of this document.

This requests sets or reads the vendor-specific trace configuration. The vendor can define one of 255
possible trace configurations. For example, Trace Configuration 1 may enable all traces within the TS,
while Trace configuration 2 only enables the modem traces. This register is not a bit mask but a number
corresponding to a set of allowed traces.

Enabling debug power mode may automatically start a vendor-defined trace configuration. The debugger
can use the GET_TRACE_CONFIGURATION to determine which configuration is enabled.

Table 5-23: SET_TRACE Control Request

Offset

(Byte)

Field Size

(Bytes)

Value Description

0 bmRequestType 1 0x21 D7 = 0 à Device to Host

D6..5 = 01 à Class request

D4..0 = 00001 à Recipient is interface

1 bRequest 1 0x06 SET_TRACE

2 wValue 2 0x0000 Not used (This command only applies to the complete
TS and not to a DIC or debug unit)

4 wIndex 2 Number Trace Configuration:

0: Disable Trace

1-255: Vendor-specific trace configuration

Otherwise: reserved

6 wLength 2 0x0000 No Parameter Block

5.4.15 GET_TRACE
The GET_TRACE returns a number indicating which trace configuration is currently active.

Table 5-24: GET_TRACE Control Request

Offset

(Byte)

Field Size

(Bytes)

Value Description

0 bmRequestType 1 0xA1 D7 = 1 à Host to device

D6..5 = 01 à Class request

D4..0 = 00001 à Recipient is interface

1 bRequest 1 0x86 GET_TRACE

2 wValue 2 0x0000 Not used (This command only applies to the complete
TS and not to a DIC or debug unit)

 USB 3.1 Debug Class 7/14/2015

- 108 -

Offset

(Byte)

Field Size

(Bytes)

Value Description

4 wIndex 2 Number Trace Configuration:

0: There are no Trace configurations

1-255: Vendor-specific trace configuration

Otherwise: reserved

6 wLength 2 0x2 Returns 2-byte Parameter Block containing the number
of the active Trace Configuration

5.4.16 SET_BUFFER
The Set Buffer command performs basic operations on buffer(s) within a TS, DIC, or Debug Unit. Table
5-25 defines the command.

Table 5-25: SET_BUFFER Request

Offset

(Byte)

Field Size

(Bytes)

Value Description

0 bmRequestType 1 0x21 D7 = 0 à Host to device

D6..5 = 01 à Class request

D4..0 = 00001 à Recipient is interface

1 bRequest 1 0x09 SET_BUFFER

2 wValue 2 Number wValue<15:8>: reserved

wValue<7:0>: See Table 5-16

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID

wIndex <7:0> = Interface ID

6 wLength 8 0x0008 Buffer Parameter Block. 8–byte structure. See Table
5-26.

Table 5-26 defines the parameter block for the SET_BUFFER_INFO command.

Table 5-26: Buffer Parameter Block

Bit Description

<7:0> Command:

0: Flush Buffer

1: Initialize Buffer

3: Set Buffer Size (size in bits <31:16>)

Otherwise: reserved

<15:8> Vendor-Specific Buffer Modes

<31:16> Buffer Size in bytes

<64:32> reserved

 USB 3.1 Debug Class 7/14/2015

- 109 -

5.4.17 GET_BUFFER
The GET_BUFFER command reads the buffer size corresponding to a TS, DIC, or Debug Unit. Table
5-25 defines the command.

Table 5-27: GET_BUFFER Request

Offset

(Byte)

Field Size

(Bytes)

Value Description

0 bmRequestType 1 0xA1 D7 = 1 à Host to device

D6..5 = 01 à Class request

D4..0 = 00001 à Recipient is interface

1 bRequest 1 0x89 GET_BUFFER

2 wValue 2 Number wValue<15:8>: Bit Map

<0>: Buffer was Flushed

<1>: Buffer was Initialized

<2>: Get Buffer Size

wValue<7:0>: See Table 5-16

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID

wIndex <7:0> = Interface ID

6 wLength 2 0x0004 4-byte Parameter Block. Only applicable for
wValue<15:8> = Get_Buffer_Size

<31:0>: Buffer Size

5.4.18 SET_RESET
The SET_RESET request resets and initializes the TS, DIC, or Debug unit logic as specified by the wValue
field. This class-specific request shall return the function to its default, initialized state with all buffers
cleared, and the configuration registers in their default state. The DTS can use this request to resume
debug functionality when the TS, DIC, or debug unit has unexpectedly stopped functioning.

 USB 3.1 Debug Class 7/14/2015

- 110 -

Table 5-28: SET_RESET Control Request

Offset

(Byte)

Field Size

(Bytes)

Value Description

0 bmRequestType 1 0x21 D7 = 0 à Device to Host

D6..5 = 01 à Class request

D4..0 = 00001 à Recipient is interface

1 bRequest 1 0x0A SET_RESET

2 wValue 2 Number wValue<15:8>: reserved

wValue<7:0>: See Table 5-16

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID

wIndex <7:0> = Interface ID

6 wLength 2 0x0000 No Parameter Block

A reset recovery consists of performing the following steps in order:

1. Set Reset

2. Clear Feature (ENDPOINT_HALT) standard USB request for the IN endpoint for the debug
interface that has stopped functioning.

3. Clear Feature (ENDPOINT_HALT) standard USB request for the OUT endpoint for the debug
interface that has stopped functioning

 USB 3.1 Debug Class 7/14/2015

- 111 -

6 Debug Payload

6.1 Debug Trace Overview
The Debug Class driver simply passes the data payload for all three capabilities (DxC.Trace, DxC.Dfx,
DxC.GP) up to the software stack, and is oblivious of their content. These are vendor-specific or maybe
defined by another standards body. However, Appendix C: provides information on a suggested debug-
trace format.

 USB 3.1 Debug Class 7/14/2015

- 112 -

7 USB 3.1 Debug Security

7.1 Overview
The Debug Class specification does not address security issues. The requirement is that the TS will
provide implementation-specific security features on the USB 3.1 debug hooks. The USB 3.1 interface is
essentially a “virtual” debug port allowing access to the debug hooks within the device. Any security
features that the device uses to protect access via physical debug ports (e.g., JTAG) are equally
applicable to the debug access via the USB “virtual” debug port.

Note that it is possible to conceal debug features: For example, via alternate interfaces as described in
section 3.6.1.

 USB 3.1 Debug Class 7/14/2015

- 113 -

8 USB 3.1 Debug Data Structures

8.1 Overview
The Debug Class specification has defined a number of mechanisms to access debug data structures
within the TS, within a DIC, or within an actual debug unit. These mechanisms are:

• GET_CONFIG_DATA and SET_CONFIG_DATA commands (see Section 5 for more details)
• Data structures contained within the Debug-Attributes and Debug-Unit descriptors (see Sections

4.4.3 and 4.4.6)

These data structures are vendor specific and do not necessarily point to the same data structure. An
implementation may choose to alias the data structures contained within the descriptors to those
accessed via GET_CONFIG_DATA and SET_CONFIG_DATA; but this is not required.

There is no BOS descriptor defined for debug data.

 USB 3.1 Debug Class 7/14/2015

- 114 -

 Debug-Device-Class Codes
Figure 4-4 shows the information in the following tables as a diagram.

Table 8-1: Debug Interface Class Code (CC_DEBUG)

Debug Interface Class Code Value

CC_DEBUG 0xDC

Table 8-2: Debug Interface Sub-Class Code (SC_DEBUG)

Debug Interface Sub-Class Code (SC_DEBUG) Value

SC_DbC 0x02

SC_DbC_DFX 0x03

SC_DbC_TRACE 0x04

SC_DvC_GP 0x05

SC_DvC_DFX 0x06

SC_DvC_TRACE 0x07

SC_DEBUG_CONTROL 0x08

Table 8-3: Debug Interface Protocol Code (PC_DEBUG)

SC_DbC Interface Protocol Code Value

Protocol code (see xHCI specification) DCDDI1 DbC Protocol Field

SC_DbC_Dfx Interface Protocol Code Value

PC_PROTOCOL_CODE_UNDEFINED 0x00

PC_PROTOCOL_TARGET_VENDOR 0x01

SC_DbC_Trace Interface Protocol Code Value

PC_PROTOCOL_CODE_UNDEFINED 0x00

PC_PROTOCOL_TARGET_VENDOR 0x01

SC_DvC_GP Interface Protocol Code Value

PC_PROTOCOL_TARGET_VENDOR 0x00

PC_PROTOCOL_GNU 0x01

SC_DvC_Dfx Interface Protocol Code Value

PC_PROTOCOL_CODE_UNDEFINED 0x00

PC_PROTOCOL_TARGET_VENDOR 0x01

SC_DvC_Trace Interface Protocol Code Value

PC_PROTOCOL_CODE_UNDEFINED 0x00

PC_PROTOCOL_TARGET_VENDOR 0x01

 USB 3.1 Debug Class 7/14/2015

- 115 -

Debug Class-Specific Descriptor Types
Table 8-4: Debug Class-Specific Descriptor Types

Debug Class-Specific Descriptor Type Value

SC_DvC_Trace Interface Protocol Code Value

CS_UNDEFINED 0x20

CS_DEVICE

CS_CONFIGURATION

CS_STRING

CS_INTERFACE

CS_ENDPOINT

0x21

0x22

0x23

0x24

0x25

Table 8-5: Debug Class-Specific Commands bRequest

Debug Class-Specific Commands (bRequest) Value

SET_CONFIG_DATA 0x01

SET_CONFIG_DATA_SINGLE 0x02

SET_CONFIG_ADDRESS 0x03

SET_ ALT_STACK 0x04

SET_OPERATING_MODE 0x05

SET_TTRACE 0x06

reserved 0x07, 0x08

SET_BUFFER 0x09

SET_RESET 0x0A

GET_CONFIG_DATA 0x81

GET_CONFIG_DATA_SINGLE 0x82

GET_CONFIG_ADDRESS 0x83

GET_ALT_STACK 0x84

GET_OPERATING_MODE 0x85

GET_TRACE 0x86

GET_INFO 0x87

GET_ERROR 0x88

GET_BUFFER 0x89

 USB 3.1 Debug Class 7/14/2015

- 116 -

Debug Class-Specific Descriptor Sub-Types
Table 8-6: Debug Class-Specific Descriptor SubTypes

Debug Class-Specific Descriptor SubType Value

DC_UNDEFINED 0x00

DC_INPUT_CONNECTION 0x01

DC_OUTPUT_CONNECTION 0x02

DC_DEBUG_UNIT 0x03

DC_DEBUG _ATTRIBUTES 0x04

 USB 3.1 Debug Class 7/14/2015

- 117 -

 Descriptor Examples

Overview
This Appendix gives a few examples of USB 3.1 debug descriptors for common scenarios. The examples
in Figure 8-1 show corresponding descriptors aligned horizontally, to help highlight the differences and
similarities between the various examples.

Configuration Descriptor

Debug Attributes Descriptor

Interface 1 Descriptor (DvC.Trace)
Endpoint IN

Device Descriptor

Debug Unit 1 Descriptor (MIPI STM)

(1) Trace- Single Endpoint

Configuration Descriptor

Debug Attributes Descriptor

Interface 1 Descriptor (DvC.Dfx)
Endpoint IN

Device Descriptor

(2) Dfx Unit (No Topology)

Endpoint OUT

Interface 0 Descriptor (Debug Control)
Interface Association Descriptor 1

Interface 0 Desc. (Debug Control)
Interface Association Descriptor 1

DIC
DIC

Configuration Descriptor

Device Descriptor

(3) GNU Debug

Configuration Descriptor

Debug Attributes Descriptor

Device Descriptor

(4) GNU Debug & Stop-mode

Interface 2 Descriptor (DvC.GP)
Endpoint IN
Endpoint OUT

Interface 1 Descriptor (DvC.Dfx)
Endpoint IN
Endpoint OUT

Interface 0 Descriptor (Debug Control)
Interface Association Descriptor 1

Interface 1 Descriptor (DvC.GP)
Endpoint IN
Endpoint OUT

DIC

Figure 8-1: USB 3.1 Debug Class Descriptor Examples

Example (1) in Figure 8-1 is for a low-cost system with only one bulk endpoint available for trace. The
debugger uses the default endpoint 0 for the configuration and enabling of the traces. An Interface
Association descriptor is required to “group” the control and DvC.Trace interfaces into a single DIC, if the
control is associated with the Trace unit. Otherwise, see Figure 8-4 and associated text.

Example (2) in Figure 8-1 is for an interface to a standard Dfx unit such as the TAP. This example shows
a Debug-Control Interface associated with the Dfx interface, and thus requires an IAD to form a DIC.

Example (3) in Figure 8-1 is for an interface to a kernel debugger using the DvC.GP capability. This is the
similar to Example (2) except that there is no Debug-Attributes and Debug Control descriptors, and thus
no IAD/DIC.

Example (4) in Figure 8-1 is one possible combination of examples (2) and (3). In this example, the
Interface Association descriptor spans the DvC.Dfx and the DvC.GP capabilities creating a single DIC. If
alternatively, we wished for separate DICs for each capability, then we would require an additional IAD
together with the two debug control descriptors for each debug capability, as shown in Figure 8-2. The
intention behind Example (4), is a debug tool that is primarily used for kernel debug via the GP interface,

 USB 3.1 Debug Class 7/14/2015

- 118 -

but if the kernel debugger hangs, then the debug tool can use TAP commands via the Dfx interface to
debug the bug scenario.

Configuration Descriptor

Device Descriptor

(5) GNU Debug & Stop-mode with 2 DICs

Interface 1 Descriptor (DvC.Dfx)
Endpoint IN
Endpoint OUT

DIC 1

Interface 3 Descriptor (DvC.GP)
Endpoint IN
Endpoint OUT

Debug Attributes Descriptor
Interface 0 Descriptor (Debug Control)
Interface Association Descriptor 1

Debug Attributes Descriptor
Interface 2 Descriptor (Debug Control)
Interface Association Descriptor 2

DIC 2

Figure 8-2: USB 3.1 Debug Class Descriptor example of two DICs

Figure 8-3 shows an implementation that only supports debug commands. There is no DIC in this case
because there is only the singe Debug-Control Interface (i.e., an IAD requires 2 or more interfaces, which
is why this example is not a DIC). An implementation that simply saves traces to an internal Sink (e.g.,
memory) does not requires a DxC.Trace interface, and can simply use the Debug-Control Interface to
control the trace generation and then the extraction from the Sink.

Configuration Descriptor

Device Descriptor

(6) Debug Control only

Debug Attributes Descriptor
Interface 0 Descriptor (Debug Control)

Figure 8-3: USB 3.1 Debug Class Descriptor example of Debug Control only

Figure 8-4 shows three debug interfaces – Debug Control, DvC.Trace and DvC.Dfx. There is NO
IAD/DIC in this example because the Debug-Control Interface is for the TS and not for the Trace of Dfx
interfaces. For example, the TS may only support the command to enable/disable all of the debug logic.
Thus, the Debug Control is not associated specifically with the Trace or Dfx interfaces, and thus no
IAD/DIC is required.

 USB 3.1 Debug Class 7/14/2015

- 119 -

Configuration Descriptor

Device Descriptor

(7) Multiple Debug Interfaces with no IAD

Interface 1 Descriptor (DvC.Trace)
Endpoint IN

Interface 3 Descriptor (DvC.Dfx)
Endpoint IN
Endpoint OUT

Debug Attributes Descriptor
Interface 0 Descriptor (Debug Control) TS related

Control only

Figure 8-4: Example of Multiple Debug interface without a DIC

 USB 3.1 Debug Class 7/14/2015

- 120 -

 Debug Trace Payload Format

This Appendix describes three suggested debug trace formats. These formats apply to DxC.Trace and
DxC.Dfx. The USB 3.1 Debug Class is oblivious of the payload format and simply pipes the payload
upstream. However, debug does not always have to be robust – for example, receiving a corrupted trace
very infrequently could be acceptable. This allows debug to “cheat” and violate rules. This Appendix
describes a trace format that is tolerant of such cheating, including avoiding some USB specific
requirements.

This Appendix provides specific details of a payload structure suitable for SuperSpeed and HighSpeed,
and is tolerant of dropped packets under bulk retries.

Debug Trace Payload
A debug trace refers to a stream of debug data of an arbitrary byte length encapsulated in an integer
multiple of 1KB segments for SuperSpeed and optionally 512B or 1KB segments for HighSpeed. Each
1KB/512B segment of the debug trace contains either a header at the start of the payload, or a Footer at
the end of the payload. The figure below shows an example using a Footer.

Figure 8-5: Example of a Debug Trace

Debug Trace Payload Size
USB 2.0 HighSpeed allows a max-packet-size of 512B for bulk transfers and 1KB for isochronous
transfers. SuperSpeed allows 1KB for both isochronous and bulk transfers. Depending on the hardware
implementation, the TS may send the trace as either 512B or 1KB segments in either HighSpeed or
SuperSpeed. In other words, a TS may send a header/footer per 1KB data payload, even in HighSpeed.

Debug Trace Header/Footer
A Figure 8-6 shows two formats, one with a header and one with a footer. The header and footer are
identical and are each 4 bytes in size. Table 4-11 “dTraceFormat” field of the Debug Unit descriptor of the
Input Connector descriptor selects between these two trace formats.

Payload Data

Payload
Footer

Payload Data Payload Data

Debug Trace

1KB or 512B section

Trace length

 USB 3.1 Debug Class 7/14/2015

- 121 -

Figure 8-6: Debug Trace Footer Formats

Table 8-7 defines the fields in the trace header/footer.

Table 8-7: Header Fields

Field Size Description

Trace Length 9:0 Length of Debug trace in bytes for the data portion of a 1KB/512B region.
Typically, this equals 1020/508 bytes when the data portion of the
1KB/512B region is full of trace data. However, at the end of a debug
session, the data portion of the 1KB/512B region could be partially filled.

The size of the data portion (1KB/512B) is defined in the Status &
Information field of this footer.

Debug Sequence
Number

5:0 The TS increments the sequence number whenever it completes writing to
a 1KB region of the debug trace buffer. This field wraps.

NB: This is not the same as the USB 3.1 Sequence number.

Status 7:0 The definition of the field <7:0> bits are:

<0>: No trace data (i.e., “”NULL” packet)
<1>: Bulk Retry occurred (optional, informational for the debugger)
<2>: Backpressure occurred (optional, informational for the debugger)
<3>: All Trace Data Flushed out of TS
<4:5>: reserved
<6>: Size of the Trace Payload

0: 1KB
1: 512B

<7>: reserved

Trace ID 3:0 0x0 – 0x7F: Vendor Specific

Otherwise: reserved

The Trace ID field is vendor specific and allows the device to intermix multiple different traces together at
a 1KB/512B granularity.

USB3 Debug Trace Footer

Footer

1KB Debug Trace
Payload

Valid Trace
Data

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Sequence # Trace Length (Bytes)StatusReserved

Invalid Data

Trace ID

USB3 Debug Trace Header

Header

1KB Debug Trace
Payload

Valid Trace
Data

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Sequence #Status

Invalid Data

Trace ID Trace Length (Bytes)Reserved

 USB 3.1 Debug Class 7/14/2015

- 122 -

Debug Trace Sequence Number
A USB3 Device-hardware-controller typically buffers a local copy of the data in case it needs it for a link
retry. This is common for the typical USB 2.0 device controller. See Figure 8-7.

USB2 Device
Hardware
Controller

HOST USB Device

Endpoint A INDMA read DvC.Trace

Local Retry
Buffer

Memory
Buffer

Figure 8-7: Local Retry Buffer within USB3 Device Controller

However, the high bandwidth of SuperSpeed makes such buffering expensive, and some
implementations of the device controller do not provide this local retry buffering. Instead, the device
controller re-fetches the data from the memory buffer if a link retry is necessary. Typically, buffers in
memory are very large (many MB in size) and thus large enough to cover the retry latency. Thus the
application is unlikely to have overwritten the data necessary for the retry. Furthermore, the software
manages the buffer pointers such that overwriting of the data in memory is impossible.

The situation for debug trace buffers is different. Because of cost constraints, typical trace buffers are
small in size, and in addition the hardware state machine only provides elementary pointer management
logic that cannot handle overflows. Consequently, in such a simple implementation, the data required for
the USB-link retry may have been overwritten. Figure 8-8 shows a typical debug scenario, with the USB3
device controller making a retry request from the trace buffer.

Core

GFx

Bus
Watcher

USB3 Hardware
Controller

HOST

Retry

SW Messages

HW Messages

USB Device (TS)

Endpoint A IN DTSDvC.Trace

Trace
Merge

Unit

Trace
Buffer

Figure 8-8: No Local Retry Buffer within the USB3 Device Controller

For some debug traces this is of no concern – they can tolerate occasional dropped trace data. The Trace
Payload format described here is designed to handle such scenarios.

Bulk transfers provide guaranteed delivery across the USB link by retrying a failed transfer. However, for
the situation described above, the retry will deliver the wrong data if the required data was overwritten in
the trace buffer. The debug trace header/footer provides a sequence number that increments whenever
the TS dispatches a trace packet from the trace buffer. Under normal operation, the debugger will receive
an incrementing sequence number. If a retry resulted in trace data being lost, then the sequence number
will have a gap in the sequence. The debugger running on the host thus knows when there is a gap in
the trace data, and act accordingly.

Bulk retry errors are expected to be rare, and thus loosing data occasionally in a debug trace is an
acceptable tradeoff for a simpler and cheaper implementation. Note that since most USB 2.0 device
controllers contain local retry buffers, and thus no trace data will be lost because of retries. Hence, initial
debug, when the USB link is possibly unreliable, should use HighSpeed transfers for guaranteed delivery
of traces (albeit at a lower bandwidth).

 USB 3.1 Debug Class 7/14/2015

- 123 -

Note that an implementation may be aware of the fact that it is unable to supply the correct data for a link
retry from the trace buffer. For example, an implementation may have a 4KB trace buffer. Under normal
operations, the USB3 device controller will DMA read consecutive 1KB SuperSpeed packets. However,
for a retry, the DMA address will be for an earlier location. For example, the DMA may be requesting the
first 1KB buffer entry instead of the expected third 1KB buffer entry. In other words, the DMA read
sequence was for payloads 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 1,…

In this case, the hardware can mark the “Bulk-Retry occurred” bit in the Status field of the header/footer,
thus giving the debugger additional information that a Bulk-retry occurred.

Figure 8-9 shows an example of such a bulk retry. In this example, the Host issues IN requests with NumP
= 4, and thus each IN fetches four Data Packets, each of 1KB max-packet size. There are two different
sequence numbers shown in the figure. The Sequence number within the data payload (i.e., 21, 22, 23,
etc.) corresponds to the sequence number in the Debug Header. The other sequence number is the
sequence number used by the USB 3.1 protocol layer to signal which Data Packet to resend for a Bulk
retry. This Sequence number starts at 0 in the figure.

Figure 8-9: Bulk Retry example

Suppose that the Data packet corresponding to USB 3.1-Sequence number 4 has errors. The host xHC
will thus restart the requests from sequence 4 and continue consecutively from that point onward. Note
that although the host received the data packets corresponding to USB 3.1 Sequence number 5, 6, and
7 correctly, it will still refetch these. Hence, in this example, the host refetched the data packets
corresponding to USB 3.1 sequence number 4, 5, 6, and 7.

However, in this example, the retry request arrived late at the debug-trace buffer logic, after the TS has
overwritten the trace buffer. Thus, the debug-trace buffer has progressed as far as the data packet
corresponding to Debug-Sequence number 29.

Consequently, when the USB 3.1 Device hardware controller attempts to refetch the retry data, the trace
buffer will return data corresponding to Debug-Sequence number 29. The debugger will thus notice there
is a discontinuity in the Debug Sequence numbers (see right-hand side of Figure 8-9). In this example,
they jump from 24 to 29. The debugger thus knows that a retry occurred on data 25-28, and that it did not
receive this data.

Isochronous Operations and “NULL” data
A Debug trace data is sporadic and bursty. Consequently, the debugger running on the host has no idea
how much trace data the TS has generated at any given time; instead, the debugger shall assume the
worse-case scenario, and issue IN packets corresponding to the maximum trace bandwidth.

Data (Seq 21) USB3 Seq# 0
IN (NumP = 4)

Host Device

Data (Seq 22) USB3 Seq# 1

Data (Seq 23) USB3 Seq# 2

Data (Seq 24) USB3 Seq# 3

Data (Seq 25) USB3 Seq# 4
IN (NumP = 4)

Data (Seq 26) USB3 Seq# 5

Data (Seq 27) USB3 Seq# 6

Data (Seq 28) USB3 Seq# 7

USB3 Seq# 4
IN (NumP = 4) - Retry

USB3 Seq# 5

USB3 Seq# 6

USB3 Seq# 7

Error detected,
Host retries Replay

Data (Seq 29)

Data (Seq 30)

Data (Seq 31)

Data (Seq 32)

DTS (Host)

Data (Seq 21)

Data (Seq 22)

Data (Seq 23)

Data (Seq 24)

Data (Seq 29)

Data (Seq 30)

Data (Seq 31)

Data (Seq 32)

Sequence Numbers not
consecutive. Thus retry
occurred

 USB 3.1 Debug Class 7/14/2015

- 124 -

The USB architecture does provide NRDY and Zero-length packets to deal with such bursty traffic, but
not all host controllers handle these operations efficiently. Thus, although the TS could inform the host
that it has no data (via a NRDY or zero-length packet), the xHC devices could take a long time before it
re-requests the trace data. For example, for isochronous transfers, the xHC will wait until the next service
interval, which could be 256uS later or even longer. Such a long delay could result in a small debug trace
buffer (e.g., 48KB) overflowing.

For this reason, we allow the TS to supply Null packets if it has nothing to send, thus avoiding the need
for NRDY or zero-length packets. Thus, the debugger is constantly requesting debug trace data at the
maximum rate appropriate for the particular trace type (e.g., 30MB/s for printf-type software messages,
or 400MB/s for processor traces). The debug logic in the TS will satisfy these requests by either supplying
the actual trace data if it is available, or otherwise supplying a Null trace packet (i.e., Status [No Trace
data] = 1).

Figure 8-10 shows an example with interspersed “NULL” data packets when the debug Trace buffer does
not have debug trace-data available. The debugger simply discards the NULL packets.

Figure 8-10: Isochronous Example showing interspersed “NULL” data

Note that the Debug Sequence number does not increment for a Null packet. All valid trace data has a
monotonically increasing Debug sequence number, modulo the sequence field width.

Data (Seq 21) USB3 Seq# 0
IN (NumP = 4)

Host Device

Data (Seq 22) USB3 Seq# 1

Data (Seq 23)
USB3 Seq# 2

Data (Seq 24)
USB3 Seq# 3

Data (Seq 25)
USB3 Seq# 4

IN (NumP = 4)

Data (Seq 26)
USB3 Seq# 5

Data (Seq 27)
USB3 Seq# 6

Data (Seq 28)
USB3 Seq# 7

NULL

IN (NumP = 4)

Data (Seq 29)

NULL

NULL

USB3 Seq# 8

USB3 Seq# 9

USB3 Seq# 11

DTS (Host)

USB3 Seq# 10

Data (Seq 21)

Data (Seq 22)

Data (Seq 23)

Data (Seq 24)

Data (Seq 25)

Data (Seq 26)

Data (Seq 27)

Data (Seq 28)

NULL

Data (Seq 29)

NULL

NULL

 USB 3.1 Debug Class 7/14/2015

- 125 -

 Power Management
The Debug Class does not address the USB 3.1 Power management features and capabilities. These
are vendor specific – some implementations may allow debug to coexist with the link-power management,
while other will simply ignore the U1 and U2 link power state change requests and remain in U0. This is
most likely the case with DbC, since the DbC implementation does not cost many gates.

The DbC or DvC cannot refuse a U3 request. However, during a debug session, the debugger is likely to
configure the host software to not evoke U3.

 USB 3.1 Debug Class 7/14/2015

- 126 -

 Example Debug Scenarios

Software Stack Model
Figure 8-11 shows an example of a Software stack creating Software instrumentation messages. The
traces then drive a Hardware MIPI STM Trace-Processing unit. The traces use the DvC.Trace interface
while the configuration and control of the software stack is done via the Debug-Control Interface.

OUT Endpoint

IN Endpoint

IC

OC

DvC.Control

DvC.Trace
DTS

Trace-Router
Unit

Trace Source
(Kernel Code

Instrumentation)

Trace-Processing
Unit:

(MIPI STP Driver)

Trace Sink Unit
(Memory)

Trace Source
(Daemon)

Trace-Processing
Unit:

(MIPI STP Driver)
IN EndpointOC

Control Unit
(Debug

Configuration
Driver)

Software Unit

Hardware Unit

Note:

Figure 8-11: Example of a Software Stack driving traces to a Hardware Trace-Processing unit

TS as Host
Figure 8-12 shows two examples where the TS is a USB host and is streaming traces to an external USB
device that captures the trace. Example 1 is a simple mass-storage device. In this case, the TS has a
driver that is streaming the traces to a mass-storage device. This is out of scope of the USB 3.1 Debug
Class specification.

Figure 8-12: Two examples showing the TS streaming traces to external devices

Example 2 is similar to example 1, except that the TS is now streaming traces to a custom device that
supports the USB 3.1 Debug Class. In particular, this example supports the DvC.Dfx capability, which

USB3

USB Device
(Mass Storage)

Target System (TS)
USB Host

Debug Trace

USB Device

Target System (TS)
USB Host

Dfx
Unit

Memory
(Trace
Buffer)

ICEndpoint

Memory Write

Example 1 Example 2

USB3

 USB 3.1 Debug Class 7/14/2015

- 127 -

provides access to a trace buffer in memory. The debugger could be an application running on the TS
device itself, and could thus configure the external debug device. This detail is not shown in the figure.

Alternatively, this external debug device could be a debug probe that an external DTS configures via a
private connection, and the DTS configures the TS via a JTAG connection to enable tracing:

Figure 8-13: Debug Probe providing DvC.Dfx support

Debug Trace

USB Device

Target System (TS)
USB Host

Dfx
Unit

Memory
(Trace
Buffer)

ICEndpoint

Memory Write

USB3

Debug Probe

DTS

JTAG

Configure
Probe

Enable Traces

 USB 3.1 Debug Class 7/14/2015

- 128 -

 Software Stack Overview
Figure 8-14 shows an example of a host connected to a device, showing the different hardware and
software layers. Note that normal (non-debug) USB 3.1 applications and debug applications can co-exist
and run concurrently. This document defines the Debug Class driver running on the host and the
descriptors that the debug driver on the TS supplies during enumeration.

Figure 8-14: DvC Debug Mode S/W stack example

For comparison, Figure 8-15 shows the DbC stack on a multi-port TS. This example has a single DbC.
From the host’s perspective, the DbC appears similar to the DvC. For example, an OTG device may
support both DbC and DvC. The host DTS shall support both, depending on which USB cable links the
device to the host.

The USB stack on the device consists of four components:

1) USB Device Hardware Controller Driver: this directly communicates with the USB controller
hardware. It is a hardware abstraction layer that exports the hardware functionalities to the layers
above.

2) USB Gadget driver: this provides the basic USB framework support, such as managing the USB
state transitions (Attached, Powered, Default, Addressed, and Configured), endpoint 0
enumeration, and so on.

3) USB Composite Driver: This provides support for composite (multi-function) USB devices. Note
that debug requires a composite driver when using a DIC, because this involves two or more
interfaces (e.g., Debug Control together with DvC.Trace). In addition, debug may run at the same
time as a normal USB interface (e.g., mass storage), which is a further reason for a composite
driver.

4) USB Class drivers: these implement the application functionality of the device, which is generally
independent of the USB protocol. These drivers provide the descriptor information (i.e., Interface
type, endpoint type, etc.) for a given function. In a multi-function device. The composite driver
blends these descriptors together so that they represent the multi-function device. Thus, a
GET_DESCRIPTOR command received by the USB device goes all the way up the USB stack
(USB Controller driver à USB Gadget driver à USB Composite driver à Class driver) to gather
and assemble the appropriate data.

Host (DTS)

App
A

Port Port Port

Class
Driver

Debugger

Debug Class
Driver

Device A

Device (TS)

App
B

Operating System

MIPI
STM

Debug
Traces

USB Driver

Pre-Boot
Debug
support

Main TAP Controller Main
Core

Run
Control

USB cable (SuperSpeed or HighSpeed)

Function B

Stop-
Mode

xHCI Driver (xHCD)
USB Bus Driver (USBD)

Run-
Mode

Debug
Traces

TAP
Support

xHCI Host HW Controller

Combi-Class
Driver

USB Driver

Gadget DriverInit and
Enumeration

only

Port

Secondary
core

Debug
Driver

USB Gadget Driver

USB Composite Driver

USB HW Controller Driver

Kernel
Debugger

USB3.0 Device Hardware Controller

 USB 3.1 Debug Class 7/14/2015

- 129 -

xHC

xHCI Driver

USB Bus Driver

Debug
Class
Driver

xHCI Driver

USB Bus Driver

Class
Driver

Class
Driver

...Class
Driver

Class
Driver

...

Debug Host (DTS) Debug Target (TS)

Debug
Capability

Driver

System
Debug
Hooks

Device A Device CDevice B

OS StackDebug
AppApp A App

B

Special Cross-connect
USB3 cable

xHC

P1 P2 P3 P4

Debug
Capability
(Enabled)

xHCI

1 2 3 4

xHCI

1 2 3 4

P1 P3 P4

Debug
Capability
(Disabled)

App C

Standard, A-to-A
USB3 cable

P2

Figure 8-15: The xHCI DbC Software stack

The Debug Class driver thus provides the descriptor information for enumerating the debug capabilities,
as defined by the USB 3.1 Debug Class specification. A typical USB Class driver provides three
capabilities:

• USB Characteristics: this routine provides the descriptor information and the interaction with the
composite driver. A debug use case may change the descriptors between sessions (e.g., to use
a different debugger via new descriptors that define an Alternate Setting), which then becomes
active when the host resets or reconfigures the USB device.

• Class Operations: the USB 3.1 Debug class allows for basic control operations, such as writing
to a configuration register in a debug unit, such as the Trace Processing unit, and thus enabling
trace output. See Section 5 for more details.

• File system: this allows the device to interact with the OS file system. DvC.Dfx and DvC.Trace
typically use hardware buffers and so do not access the OS file system, whereas the DvC.GP
may.

In addition, Figure 8-14 shows that some secondary core may also provide USB stack, which will
provide debug support prior to the OS boot. This is implementation specific.

	Contributors
	1 Terms and Abbreviations
	1.1 USB & Debug Terms and Abbreviations
	1.2 Terminology
	1.3 Abbreviations

	2 Related Documents
	3 Specification Overview and Scope
	3.1 Introduction
	3.2 Purpose
	3.3 Scope
	3.4 Overview
	3.4.1 Debug Capabilities
	3.4.2 DbC and DvC Overview
	3.4.2.1 DbC Overview
	3.4.2.2 DvC Overview

	3.4.3 Example Implementation

	3.5 Functional Characteristics
	3.5.1 The Debug Capabilities
	3.5.2 Debug Scenario Examples
	3.5.3 Debug Function Topology
	3.5.3.1 Input Connection
	3.5.3.1 Output Connection
	3.5.3.1 Dfx Unit
	3.5.3.1 Select Unit
	3.5.3.2 Trace-Router Unit
	3.5.3.3 Trace-Processing Unit
	3.5.3.4 Trace-Generation Unit
	3.5.3.1 Trace-Sink Unit

	3.5.4 Debug Control of the Debug Units

	3.6 Debug Operational Model
	3.6.1 Alternate Settings
	3.6.1.1 Alternative Settings Usage Notes

	3.6.2 Changing Debug Capabilities via Alternate Settings
	3.6.3 Changing Debug Capabilities using Different Configurations
	3.6.4 Interface Association Descriptor (IAD)
	3.6.5 Multiple Mutually-Exclusive Host Drivers
	3.6.5.1 Initializing the Debug Function prior to Debugger changeover

	3.6.6 Enumerating Interface Collections
	3.6.7 Debug-Control Interface
	3.6.7.1 Control Endpoint
	3.6.7.2 Status Interrupt Endpoint
	3.6.7.3 Hardware Trigger Interrupts

	3.6.8 DxC.Trace Interface
	3.6.8.1 Alternate Settings – Case 1
	3.6.8.1 Alternate Settings – Case 2 and Case 3
	3.6.8.2 DvC.Trace Isochronous Trace Comments

	4 Descriptors
	4.1 Descriptor Layout Overview
	4.1.1 Class-Specific Topology Descriptors

	4.2 xHCI-Compliant DbC Standard Descriptors
	4.3 Debug Standard Descriptors
	4.3.1 USB 2.0 Descriptors
	4.3.1.1 USB 2.0 Device Descriptor
	4.3.1.2 USB 2.0 Device-Qualifier Descriptor
	4.3.1.3 USB 2.0 Configuration Descriptor
	4.3.1.4 Other_Speed_ Configuration Descriptor
	4.3.1.5 Interface Association Descriptor
	4.3.1.6 USB 2.0 Interface Descriptor
	4.3.1.7 USB 2.0 Endpoint Descriptors

	4.3.2 USB 3.1 Standard Descriptors

	4.4 Debug Class-Specific Descriptors
	4.4.1 Introduction
	4.4.2 Debug-Control Interface Descriptors
	4.4.3 Debug-Attributes Descriptor
	4.4.4 Input-Connection Descriptor
	4.4.5 Output Connection Descriptor
	4.4.6 Debug-Unit Descriptor

	4.5 Standards-Body Support

	5 Class-Specific Requests
	5.1 Introduction
	5.2 Debug-Control Overview
	5.3 Request Layout
	5.3.1 Request Layout
	5.3.2 Request Examples

	5.4 Debug Control Requests
	5.4.1 SET_CONFIG_DATA and GET_CONFIG_DATA Overview
	5.4.2 Debug Commands and Operating Modes
	5.4.3 SET_CONFIG_DATA_SINGLE
	5.4.4 SET_CONFIG_DATA
	5.4.5 GET_CONFIG_DATA
	5.4.6 SET_CONFIG_ADDRESS
	5.4.7 GET_CONFIG_ADDRESS
	5.4.8 SET_ ALT_STACK
	5.4.9 GET_ALT_STACK
	5.4.10 SET_OPERATING_MODE
	5.4.11 GET_OPERATING_MODE
	5.4.12 GET_INFO
	5.4.13 GET_ERROR
	5.4.14 SET_TRACE
	5.4.15 GET_TRACE
	5.4.16 SET_BUFFER
	5.4.17 GET_BUFFER
	5.4.18 SET_RESET

	6 Debug Payload
	6.1 Debug Trace Overview

	7 USB 3.1 Debug Security
	7.1 Overview

	8 USB 3.1 Debug Data Structures
	8.1 Overview

	Appendix A: Debug-Device-Class Codes
	Debug Class-Specific Descriptor Types
	Debug Class-Specific Descriptor Sub-Types

	Appendix B: Descriptor Examples
	Overview

	Appendix C: Debug Trace Payload Format
	Debug Trace Payload
	Debug Trace Payload Size
	Debug Trace Header/Footer
	Debug Trace Sequence Number
	Isochronous Operations and “NULL” data

	Appendix D: Power Management
	Appendix E: Example Debug Scenarios
	Software Stack Model
	TS as Host

	Appendix F: Software Stack Overview

