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1 Terms and Abbreviations 

1.1 USB & Debug Terms and Abbreviations 
 

Term  Description  
adb Android Debug Bridge 

APE Application Processor Engine 

BELT Best Effort Latency Tolerance. Please see USB 
3.1 Architecture specification. 

BOS Binary Object Store Descriptor. See USB 3.1 
Architecture specification 

Capabilities Those attributes of a USB device that are 
administrated by the host. 

Configuration  A collection of one or more interfaces that may be 
selected on a USB device.  

Control  A logical object within an Entity that is used to 
manipulate a specific property of that Entity.  

Composite Device A device that contains more than one interface 
descriptor is known as a composite USB device. 

Debugger The debug application running on the USB host 
that controls the debug session and receives the 
debug traces. 

Descriptor  Data structure used to describe a USB device 
capability or characteristic.  

DUD  Debug Unit Descriptor.  

DbC Debug Capability on the Extended Host Controller 
Interface 

Dfx Design for Debug or Test. This refers to a logic 
block that provides debug or test support. 

DvC Debug Capability on the USB device (Device 
Capability) 

DxC Refers to DbC or DvC interchangeably 
DTS Debug and Test System. This is the debugger 

application running on the host together with any 
probes connecting it to the Target System (i.e., 
device under test). For USB 3.1 Debug, this refers 
to the host laptop or PC running the debugger. 
There is typically no probe involved, but vendors 
may provide a Probe for enhanced capability. 

DTT Debug and Test Target (also called a Target 
System (TS)) 

DIC Debug Interface Collection. This refers to the 
collection of Debug interfaces within the same 
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Debug Function. 

Device  USB peripheral.  
Endpoint  Source or sink of data on a USB device.  
Entity A Unit, Terminal or Interface within the debug 

function, each of which may contain Controls. 
Function A set of one or more related interfaces that 

expose a capability to a software client 
GUID Global Unique Identifier. Also known as a 

universally unique identifier (UUID). The 
Guidgen.exe command line program from 
Microsoft is used to create a GUID. Guidgen.exe 
never produces the same GUID twice, no matter 
how many times it is run or how many different 
machines it runs on. Entities such as video 
formats that need to be uniquely identified have a 
GUID. Search www.microsoft.com for more 
information on GUIDs and Guidgen.exe. 

HW Hardware 
Host  Computer system where a Host Controller is 

installed.  
Host Controller  Hardware that connects a Host to the USB.  
Host Software  Generic term for a collection of drivers, libraries 

and/or applications that provide operating system 
support for a device.  

IAD  Interface Association Descriptor. This is used to 
describe that two or more interfaces are 
associated to the same function. An ‘association’ 
includes two or more interfaces and all of their 
alternate setting interfaces.  

Interface  An Entity representing a collection of zero or more 
endpoints that present functionality to a Host.  

IC Input Connection 
IP vendor Intellectual Property vendor. 
JTAG Join Test Action Group 
OC Output Connection 
OS Operating System 
OTG On-the-Go: Supplement to the USB standard for 

mobile devices. Amongst other functional 
enhancements, it allows point-to-point 
communication and greater power-efficiency. 

MIPI MIPI Alliance. See www.mipi.org. 
MIPI STP MIPI System Trace Protocol [1] 
Payload Transfer  In the context of the USB 3.1 Debug Class, a 

Payload Transfer is a unit of data transfer 
common to bulk and isochronous endpoints. Each 
Payload Transfer includes a Payload Data 
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followed by Payload Footer. For isochronous 
endpoints, a Payload Transfer is contained in the 
data transmitted during a single service interval: 
up to 1024 bytes for a super-speed endpoint. For 
bulk endpoints, a Payload Transfer is contained in 
the data transmitted in a single bulk transfer 
(which may consist of multiple bulk data 
transactions). 

Payload Data  Format-specific data contained in a Payload 
Transfer (excluding the Payload Footer).  

Payload Footer  A header at the end of each Payload Transfer that 
provides data framing and encapsulation 
information.  

Run-control Run-control is a generic term referring to run-
mode control or stop-mode control. Stop-mode 
control use the TAP infrastructure to perform halt, 
single-step, breakpoint, etc. debug operations. 
Run-mode uses a kernel debugger or similar 
software debug capability to perform similar 
operations. 

Run-mode  See Run-control 
Stop-mode See Run-control 
SoC System on a Chip. 
STM Module implementing the MIPI STP protocol 
STP See MIPI STP 
TAP Test-Access Port 
TD  Transfer Descriptor  
TS Target System (also called a Debug and Test 

Target (DTT)) 
TRB Transfer Request Block 
Trace Transfer  A trace transfer is composed of one or more 

payload transfer(s) representing a debug trace.  
USB  Universal Serial Bus.  
USB Transaction  See USB 2.0 Chapter 5.  
USB Transfer  See USB 2.0 Chapter 5.  
xHCI-Device The USB 3.1 Device Controller. This is specified 

as an extended capability to the eXtensible Host 
Controller [2] 

xHC(I)  USB 3.1 eXtensible Host Controller (Interface) [3] 

1.2 Terminology 
This document has adopted Section 13.1 of the IEEE Standards Style Manual, which dictates use of the 
words “shall”, “should”, “may”, and “can” in the development of documentation, as follows:  

• The word shall is used to indicate mandatory requirements strictly to be followed in order to 
conform to the standard and from which no deviation is permitted (shall equals is required to).  

• The use of the word must is deprecated and shall not be used when stating mandatory 
requirements; must is used only to describe unavoidable situations.  

• The use of the word will is deprecated and shall not be used when stating mandatory 
requirements; will is only used in statements of fact.  
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• The word should is used to indicate that among several possibilities one is recommended as 
particularly suitable, without mentioning or excluding others; or that a certain course of action is 
preferred but not necessarily required; or that (in the negative form) a certain course of action is 
deprecated but not prohibited (should equals is recommended that).  

• The word may is used to indicate a course of action permissible within the limits of the standard 
(may equals is permitted).  

• The word can is used for statements of possibility and capability, whether material, physical, or 
causal (can equals is able to).  

All sections are normative, unless they are explicitly indicated to be informative. 

This specification uses the word “device” to refer to a device-under-test (DUT) or a Target System (TS). 
For example, we may refer to a “mobile device” as the device being debugged. The USB architecture 
assigns specific meanings to the words “host” and “device”. The word “device” thus becomes confusing 
when debugging a “host” device, such as an OTG smartphone. In this case, the host being debugged 
supports the xHCI Debug Capability (DbC), where the DbC is essentially a barebones device controller. 
Thus, in this context, it is correct to refer to the “host” device as a device. To avoid confusion, we try to 
use TS instead of device. 

1.3 Abbreviations 
e.g.  For example (Latin: exempli gratia)  

i.e.  That is (Latin: id est) 

aka  also known as 
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3 Specification Overview and Scope 

3.1 Introduction 
The integration of processors and hardware accelerators on a single die and within a single mobile 
appliance leads to a premium on pins and connectors, such that the cost of implementing a dedicated 
debug port is very high. In addition, the quest for ever thinner and smaller mobile devices makes it 
physically difficult to add any connectors, never mind a dedicated debug port. Consequently, debug 
connectivity is often no longer easily accessible in the late phases of Research and Development, and is 
often removed in the end product. This severely restricts the debugging capabilities, especially in the case 
of customer returns. 

It is thus very attractive to share an available USB port for debug, especially if this does not preclude 
normal operation of the port. Enhanced SuperSpeed is ideal because it allows probe-less debug by third-
party application developers with trace bandwidth of up to 10Gbps. The USB Type-C port doubles this 
via two SuperSpeedPlus ports. 

Debug spans many usage cases. For example, it could mean accessing registers via the TAP network, 
or debugging the OS or an application with a GNU-type debugger, or capturing hardware or software 
traces, and so on. To help address these various scenarios, this specification supports a number of 
different debug capabilities: there is a capability for accessing a debug unit, such as a TAP controller; a 
capability to capture traces; and finally, a capability to access debug software. The multiple USB 
endpoints allow these capabilities to operate concurrently. Thus, it is possible to perform trace capture 
over one endpoint, and to use another pair of endpoints for run control. We provide more extensive 
examples later in the document.  

An SoC consists of many cores, each of with may require its own debug tool. For example, the audio, 
video, graphics, modem and primary cores of an SoC may all come from different IP vendors, and each 
of these vendors may provide their proprietary debug tools. This specification allows multiple such tools 
with their corresponding USB drivers to all coexist on the host, and for the user to swap between 
tools/drivers as required to debug the different IPs within the SoC target, albeit in a mutually-exclusively 
manner. 

In addition, the USB Debug Class specification allows extensions to the descriptors by standardization 
bodies and for vendor-specific use. This flexibility allows the Debug Class to accommodate future 
developments, similar to how the video class allows the addition of future image-compression standards. 
Thus, for example, a debug-standards body could develop a specification for a new debug function, and 
define an associated set of Debug Class specific debug commands to control this function.  

The aforementioned flexibility helps ensure that the Debug Class specification accommodates the 
demanding debug requirements for the SoCs within mobile devices, as well as the debugging needs for 
laptops, PCs, servers, and other compute devices with a USB port – both, for current and for future 
devices.  

Because most debuggers are not USB experts (and equally, most USB experts are not debug experts), 
then this document provides numerous examples and use cases to help bridge this knowledge gap. 

Finally, debug support is often inconsistent across designs and generations of products. This leads to 
multiple variants of debug tools, each crafted for a particular design. This specification attempts to address 
this shortcoming by recommending or mandating how the USB 3.1 debug capabilities should/shall be 
used, to help drive standardization of debug via USB 3.1 in the industry.  

3.2 Purpose 
This document describes the minimum capabilities and characteristics that a USB device shall support to 
comply with the USB 3.1 Device-Class Specification for debug devices.  
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The debug function running on the USB device can use either the device endpoints provided by the USB 
3.1 Device Controller or via the Debug Capability (DbC). The DbC was originally architected in the 
Extensible Host Controller Interface for the USB (xHCI) [3], but has been extended in this document to 
support Debug Control and other attributes. 

Devices that conform to this specification are referred to as USB 3.1 Debug Class devices. 

3.3 Scope 
The USB Device-Class definition for debug devices applies to all devices or functions within composite 
devices that are used to manipulate debug and debug-related functionality using the capabilities defined 
in this specification. This includes devices such as a smartphone, tablet, laptop, desktop computers, 
servers, game console, embedded device, and other digital devices that provide a USB 3.1, USB 3.0, or 
USB 2.0 port and require debug, either in the field or in the lab. It includes the debug and test of devices 
from initial power-on to the tuning of software applications in a released product. Note that the target 
system may be a Smartphone, laptop, etc., which provides an OS. An implementation may choose to use 
this software in support of the debug, but this is not anticipated to be the usual case. 

This specification assumes the reader is familiar with the USB 2.x, USB 3.x, and the eXtensible Host 
Controller Interface specifications [4], [5], [3]. 

USB 3.1 is a dual-bus architecture that incorporates USB 2.0 and an Enhanced SuperSpeed bus. It is a 
physical Enhanced SuperSpeed bus combined in parallel with a physical USB 2.0 bus. The USB 3.1 
connection model accommodates backward and forward compatibility for connecting USB 3.1, USB 3.0, 
or USB 2.0 devices into a USB 3.1 bus. Similarly, USB 3.1 devices can be attached to a USB 2.0 bus. 
USB 3.1 devices accomplish backward compatibility by including both Enhanced SuperSpeed and non-
SuperSpeed bus interfaces. USB 3.1 hosts also include both Enhanced SuperSpeed and non-
SuperSpeed bus interfaces, which are essentially parallel buses that may be active simultaneously in a 
host.  

A USB 3.1 peripheral device must provide support for both Enhanced SuperSpeed and at least one non-
SuperSpeed speed. For a Debug Class device, we recommend HighSpeed. The minimum requirement 
for non-SuperSpeed is for a device to be detected on a USB 2.0 host and allow system software to direct 
the user to attach the device to an Enhanced SuperSpeed capable port. A device implementation may 
choose to provide appropriate full functionality when operating in non-SuperSpeed mode. We recommend 
providing a basic set of capability as a backup in case the Enhanced SuperSpeed mode fails during early 
debug. 

Note that the USB 3.1 specification does not permit simultaneous operation of Enhanced SuperSpeed 
and non-SuperSpeed modes for peripheral devices. In contrast, a host or hub may support both interfaces 
simultaneously – see Figure 3-1.  

Enhanced 
SuperSpeed

Non-
SuperSpeed

USB 3.1 Hub

Enhanced 
SuperSpeed

Non-
SuperSpeed

Composite Cable

USB 3.1 Host
USB 2.0 Device

Non-
SuperSpeed

USB 3.1 Device

Non-
SuperSpeed

Enhanced 
SuperSpeed

USB 3.1 and USB 2.0 simultaneously

USB 3.1 or USB 2.0 but 
not simultaneously

USB 2.0 interface only

 
Figure 3-1: USB 3.1 and USB 2.0 interfaces 

Because of this dual-bus architecture, this specification addresses debug support of a USB 3.1 or USB 
2.0 host debugging a USB 3.1 or USB 2.0 device. The expectation is that debuggers will primarily focus 
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on Enhanced SuperSpeed because of its greater bandwidth. However, this duality is beneficial, since the 
non-SuperSpeed interface provides a backup in case the Enhanced SuperSpeed interface is buggy and 
not functioning correctly (e.g., during early-phase debug). 

Consequently, this debug support provides a means of connecting two systems where one system is a 
USB 3.1 or USB 2.0 Debug and Test System (DTS) host (i.e., where the debug tool runs) and the other 
is a USB 3.1 or USB 2.0 Target System (TS) (e.g., a smartphone). See option 1 in Figure 3-2. It is also 
possible for a single DTS to debug multiple target systems, as shown in option 2 of Figure 3-2. Appendix 
E: gives more examples of other debug scenarios. 

 
Figure 3-2: Two possible debug scenarios 

The TS requires device capability. Thus, it can be a USB device, or a USB host that supports DbC. 

A USB 3.1 Debug device is a standard USB device, in the sense that it supports a default Control endpoint 
that responds to standard USB requests, e.g. SET ADDRESS, etc. In addition, the Debug Class supports 
optional Debug Class specific commands on the default Control endpoints, together with an optional 
interrupt IN endpoint.  

The Debug Class commands provide elementary capabilities to configure the debug hooks. This is 
particularly useful in a low-cost device with only a limited number of endpoints available for debug use. 
For example, a device may provide a single IN endpoint for debug trace, and use the control endpoint for 
configuration of the trace capability. 

The Debug class predominantly uses the Bulk transfer mode, but it also supports isochronous transfers 
for streaming debug traces across the debug-trace interface. 

The actual mechanisms used to configure and initialize the debug hooks in the TS are out of scope of this 
document, although elementary, optional debug commands are defined to perform basic configuration 
operations. The details of the TAP chains and the functionality of the debug hooks are also out of scope.  

This Debug Class does not support the USB 2.0 Debug Device [2], but it does not preclude its use. The 
USB 2.0 debug capabilities are orthogonal to those covered by this document and thus an OTG device 
may choose to support both (providing the host controller provides the appropriate support).  

3.4 Overview 

3.4.1 Debug Capabilities 
The USB 3.1 Debug Class allows the debug of current and future generations of compute devices, using 
debug capabilities. In the past, debug was achieved via a trace port, TAP, and a UART port accessing a 
kernel debugger, etc. Thus, the USB Debug Class provides the following debug capabilities:  

Dfx: The intent of this capability is to provide access to a hardware debug unit such as a TAP 
controller. Once this capability is initiated, it is fully self-controlled (e.g., via a hardware state 
machine and not via an OS USB stack), thus allowing a host to perform stop-mode debug on 
a running TS. 

Debug Option 2Debug Option 1
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USB 3.0 links

DTS with Debugger application 
running on host laptop
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Trace:  This capability supports debug traces.  

GP:   The intent of this “General-Purpose” debug capability is to provide access to debug software, 
such as a kernel debugger or software used to configure the debug features. Unlike Dfx, this 
capability could be controlled by the USB OS Stack, just like a normal device endpoint. Note 
that an implementation may choose to use this for any general-purpose debug usage, such 
as accessing memory via a hardware block such as a DMA engine. 

Control: The Debug class supports optional Debug Class specific control requests that allow the 
debugger to perform basic operations on the debug logic via the default endpoint. These 
include reads and writes of data structures (e.g., configuration registers), the enabling of 
power-management operating modes, and so on. It is possible to use these class-specific 
commands for basic debug operations (e.g., read/write memory), although the bandwidth via 
the default Control endpoint is low. 

Each Dfx and GP interface requires a pair of IN/OUT endpoints, while a Trace interface requires a single 
IN endpoint. Debug Control uses the default Control endpoint, together with an optional Interrupt endpoint. 

Certain debug scenarios may require all capabilities (i.e., Dfx, Trace, GP, and Debug Control) during the 
same debug session, although a typical scenario requires fewer capabilities (e.g., just Trace). In addition, 
a device may choose to replicate capabilities across multiple interfaces. For example, a device may 
provide three, independent trace interfaces, one for the modem traces, one for the main core, and one 
for the graphics traces. Such a device may also provide GP and Dfx interfaces, and will thus support three 
debug capabilities across five debug interfaces.  

Note: An SoC implementation consists of multiple IP blocks, each of which may provide a trace 
output. An implementation may find it more convenient to treat these as separate, dedicated trace 
interfaces, rather than attempt to merge the traces together into a single interface. This is 
especially true if there are legacy debug tools associated with the IP blocks that cannot handle 
the new protocol necessary for a merged trace stream. 

Thus, a TS implementation of the Debug class may provide from zero to many endpoints. For example, 
an implementation may only use the Debug Control, which uses the default endpoint; or it may use many 
endpoints, as given in the prior example. That example supported all four debug capabilities across six 
interfaces spread across seven IN or OUT endpoints together with the Default Control endpoint: 

Dfx:     1 Interface using an IN/OUT endpoint pair. 

Trace:  Trace 1 (Modem):  1 interface using an IN endpoint. 

Trace 2 (Core):  1 interface using an IN endpoint. 

Trace 3 (Graphics):  1 interface using an IN endpoint. 

GP:      1 Interface using an IN/OUT endpoint pair 

Debug Control:   1 Default Control interface using default Control endpoint 0 

3.4.2 DbC and DvC Overview 
3.4.2.1 DbC Overview 

The Debug Class requires a USB device controller on the TS. However, a host does not have a USB 
device controller, and thus needs extra logic so that it behaves as a device (and not a host) during debug 
over USB. The xHCI specification [3] defines the DbC Debug Capability for this purpose, where the DbC 
is in essence a simple device controller that provides a pair of Bulk endpoints for the purpose of debug. 
This allows, for example, a laptop to debug another laptop that supports DbC.  

The Debug Class extends upon the xHCI-compliant DbC to include the full complement of debug 
capabilities, namely GP, Trace, Dfx, and Control. Thus, the Debug Class defines three debug capabilities, 
DbC.Dfx, DbC.Trace, and DbC.GP, together with Debug Control. Each of these capabilities expands upon 
the original xHCI DbC. For example, DbC.Dfx, DbC.Trace, and DbC.GP support topology and Debug 
Control, which the original xHCI DbC did not. 
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Note that the xHCI DbC specification is not a USB class specification, but an architectural specification 
(e.g., state machines, registers, etc.). This Debug Class specification describes the capabilities of the 
DbC as perceived by the host, and not the actual architecture or implementation of the DbC.GP, 
DbC.Trace, and DbC.Dfx logic. An implementation is free to architect DbC.GP, DbC.Trace, and DbC.Dfx 
as they prefer, and need not adhere to the original xHCI-Compliant DbC architecture. This is most likely 
the case for DbC.Trace and DbC.Dfx which interface to debug hardware. DbC.GP interfaces to software, 
and thus there is some value in using the original xHCI DbC architecture for this particular capability. 

3.4.2.2 DvC Overview 

A USB host requires DbC to provide the necessary device-controller hardware for debug. A USB device 
clearly does not need any extra hardware – debug simply uses any of the available device endpoints. 

Thus, the Debug Class uses the standard device endpoints for the three debug capabilities, and refers to 
them as DvC.Dfx, DvC.Trace, and DvC.GP, where DvC denotes Device (debug) Capability. The acronym 
DvC is purely a convenience, and unlike DbC, does not imply additional hardware support for debug 
(although a TS may do so if it wishes). 

We also use the acronym DxC when we are referring equally to either DbC or DvC. 

Thus, a Host TS requires DbC in order to be debug-able, whereas a USB device or OTG does not. Note 
that the Host controller of an OTG may provide DbC logic, thus allowing it to be debugged via DbC or 
DvC, depending upon which USB cable is inserted. 

In reality, there is no difference between the DbC and DvC capabilities from the perspective of the Debug 
Class – they are interchangeable. The two categories, DbC and DvC, originally came about because the 
current implementations physically associate the DbC logic with the xHCI, while the DvC uses the 
endpoints of the device controller. In future designs, if the device controller and the DbC logic are 
integrated into one IP, then this distinction becomes immaterial.  

Note that the xHCI specification restricts DbC to SuperSpeed only. This Debug class does not impose 
this restriction. Thus, one may use DbC.Dfx, DbC.GP, or DbC.Trace with HighSpeed. 

3.4.3 Example Implementation 
Figure 3-3 shows an example of a TS device providing a number of debug interfaces together with a 
normal interface (e.g., to a mass-storage function). Thus, in this example, a single USB port supports 
both normal USB 3.1 traffic together with debug traffic. 

This example supports all three debug capabilities (i.e., DvC.Trace, DvC.GP, and DvC.Dfx) across four 
interfaces (i.e., DvC.GP, DvC.Dfx and two Trace interfaces). It also uses the default, endpoint 0 interface 
for the Debug Class-specific commands. For example, the debugger can use the Debug Class-specific 
requests to configure the debug capabilities, such as enabling the Trace-Processing unit. 

The TS of Figure 3-3 has two independent Trace-Processing units that merge a number of internal traces 
into a single trace stream, before sending the trace out via two separate DvC.Trace interfaces. The device 
also provides an interface to the TAP logic via the DvC.Dfx interface. In addition, the device uses the 
DvC.GP interface for a kernel debugger on the host to communicate with the corresponding Kernel-debug 
Function on the device. 
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Figure 3-3: Example of a TS device supporting all Debug Capabilities 

The Debug Class descriptors provide the optional capability to define the debug topology. For example, 
the topology could define which sources generate the debug traces and how these traces are merged to 
form the final trace stream sent on the trace endpoint. Thus, for example in Figure 3-3, the topology 
descriptors will show that the Modem traces connect to the Trace-Processing unit 1, while the Core, 
Graphics unit, and the Bus-Watcher unit connect to the Trace-Processing unit 2. In addition, the 
descriptors could provide the trace format of the output of each of these units. The Debug Class-specific 
commands can target these individual units for the purpose of configuration, power-gating, etc. 

The following examples itemize a number of debug-use cases, and suggest the appropriate debug 
capability:  

• TAP debug: DxC.Dfx is the most suitable capability for accessing this debug functionality. 

• Trace Capture: DxC.Trace in conjunction with DxC.Dfx, DxC.GP, or the Debug Class-specific 
debug commands to configure and enable the traces. 

• Software debug: DxC.GP to access the Kernel debugger, and possibly, in addition, DxC.Dfx for 
TAP debug when the kernel debugger hangs and the debugger needs to access hardware state. 

• System Debug of a smart device: This may use 1, 2, or 3 of the following debug capabilities:  

• DxC.Trace for instrumentation traces (e.g., Printk-type messages from the software 
and/or firmware) and for hardware traces 

• DxC.Dfx, DxC.GP, or the Debug Class-specific debug commands to configure and 
enable the traces 

• DxC.Dfx for TAP access 

• OS USB-stack debug on a multi-port OTG device or host: This can use DxC.GP on one port 
communicating with a kernel debugger on the device, while another port is acting as a normal 
USB 3.1 host. 
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3.5 Functional Characteristics 
Figure 3-4 shows an example debug configuration with the corresponding standard descriptors defining 
the debug functionality of the Target System device. 
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Figure 3-4: Example of the USB Descriptors for the Debug Function 

Figure 3-4 is an example showing the primary USB descriptors for three DvC debug capabilities: DvC.Dfx, 
DvC.Trace, and DvC.GP. It also shows two debugger tools in the host – one communicates via the 
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DvC.GP to a kernel debugger, while the other communicates with a multi-function debug unit providing 
trace and Dfx capabilities. In order to support two such debuggers, two separate drivers are necessary 
on the host – one per debug tool. The USB uses Interface Association Descriptors (IAD) to group together 
the functions which pertain to a particular debug tool, thus allowing such multi-tool support. 

In this example, the first three debug interfaces (i.e., Debug Control, DvC.Dfx and DvC.Trace) are grouped 
together into a Debug Interface Collection (DIC) by the Interface Association Descriptor (IAD). This 
grouping allows a single Debug tool to access this multi-function TAP and Trace unit. 

The last debug interfaces (i.e., Debug Control and DvC.GP) is within a different DIC defined by the second 
IAD. This IAD is used to associate the Debug Control with the DvC.GP interface – thus the Debug 
commands will pertain only to the Kernel Debug function and not to the Trace and TAP multi-function unit. 
Thus, for example, Debugger 1 can use a Class-specific command to stop/start the hardware debug 
traces over the DvC.Trace interface, while Debugger 2 can use the same Class-specific command to 
start/stop software traces over the DvC.GP interface. Each of these commands target the particular DIC, 
and have no effect on the other DIC. Please see Section 5 for more details. 

Section 3.6.4 provides more details on Debug Interface Collections and Interface Association Descriptors.  

The host DTS in this example contains two debuggers. Debugger 1 communicates with the first DIC, 
while debugger 2 communicates with the second DIC. Thus the example of Figure 3-4 shows two 
independent debug tools interacting with different debug capabilities and functions in the target device. 
Debugger 1 provides trace and TAP debug support, while Debugger 2 is a kernel debugger.  

To avoid overcomplicating the example, Figure 3-4 does not show the optional Debug Class-specific 
descriptors, which are used to define the debug topology in the TS. These are covered later in this 
document. 

Finally, in addition to the debug interfaces, the example of Figure 3-4 also shows the device supporting a 
normal (i.e., non-debug) USB function (i.e., mass storage). 

3.5.1 The Debug Capabilities 
The Debug Capability is defined in the Interface descriptor using the bInterface, bInterfaceSubClass 
fields, as shown in Table 3-1. 

Table 3-1: The Debug Sub-classes 

bInterface Class bInterface Sub-Class Description of Typical usage 

Diagnostic Class 

(0xDC) 

DbC.GP General-Purpose Software debug function (e.g., GNU 
debugger) 

DbC.Dfx Access to hardware Dfx hooks within the host (e.g., 
TAP, Memory access, debug trace1, etc.) 

DbC.Trace Debug traces 

DvC.GP General-Purpose Software debug function (e.g., GNU 
debugger) 

DvC.Dfx Access to Dfx hooks within the device (e.g., TAP, 
Memory access, debug trace1, etc.) 

DvC.Trace Debug traces 

 Debug Control Control interface applicable to DxC.Trace, DxC.Dfx, 
DvC.GP (and optional for DbC.GP) 

                                                      

 
1Although,  DxC.Dfx supports debug traces, DxC.Trace is the  recommended  interface 
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In general, the DbC and DvC functionality is interchangeable, and thus this Debug Class specification 
uses the terminology DxC to refer to either.  

The USB 3.1 Debug Class provides the following capabilities:  

(1) DxC.GP (General Purpose): This uses a pair of standard USB Bulk IN/OUT endpoints for 
accessing debug software. Typical uses for DxC.GP are access to a GNU debugger or a device 
driver that configures the debug hooks within the device (this is analogous to the COM drivers 
long used for debugging purposes). DxC.GP uses bulk transfers for reliability. DvC.GP may 
choose to provide hardware support for this debug capability (e.g., hardware support for 
enumeration similar to the xHCI DbC). 

(2) DxC.Dfx: This debug capability uses a pair of Bulk IN/OUT endpoints to access a debug 
hardware block within a TS. Examples of such debug blocks include the scan logic within a TS 
(e.g., the TAP logic), read/write access to a memory region, debug traces, etc. Typically, the 
Debugger uses the DxC.Dfx capability to configure and initialize the device, and to perform the 
usual debug run-control features such as halt and resume the CPU, perform a single-step 
operation, read/write memory, etc. Run-control operations require guaranteed, reliable 
transactions, and thus DxC.Dfx only supports Bulk transfers.  

Even though DxC.Dfx capability supports debug traces, we discourage this usage because the 
DTS tools may have difficulty in separating merged high-bandwidth traces from other debug traffic 
in real-time. Instead, we recommend using DxC.Trace exclusively for traces. However, a cost-
constrained TS may only provide a single pair of debug endpoints. In this case, all debug 
operations, including traces, need to funnel through DxC.Dfx.  

Note that DvC.Trace supports both bulk and isochronous transfers, whilst DxC.Dfx only supports 
bulk transfers for reliability reasons (see Table 3-2). 

(3) DxC.Trace: This capability is intended for the transfer of high-bandwidth debug trace to the DTS. 
This is the preferred capability (rather than DxC.Dfx) for traces. As an implementation note, we 
recommended that a TS performs the trace operations autonomously via hardware control 
instead of via an OS stack driver so as not to perturb the running system. This capability supports 
bulk and isochronous transfers. 

(4) Debug Control: The Debug Class provides optional support for Debug Class-specific 
commands. For example, they allow read and write access to the configuration registers of the 
debug hardware, thus allowing the debugger to configure the debug hooks. Although the Debug 
Class-specific commands are optional, we strongly urge their use to facilitate standardization of 
the debug tools. See Section 5 for more details. 

Table 3-2 provides the attributes of the debug capabilities. DvC may use any of the available endpoints 
in the device – there is no requirement to use specific, dedicated endpoints for debug (unlike the USB 2.0 
Debug Device [2]). 
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Table 3-2: Debug Interfaces 
TS Debug Interfaces Bus Interface Endpoint  Data Type 

DvC 

DvC.GP 

Enhanced SuperSpeed, 
SuperSpeed, HighSpeed 

IN, OUT Bulk 
DvC.Dfx IN, OUT Bulk 

DvC.Trace IN Bulk, 
Isochronous 

DbC 

DbC.GP IN, OUT Bulk 
DbC.Dfx IN, OUT Bulk 

DbC.Trace IN Bulk, 
Isochronous 

DxC Debug Control 
(Optional for DbC.GP) 

Default 
Control 

Endpoint 

 

Control 

Interrupt 
(Optional) 

Note that the xHCI-compliant DbC only supports SuperSpeed, but the Debug Class does not impose this 
restriction. 

3.5.2 Debug Scenario Examples 
A USB 3.1 Debug Class device may implement no specific debug interface apart from supporting Debug 
commands over the default endpoint 0, or it may implement one or more of the debug interfaces. The 
simplest example is a TS that sends the debug traces to an internal buffer and uses debug commands 
over the default endpoint 0 to configure and extract these traces. More extensive scenarios will use 
multiple interfaces for trace, Dfx, and GP to access SW debug functions. 

A debug lab could have multiple debuggers installed on the DTS host. For example, they may have an 
in-house debugger with proprietary access to a specific core in an SoC, and may have another 
commercial debugger that supports multiple cores, but without access to the protected features. It is quite 
possible that a debug user will switch between these tools during a debug session, depending on the 
visibility they require. 

For example, one debugger controls the DvC.Dfx and DvC.Trace pipes, while another debugger controls 
the DvC.GP pipe. All of the DxC debug capabilities can be used concurrently.  

Figure 3-5, Figure 3-6 and Figure 3-7 show a number of possible options for the debuggers within a host. 
These examples show the Debug Class driver in the DTS host connecting to a TS host or to a TS device.  

The example options in  

Figure 3-5 are: 

• Option 1 shows a device that only generates debug traces. Thus, the host only requires a 
DvC.Trace driver. This option could use the Debug Class commands on the default endpoint 0 
to configure and enable the traces, or even the Standard USB commands such Set Configuration 
to automatically enable the traces.  

• Option 2 shows a device that only supports run-control via a DvC.Dfx interface. 

• Option 3 shows three independent debugger applications running in a single host: one each for 
the DvC.Dfx, DvC.Trace, and the DvC.GP capability.  

• Option 4 uses two debuggers connected to the three drivers  

Figure 3-6 shows: 
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• Option 5 shows the simplest scenario of a debugger using Debug Control to access state within 
the device. For example, configuring the Graphics unit to send traces to a buffer in main memory, 
and then afterwards extracting the traces from memory. 

• Option 6 shows a single, full-capability, independent debugger connected to all three drivers 
providing the TAP, Trace, and GNU debugger debug support 

• Option 7 illustrates that a device can instantiate multiple instances of a debug capability. This 
example has two different DvC.Trace interfaces. For example, a SoC with integrated modem may 
choose to dedicate one debug-trace interface to the modem traces and a second to the non-
modem traces.  

Figure 3-7 visualizes: 

• Option 8 is the same as Option 2 except that it is an example of host-to-host debug 

• Option 9 is the same as Option 3 except that it is an example of host-to-host debug 

• Option 10 assumes that the host TS is merging traces, run-control, and a memory accesses onto 
a single DbC.Dfx interface (see top portion of the drawing  

• Figure 3-5). 

An OTG device may implement both DbC and DvC, and could thus provide mutually-exclusive support 
for either by changing the USB cable. For example, options 5 or option 8 – depending on which USB 
cable is used. 
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Figure 3-5: Simple Debug Scenario Examples  
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Figure 3-6: Debug Scenario Examples; Combined Tooling 
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Figure 3-7: Host Debug Scenario Examples 

3.5.3 Debug Function Topology 
A debug function may consist of a number of interconnected components. For example, a debug trace 
function may consist of a network of Trace-Processing units. The optional Debug Class-specific, Debug-
Unit descriptor allows one to define this network, together with the control capabilities supported by each 
component of the specific network. 

There are two generic entities that define these components: 

• Units 
• Connections 

Units provide the basic building blocks to fully describe the debug functions. These include agents that 
generate traces, such as cores, graphics units, and bus watchers, as well as merging units that combine 
multiple traces into a single stream. Connecting a number of such units creates a debug function (Figure 
4-5 shows an example). 
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A Unit typically has one or more input “pins” and a single output “pin”, but more complicated units consist 
of multiple input and output pins. Note that the term “pin” denotes a vector going in and out of a unit, and 
not a physical hardware pin.  

One can connect multiple units together into a desired topology by connecting their I/O pins. A single 
output pin can connect to one or more Input pins (fan-out allowed). However, a single input pin can only 
connect to one output pin (fan-in disallowed) (Because it is unclear what to do when 2 or more outputs 
join together – for example, do they merge packets or do they drop packets on a collision). See Figure 
3-8. Loops or cycles within the graph topology are disallowed.  

Dfx Unit

Dfx Unit

Dfx Unit

Dfx UnitFanout 
allowed

Fan-in Not allowedDfx Unit

Dfx Unit

Dfx Unit

 
Figure 3-8: Examples of allowed and disallowed topologies 

There are two types of Connections:  

• An Input Connection (IC), which is an entity that represents a starting point for data streams inside 
the debug function.  

• An Output Connection (OC) represents an ending point for data streams.  

A USB endpoint is a typical example of an Input Connection or Output Connection.  

A connection provides data streams to the debug function (i.e., IC) or consumes data streams coming 
from the debug function (i.e., OC).  

Note: The meaning of “input” and “output” are relative to the debug unit and not the USB host. Hence, an 
Input Connection connects to an OUT endpoint, and an Output Connection connects to an IN endpoint. 
This use of “input” and “output” is more convenient from the perspective of the debug function. 

Another example of connections is when interconnecting the debug hooks across multiple chips in a 
platform. In this case, one of the chips provides the primary debug interface (e.g., the main SoC), and this 
chip provides a debug path to the other chip (e.g., a Modem) (see top of Figure 4-5 for an example). 

Input Pins of a Unit are numbered starting from one up to the total number of Input Pins on the Unit. A 
Pin is an entity that can be a single signal or a bus. Similarly, output pins are numbered starting from one 
up to the total number of Output Pins on the Unit. Connections have one Input or one Output Pin, which 
is always numbered one. 

A Debug-Unit Descriptor (DUD) fully describes every associated Unit in the debug function. The Debug-
Unit Descriptor contains all necessary fields to identify and describe the Unit. Likewise, there is a 
Connection Descriptor for every input and output Connection in the debug function. In addition, these 
descriptors provide all the necessary information about the topology of the debug function. They fully 
describe how Connections and Units are interconnected. 

See Section 4 for more details on Debug-Unit descriptors. 

This specification describes the following types of standard Connections and Units: 

• Input Connection 
• Output Connection 
• Dfx Unit 
• Select Unit 
• Trace-Router Unit 
• Trace-Processing Unit   
• Trace-Generation Unit 
• Trace-Sink Unit 
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These blocks can define hardware or software units. See Appendix E: for an example. 

Future revisions of this specification, or companion specifications, could extend the types of Units.  

In addition to the Unit and Connection descriptors, the Debug Class also defines a Debug-Control 
Interface descriptor together with a corresponding Debug-Attribute descriptor. This set of descriptors 
together with the debug-capability descriptors provides a full description of the debug function to the Host. 
See section 4.4 for examples and more details. These descriptors allow a host debugger to determine 
the topology and capabilities of the debug function on the TS.  

Note: The descriptors could carry auxiliary vendor-specific information fully informing the DTS of the full 
details and release levels of the debug IP. Alternatively, they could provide simplified information reflecting 
the life-cycle support of a device. For example, in the lab, the device may provide TAP access to a modem, 
which is not provided in a customer device. Thus, a DTS could quickly determine the supported features 
within the TS. 

3.5.3.1 Input Connection 

The Input Connection (IC) provides an interface between the debug function and the "outside world". It 
serves as a receptacle for data flowing into the debug function. The IC can be a single signal or a bus. 
The symbol for an Input Connection is: 

IC
 

Figure 3-9: Input-Connection Icon 

An Input Connection can represent inputs to the debug function other than a USB OUT endpoint. An 
example of such a non-USB input is JTAG pins driven by the debug function. Figure 3-10 shows Input 
and Output Connections connecting to a USB endpoint and to an external device via JTAG pins. In 
addition, the figure shows modem traces going to the Trace-Processing unit in the main SoC chip. Thus, 
the TS consists of multiple chips (a modem and an APE), and only the APE has a USB port. 

DTSDfx Unit: 
Modem

DvC.Dfx

 OUT Endpoint

IN Endpoint

TAP 
Controller

 Dfx Unit: TAP

OC

IC
OC

SoC Chip
DvC.Trace
IN EndpointOC

Other 
traces

SoC 
JTAG

Modem 
Trace

IC

JTAG 
mux

IC

JTAG

Trace 
Processing 

Unit

 
Figure 3-10: Input and Output Connections driving USB endpoint and external pins 

 

3.5.3.1 Output Connection 

The Output Connection provides an interface between the units within the debug function and the “outside 
world”. It serves as an outlet for debug information flowing out of the debug function. Its function is to 
represent a sink of outgoing data. The OC can be a single signal or a bus. The debug data stream enters 
the Output Connection through a single Input pin, as depicted by the Output Connection symbol: 
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OC
 

Figure 3-11: Output-Connection Icon 

An Output Connection can represent outputs from the debug function other than a USB IN endpoint. The 
example in Figure 3-10 shows two Output Connection on the Dfx unit, where one drives JTAG pins and 
one drives a USB IN endpoint. If the debug stream is leaving the debug function by means of a USB IN 
endpoint, then there is a one-to-one relationship between that endpoint and its associated Output 
Connection.  

3.5.3.1 Dfx Unit 

The Dfx Unit is essentially a pair of units. One unit accepts n input streams, manipulates or processes the 
streams in some manner, and routes the result to a single output stream. The other unit accepts a single 
input, processes it, and creates m output streams (and the outputs need not all be the same). The symbol 
for a Dfx Unit is shown below together with an example beneath it: 

Dfx Unit

Memory 
Access

TAP 
Controller

JTAG In pins

JTAG Out pins

OUT Endpoint

IN Endpoint

IC

OC
M
u
x

Dfx Unit

IC

OC

External 
Debug 

Port 
Interface

Debug Port In pins

Debug Port Out pins IC

OC

Example

 
Figure 3-12: Dfx Unit icon with two sets of 2 inputs together with an example 

The example in Figure 3-12 shows general debug functionality within a Dfx Unit. This particular design 
has a TAP controller with the ability to drive external JTAG pins, an interface to an external debug port, 
and a memory read/write access sub-unit. Thus, the Dfx unit is essentially a general-purpose debug block. 

Note that the above Dfx could alternatively be partitioned into smaller Dfx units – for example, one for the 
TAP, one for the Memory-Access unit, etc. However, in this particular example, we assume that the Dfx 
unit corresponds to a single IP block, which the host debugger needs to treat as a single “black box” 
entity. (For example, the IP may have a single set of configuration registers, and thus the DTS needs to 
access this logic as an entity in order to configure it.) This explains why the Dfx icon provides multiple-
inputs and multiple-outputs. See Appendix E: for more complicated scenarios. 

The Debug Unit descriptor provides a field per output pin for the trace format. Thus, each output can have 
a different format (including no format).  



 USB 3.1 Debug Class 7/14/2015 

 

- 28 -   

Note that the Dfx unit need not only represent a hardware unit. It could also represent a debug software 
application accessed via DxC.GP. For example, it could represent a GNU debugger, data logger, 
configuration software, etc. 

3.5.3.1 Select Unit 

The Select unit selects one input stream from N data input pins and routes it to a single output pin. The 
symbol for a Select Unit is:  

Select Unit

Dfx Unit Dfx Unit Dfx Unit
Select 
Unit

Select 
Unit

Bypassed TAP unitExample

JTAG IN

JTAG OUT

 

Figure 3-13: Select Unit icon with an Example TAP chain 

The example in the figure shows the select units bypassing the TAP chain, where each Dfx unit is a TAP 
controller. 

3.5.3.2 Trace-Router Unit 

The Trace-Router unit redirects an input stream from a single data input pin on to 1 or more output pins 
that can be individually enabled. For example, it can route traces with a specific IDs in one direction, and 
traces with other IDs in a different direction. Note that fan out may be used if control and routing of the 
individual output pins is not required. The symbol for a Trace-Router Unit is:  

Trace-
Router Unit

 
Figure 3-14: Trace-Router Unit icon with 3 outputs 

The trace format on all outputs can be different.  

3.5.3.3 Trace-Processing Unit 

The Trace Processing unit (TPU) merges 1 or more input streams, processes them (e.g., filtering) and 
routes them to a single output stream. An example of a TPU is a MIPI STM. It has an Input Pin for each 
source stream and a single Output Pin. The symbol for a Trace-Processing Unit is: 

Trace 
Processing 

Unit
 

Figure 3-15: Trace Processing Unit icon with 3 inputs 

An example of a TPU with a single input and single output is a trace convertor that maps an input trace 
stream into an output stream that supports a different trace format.  
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3.5.3.4 Trace-Generation Unit 

The Trace Generation unit generates a single trace stream. The symbol for a Trace-Generation unit is: 

Trace 
Generation 

Unit

Modem
Trace 

Generation 
Unit

Modem
Trace 

Generation 
Unit

Software 
Trace

Processor 
Instruction
Trace

Examples

 
Figure 3-16: Trace-Generation Unit Icon with an example 

It is possible for a debug agent to generate multiple different traces that it sends to different debug ports. 
For example, a modem may generate processor traces and firmware instrumentation traces, and these 
traces go to different units (such as different Trace Processing units). We express this by using multiple 
instantiations of the Trace-Generation Unit, as shown in the example above. 

3.5.3.1 Trace-Sink Unit 

A Trace-Sink unit absorbs a trace – for example, a memory buffer. The symbol for a Trace-Sink unit is: 

Trace Sink 
Unit

 
Figure 3-17: Trace-Sink Unit 

A trace-Sink unit has a single Input pin and no output pins. 

 

3.5.4 Debug Control of the Debug Units 
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Figure 3-18: Possible means of configuring a debug unit 

There are many ways to configure the debug units. For example, Figure 3-18 shows six possible ways 
of configuring a debug unit (in this case a Trace-Processing unit), as follows: 
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1) Debug Class Specific commands: These use the default endpoint 0 to communicate with a debug 
driver, which then configures the Trace-Processing unit. 

2) Via DxC.GP: This interface communicates directly with a debug driver 

3) Via an application running on the TS device 

4) Via a “mailbox”: the Dfx unit uses the debug driver to configure the Trace-Processing unit via a 
mailbox (e.g., a UART) 

5) The Dfx unit may provide direct memory read and write capability that allows access to the 
configuration registers in the Trace-Processing unit 

6) Via TAP commands: the Dfx unit instructs a TAP Controller to scan in the configuration state into 
the Trace-Processing unit. 

Note: The Debug Class provides elementary read/write capability of the Debug units. Other Specification 
bodies may provide their own set of commands that control a particular debug unit. For example, MIPI 
may provide a set of commands for their MIPI STM unit. In addition, IP vendors may provide a set of 
commands for their IP. 

Section 5 provides more details on the Debug Class-specific commands. 
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3.6 Debug Operational Model 

3.6.1 Alternate Settings 
There are a number of debug scenarios where we need to provide alternative capabilities: 

1. To reuse endpoints for an alternative debug capability. For example, switching the endpoints 
between Dfx and GP. This is of value in a cost-constrained implementation with only one endpoint 
pair available for debug usage. The Alternate settings would switch the endpoints amongst the 
different capabilities in a mutually-exclusive manner. See Section 3.6.2. Naturally, the DTS driver 
will have to have the capability to handle these alternate interfaces. 
 

2. To enable multiple debuggers to reside concurrently on a host, and to switch between them. For 
example, during a debug session, the user may wish to rapidly switch between a commercial 
debug tool and a proprietary tool, where each provides a different set of capabilities. See Section 
3.6.5 for more information on multiple, mutually-exclusive debug tools. 
 
There is a related requirement to initialize the debug function prior to switching to another debug 
tool, so that the new debug tool sees the function in a known clean state. We use Alternate 
Settings for this purpose also. See Section 3.6.5.1. 
 

3. To select between different bandwidth options for isochronous traces. See Section 3.6.8. 

These options are not mutually exclusive; they may be combined (see Figure 3-35 for an example). 

This switching is achieved via the SET_INTERFACE request directed to the desired Interface with a different 
bAlternativeSetting.  

 

3.6.1.1 Alternative Settings Usage Notes 

When the host configures the debug configuration, it uses the first default, Interface descriptors with the 
bAlternativeSettings equal to zero. However, during operation, the host can send a SET_INTERFACE 
request directed to the desired Interface with a different bAlternativeSetting (e.g., 1, 2, etc.) and thus 
enable one of the other debug capabilities. 

Typically, the operating system loads the driver based on the bDeviceClass/ bDeviceSubClass, and 
bDeviceProtocol fields in the Device descriptor. However, a debug device tends to be a Composite device, 
which has more than one Interface descriptor. In this case, the composite device sets the 
Class/SubClass/Protocol fields in the Device Descriptor to 0, and defines the multiple drivers using the 
Class/SubClass/Protocol fields in the various Interface descriptors. Thus, the OS loads a special 
Composite driver, which walks through the Interface descriptors of a device, loading the appropriate driver 
as a function of the bInterfaceClass/ bInterfaceSubClass/ bInterfaceProtocol values. See top of Figure 
3-19 for an example. 
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Device Descriptor
bDeviceClass = 0
bDeviceSubClass = 0
bDeviceProtocol = 0

Interface Descriptor
bInterfaceClass = A
bInterfaceSubClass = B
bInterfaceProtocol = C1

Alternate Setting 0

Interface Descriptor
bInterfaceClass = A
bInterfaceSubClass = B
bInterfaceProtocol = C2

Alternate Setting 1

Composite UASP Device

Since (Class, SubClass, Protocol) fields  = (0, 0, 0) then the OS 
uses fields in the Interface descriptor to select Composite driver

Composite UASP driver uses (Class, SubClass, Protocol) = (A, B, C1) 
to select the primary driver. 
If it wants to use alternative interface it calls new driver based on 
(Class, SubClass, Protocol) fields  = (A, B, C2) and issues a Set 
Interface () to the device to switch to the Alternate Setting 1

 
Figure 3-19: Composite UASP (USB Attached SCSI Protocol) Device Example 

Originally, the intent was for all alternate Interfaces to define the same InterfaceClass/ 
bInterfaceSubClass/ bInterfaceProtocol values in their Interface descriptors. Consequently, this means 
that the device driver loaded for Alternate Interface 0 had to understand what the functions of the various 
Alternate Interfaces are. 

However, this approach proved too restrictive, and different device classes extended the capabilities. The 
Debug class follows the approach adopted by the USB Attached SCSI Protocol (UASP) [6]. A summary 
of this scheme is provided below to explain the concept: 

All USB Storage products, Flash Drives, Thumb Drives, Hard Drives, and SSDs use a transfer 
protocol called Bulk Only Transfer (BOT) protocol.  This is a straightforward protocol and works 
well for USB 2.0. However, USB 3.0 provides a new feature, called Bulk Streams, which reduces 
protocol overhead by allowing multiple in-flight packets. The new UASP driver class supports 
USB 3.0 Bulk Streams, offering greater performance than BOT. However, not all USB 3.0 devices 
support Bulk Streams, and for backward compatibility with a USB 2.0 device, the USB 3.0 may 
need to support BOT in addition to UAS (USB Attached SCSI). 

For USB2 backward compatibility, the device shall present BOT as the primary interface (i.e., 
Alternate interface 0) and UAS (USB Attached SCSI) as the secondary alternate interface (i.e., 
Alternate interface 1). However, a device that does not need backward compatibility with BOT 
shall only present UAS as alternate interface zero – in this case, there is no secondary Alternate 
interface. In USB 2.0 systems, the BOT driver or an associated filter driver may need to issue a 
SET_INTERFACE request for Alternate interface 1 and then allow the UAS driver to load. See Figure 
3-19. 

The UASP uses the bInterfaceProtocol field to select between BOT and UAS. 

The Debug Class takes this approach a stage further and uses the bInterfaceSubClass to differentiate 
between DxC.GP, DxC.Dfx, and DxC.Trace, and uses the bInterfaceProtocol value to select variants 
within these capabilities. 

Consequently, each Alternate interface in the Debug Class declares the same bInterfaceClass field, but 
a different pair of bInterfaceSubClass and bInterfaceProtocol values. The driver would be loaded based 
on the default 0th Alternate Interface. This version of the driver could then issue a SET_INTERFACE request 
to switch the endpoints owned by the interface to the alternate debug capability.  

Thus, for example, if the 0th Alternate-Interface driver is DvC.Dfx, then it will have the capability to switch 
to another alternate interface driver such as DvC.Trace based on the bInterfaceSubClass field. See Figure 
3-20.  
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Device Descriptor
bDeviceClass = 0
bDeviceSubClass = 0
bDeviceProtocol = 0

Interface Descriptor
bInterfaceClass = 0xDC
bInterfaceSubClass = DvC.Dfx
bInterfaceProtocol = 0x01

Alternate Setting 0

Interface Descriptor
bInterfaceClass = 0xDC
bInterfaceSubClass = DvC.Trace
bInterfaceProtocol = 0x01

Alternate Setting 1

Composite Debug Device

Since (Class, SubClass, Protocol) fields  = (0, 0, 0) then OS uses 
fields in the Interface descriptor to select Composite driver

Composite Debug-class driver uses (Class, SubClass, 
Protocol) to select the primary driver. In this example, it 
selects the Dfx driver.
If it wants to use an Alternative interface it calls the new 
driver based on (Class, SubClass, Protocol) fields, and calls 
the DvC.Trace driver, and issues a Set Interface () to the 
device to switch to the Alternate Setting 1

 
Figure 3-20: Composite Debug Class Device Example 

3.6.2 Changing Debug Capabilities via Alternate Settings 
An interface within a configuration may have alternate settings that redefine the number or characteristics 
of the associated endpoints. DbC and DvC can both use Alternate settings. For example, a TS may 
allocate one IN endpoint permanently to debug traces, and share a second pair of IN/OUT endpoints, 
mutually-exclusively between a GNU debugger (via DxC.GP) and a TAP interface (via DxC.Dfx). Thus, 
for the case of DvC, we have: 

• Endpoint 1  Debug Trace 
• Endpoint 2 has two, mutually exclusive, alternate settings: 

1. Alternate Setting 0: Endpoint 2  GNU debugger via DvC.GP 
2. Alternate Setting 1: Endpoint 2  JTAG interface via DvC.Dfx 

Figure 3-21 illustrates the descriptors for this example: 

Alternate Setting 1

Configuration 
Descriptor

Device 
Descriptor

Interface Descriptor
DvC.GP (GNU)

Interface Descriptor
DvC.Trace

IN Endpoint 2 
Descriptor

Alternate Setting 0

OUT Endpoint 2 
Descriptor

Interface Descriptor
DvC.Dfx (JTAG)

IN Endpoint 2 
Descriptor

OUT Endpoint 2 
Descriptor

IN Endpoint 1 
Descriptor

 
Figure 3-21: Alternate Settings Example 

Switching between Alternate settings does not affect any other interface. Thus, the debug trace interface 
on endpoint 1 in Figure 3-21 is not affected by changing an alternate setting on endpoint 2. 

3.6.3 Changing Debug Capabilities using Different Configurations 
A debug device may use a different configuration instead of an alternate interface to share endpoints with 
other functions. Figure 3-22 gives an example. This is similar to the prior example of Figure 3-21, in the 
sense that one configuration provides Trace and a GNU debugger, while the other configuration provides 
Trace and JTAG. However, switching between these two configurations requires all endpoint traffic to 
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stop before selecting the other configuration. Thus debug tracing will stop during the changeover, unlike 
the prior example using Alternate interfaces. Depending on the context, this may be a disadvantage. A 
further disadvantage is that not all Operating Systems support multiple configurations. Consequently, 
using different Configurations is not recommended. 

Configuration 
Descriptor

Device 
Descriptor

Interface Descriptor
DvC.Trace

IN Endpoint 1 
Descriptor

Configuration 
Descriptor

Configuration 2

Interface Descriptor
DvC.Dfx (JTAG)

IN Endpoint 2 
Descriptor

OUT Endpoint 2 
Descriptor

Interface Descriptor
DvC.GP (GNU)

IN Endpoint 2 
Descriptor

Configuration 1

OUT Endpoint 2 
Descriptor

Interface Descriptor
DvC.Trace

IN Endpoint 1 
Descriptor

 
Figure 3-22: Example of two configurations 
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3.6.4 Interface Association Descriptor (IAD) 
The USB 3.1 Debug Class supports Debug Control over the default endpoint 0. We need a mechanism 
to associate the debug control operations with a particular debug unit, a particular capability, or with the 
complete TS. For example, one may need to enable the voltage and clocks for a specific debug trace 
source, or for a set of trace sources, or indeed for all of the debug functions within a SoC. 

In addition, we need a mechanism to group a number of functions together. For example, a debug tool 
may support both a kernel debugger and a stop-mode TAP debugger. It is not uncommon for a program 
under development to go “into the weeds” and hang. In this situation, the kernel debugger is useless and 
the TAP debugger is needed to break in and permit debug. Such a multi-function debugger could use the 
DxC.Dfx interface for the Stop-mode debugger, and the DxC.GP interface for the kernel debugger. 

This specification uses the Interface Association Descriptor (IAD) [7] for this purpose, although other 
means could be used – refer to Section 3.6.6.  

The Interface Association Descriptor (IAD) groups together two or more consecutive interfaces (and any 
alternate settings associated with these interfaces) into a single function. We call such a collection a 
Debug Interface Collection (DIC). See Figure 3-23. 

Debug 
Interface 
Collection 
(DIC)

Interface Association Descriptor (IAD)

Debug Control Interface Descriptor

Debug Attributes Descriptor

(Optional Topology Descriptors)

Debug Capability Descriptor (i.e., DxC.Trace, DxC.Dfx, or DxC.GP)

(Optional Interrupt Endpoint)

Debug Endpoint(s)
Multiple instantiations allowed within 
the same type (DbC or DvC)

 
Figure 3-23: Debug Interface Collection 

A DIC consists of four components: 

1) The optional Debug Control requests and other features supported by the debug function. These 
are defined by two descriptors:  

a. The Debug-Control Interface descriptor, which is a standard USB interface descriptor 
that characterizes the interface itself 

b. The Debug-Attributes descriptor, which is in essence an extension of the Debug-Control 
descriptor and provides specific details of the features supported by the debug function. 

2) Optional topology information describing how the various debug units within the function 
interconnect.  

3) An optional Interrupt endpoint for the control capability. This could, for example, be used to enable 
trace capture by the host when the smartphones screen is touched. 

4) The debug capability or capabilities supported by the debug function (e.g., DvC.Trace) together 
with their endpoints. 

An IAD requires >1 interface, and thus a DIC must have two or more interface descriptors (e.g., Debug 
Control and DvC.Trace). 

The operating system calls a single composite driver per DIC, which will then call the appropriate drivers 
for the associated debug functions (e.g., Dfx TAP access, trace capture, etc.). 

A device shall use an Interface Association Descriptor to describe a Debug Interface Collection for each 
device function that requires a Debug-Control Interface and one or more Debug Capability interfaces.  

To help understand IADs and DICs, we will examine a few scenarios. Suppose there are two debug 
functions using the DvC.Dfx and DvC.Trace interfaces, and that we have two separate debug tools for 
these functions. It thus makes most sense to group each capability within a DIC using an IAD, as this will 
ensure that the host calls a debug driver for each DIC. Consequently, each of the separate debug tools 
will have their own driver. Figure 3-24 shows such an example, where two IADs create two DICs. One 
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DIC consists of a Debug-Control Interface and a DvC.Dfx interface, while the other consists of a Debug-
Control Interface and a DvC.Trace interface. They are labeled as IAD 1 and IAD 2, and DIC 1 and DIC 2. 

Run-Control DTS

Trace-Capture 
DTS

DIC 1

DIC 2

Debug Control Interface

DvC.Dfx Interface

Debug Control Interface

DvC.Trace Interface

Host TS Device

IAD 1

IAD 2

 
Figure 3-24: Example showing two IADs grouping the Control with the appropriate debug 

interface 

Figure 3-25 shows an alternative grouping of the debug interfaces of Figure 3-24, where we use a single 
IAD to group the trace and Dfx functions together. This makes most sense when we have a multi-function 
debug tool that, for example, supports TAP and Trace. In this case, the IAD groups the DvC.Trace 
interface with the DvC.Dfx run-control interface, so that the host evokes a single driver for the multi-
function debug tool.  

Run-Control & 
Trace Capture 

DTS
DIC 1 Debug Control

DbC.Dfx interface
DbC.Trace interface

Host TS

IAD 1

 
Figure 3-25: Example showing a single IAD grouping the control for a DvC.Dfx and DvC.Trace 

Finally, Figure 3-26 shows an example of a TS containing a Graphics unit, a main core, and a modem, 
each with their own independent Dfx and trace capabilities. This scenario may occur when different IP 
blocks are used in the implementation of the SoC, and each has its own dedicated debug tool. 

Graphics 
Run-Control & 

Trace Capture DTS
DIC 1

Debug Control
DvC.Dfx interface
DvC.Trace interface

Host TS Device

Graphics

Main Core
 Run-Control & 

Trace Capture DTS
DIC 2 Main 

Core

Modem
 Run-Control & 

Trace Capture DTS
DIC 3 Modem

IAD 1

Debug Control
DvC.Dfx interface
DvC.Trace interface

IAD 2

Debug Control
DvC.Dfx interface
DvC.Trace interface

IAD 3

 
Figure 3-26: TS device with three DICs 

Note that IADs do not support nesting, and thus nesting multiple DICs via an IAD is not possible. Thus, 
in Figure 3-26 we cannot have an IAD4 that groups IAD1, IAD2, and IAD3 together to feed a single driver. 

One may now wonder how one decides between these various options. One possibility, in an Android-
based TS, is to use adb to create the appropriate descriptors, which become active and persistent in the 
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next reboot of the system. Thus, for example, one could default to the scheme depicted in Figure 3-24, 
and then later change the descriptors to the scheme shown in Figure 3-25 via adb. Alternatively, for an 
implementation with permanent descriptors cast in ROM, one could use the SET_ALT_STACK command 
(See 5.4.8) to access alternative descriptors. Thus one could provide basic, default descriptors in 
hardware that become active at reset, and then use more extensive descriptors later after the OS has 
booted. This will allow basic debug prior to the OS boot and extensive debug thereafter. 

3.6.5 Multiple Mutually-Exclusive Host Drivers 
An SoC may consist of multiple different IPs from different IP vendors (e.g., audio, graphics, modem, 
etc.). Each IP vendor may provide a dedicated debug tool for only their IP, and no other. Consequently, 
debugging such an SoC requires multiple debuggers. For convenience, it is desirable to have these debug 
tools all installed on the same host platform, so that during a debug session one can switch between the 
tools quickly. This requires that the multiple drivers serving the various debug tools are all resident on the 
host. 

Figure 3-27 shows one possible scheme for how two debuggers can mutually-exclusively access a single 
TAP debug function. It provides a separate DIC for each debugger. Each DIC evokes a separate driver 
on the host, thus allowing the drivers for the different tools to be both resident on the host at the same 
time. Section 4.3.1.6 describes how this can be achieved by using different values for the 
bInterfaceProtocol field of the interface descriptors. 
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DIC 1
Debug Control
DvC.Dfx interface
DvC.Trace interface

Host TS Device
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Dfx Driver

DIC 1 
Trace Driver
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sit

e-
Dr

iv
er

IAD 1

Debug Control
DvC.Dfx interface

IAD 2

Mutually-exclusive 
access

 
Figure 3-27: Multiple debuggers accessing common Debug-Function Example 

Note that how the TAP unit is shared by the two debuggers is implementation specific and thus beyond 
the scope of this document. Most TAP debug tools require complete ownership of the TAP network, and 
thus cannot share the TAP network with another tool. In order to share a debug resource, some high-
level arbitration and lock mechanism is necessary. The USB 3.1 Debug Class specification provides a 
mechanism to share the USB interfaces and functions, but how the tools actually share these resources 
is beyond the scope of a USB class specification. 

However, the scheme shown in Figure 3-27 requires endpoints for each Dfx interface, and is thus 
wasteful. It would be better if the debuggers could share the same endpoints, since typically, debug 
resources are restricted.  The following, alternative scheme, of using Alternate settings is more efficient: 

• Interface 1: Debug Trace 
• Interface 2 has two, mutually exclusive, alternate settings: 

1. Alternate Setting 0: DvC.Dfx for Debugger 1 
2. Alternate Setting 1: DvC.Dfx for Debugger 2 

Figure 3-28 illustrates the descriptors for this example. The default is Alternate Setting 0, and this driver 
(or an associated filter driver) can issue a SET_INTERFACE request for Alternate Interface 1 and then allow 
the driver for Debugger 2 to load. Similarly, debugger 2 can issue a SET_INTERFACE request for Alternate 
Interface 0 and then allow the driver for Debugger 1 to reload. 
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Alternate Setting 1

Configuration Descriptor

Device Descriptor

Interface Descriptor DvC.Dfx 
(Commercial Debugger)

Interface Descriptor
DvC.Trace

IN Endpoint 2 
Descriptor

Alternate Setting 0

OUT Endpoint 2 
Descriptor

Interface Descriptor
DvC.Dfx (Proprietary Debugger)

IN Endpoint 2 
Descriptor

OUT Endpoint 2 
Descriptor

IN Endpoint 1 
Descriptor

 
Figure 3-28: Alternate Settings used to select between multiple Debuggers on the same 

Endpoints. 

The above mechanism allows one to switch between different debug tools and debug functions within the 
TS. However, this in itself is insufficient: we also need to place the debug function into a known state after 
each SET_INTERFACE request, which is described in the next section. 

3.6.5.1 Initializing the Debug Function prior to Debugger changeover 

The Network Control Model (NCM) devices class [8] solves the initialization problem described above by 
using Alternate settings to place the network aspects of a function in a known state. Essentially, Alternate 
setting 0 is purely a “reset/init” setting, while Alternate Setting 1 is the operational setting. Thus, toggling 
between Alternate Setting 0 and 1 will reset the network. In addition, NCM uses commands to set 
parameters before switching to the operational setting, so that the network initializes to a known, desired 
state. 

The USB 3.1 Debug Class uses a similar approach:  

• Alt Setting 0: Master Debugger. This Master could be an “inert” driver that provides no debug 
capability and is simply a mechanism to switch between tools. Alternatively, it could provide 
debugger functionality.  

• Before switching to another debugger, the Master first issues debug commands to init/reset the 
desired debug function(s) to a known state. Ideally, the TS should provide a service, via the Set 
Service debug command to initialize the function. 

• Alt Setting >0 for the Slave Debuggers 

Figure 3-29 gives an example. Alternate Setting 0 evokes a Master application on the host that, in this 
example, uses the DvC.GP interface to access a Debug driver on the TS. This driver provides a service 
to initialize the Dfx function.  
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Figure 3-29: Master Switch with two Slave Debuggers 

The Master in this example provides no Dfx capability – the two slave debuggers on Alternate Settings 1 
and 2 provide that support. On enumeration, the host evokes the Master. The debug user can now select 
one of the two debuggers. The Master achieves this by issuing a Set Alternate standard command to the 
device and then initializing the Dfx unit before evoking the driver corresponding to the new Alternative 
setting. 

Later, to switch in a different debugger, it repeats the sequence:  

• Alt Setting 0  

• Debug command to init/reset the new desired debug function(s) 

• Issues Set Alt Setting ≠0 to the device and instantiates the new driver on the host for the new 
debugger application. 

The Master in Figure 3-29 could have been an actual Dfx debugger, in which case it would have used the 
DvC.Dfx capability instead of the DvC.GP capability. 

Note that although the USB 3.1 Debug Class provides a mechanism to switch between debug tools via a 
Master, it is beyond the scope of a USB Class specification to specify such a Master. This requires a new 
standard to define the necessary services for the various industry tools. 

Figure 3-30 shows a more elaborate descriptor example that supports four different debug tools per 
debug capability. For example, a lab environment may use a proprietary debug tool for the DxC.Trace, 
DxC.Dfx, and DxC.GP capabilities. However, occasionally the lab debugger may need to use a 
Commercial tool for some or all of the debug capabilities. They would then use the Set Alternate 
capability to switch in the alternative tool. 

Note that the TS does not know or care which tools are on the host – it simply provides the capability for 
the host to have up to 4 tools installed. Different users will install different tools. For example, the 
modem debug team may wish to have their modem debug tool as the primary, default tool for 
DxC.Trace, DxC.Dfx, and DxC.GP. Occasionally, the bug may require debugging different portions of 
the TS, and then they may switch to a Core or Audio debug tool. These secondary tools may also 
provide access to the DxC.Trace, DxC.Dfx, and DxC.GP capabilities.  
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Figure 3-30: Example showing support for Multiple Debug tools 

Figure 3-30 shows a few example scenarios: 

• Scenario 0: Lab based debug using a proprietary debug tool for the DxC.Dfx, DxC.Trace and 
DxC.GP capabilities, which has access to proprietary debug logic within the TS. This tool could 
have extensive access to the primary core. Occasionally, the debugger switches to a 
Commercially-available tool for the DxC.Dfx, DxC.Trace and DxC.GP capabilities, because this 
tool provides better access to the remainder of the SoC. For example, the proprietary tool may 
only support traces and Dfx with the main core, while the commercial tool captures traces and 
provides Dfx support with all of the debug units within the SoC. 
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• Scenario 1: Customer debug using only a commercial debug tool 

• Scenario 2: Modem debug lab with the Modem debug tools accessing the Dfx, Trace and GP 
capabilities of the Modem logic. Occasionally, the debugger switches to a Commercially-
available tool for the DxC.Dfx, DxC.Trace and DxC.GP capabilities of the APE, when the bug 
appears to extend beyond the modem logic. 

• Scenario 4: General debug of the OS and applications using Android and SW tracing tools. 
Occasionally, the debugger may need to debug other issues such as the sensor hub. 

3.6.6 Enumerating Interface Collections 
Different USB device classes have developed different means of enumerating interface collections: 

• Vendor-supplied callback routines 
• Union-Function descriptors (UFD). This method is used by the Wireless Communication device 

class 
• Interface Association Descriptor 
• Legacy Audio method 

These, sometimes incompatible mechanisms, have led to complexities in current smartphones that 
integrate a number of classes. For example, a smartphone device could integrate debug and wireless-
communication devices together, where the Debug Class uses IADs and the latter uses UFDs. These two 
mechanisms cannot be intermixed, and instead IADs or UADs have to be used for all devices. This is a 
known issue for device-driver developers, and is the same problem as trying to integrate Video with a 
wireless-communication device in a smartphone (this is because the Debug class uses the same IAD 
mechanism as the Video class or the AV class).  

In addition, the support for UFD’s and IAD’s is inconsistent across operating systems, and it is not unusual 
for the device to provide numerous different descriptor solutions for the various possible host operating 
systems (some current generation smartphones provide 9 or more options). This Debug Class 
specification specifies IADs, but an actual driver on a device is free to use some other method to 
enumerate interface collections. This is outside the scope of this document. 
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3.6.7 Debug-Control Interface 
As explained in Section 3.5.4, there are a number of possible mechanism for controlling the debug units, 
which are all optional: 

1. DxC.Dfx interface using TAP or some other mechanism 
2. DxC.GP using a software driver that access the debug-units configuration registers via MMIO 
3. Debug-Control Interface via the default endpoint 0 control endpoints. 

A TS need not provide any means of controlling the debug functions via the USB. For example, a shipping 
device may always provide default trace capability that is always enabled once configured. 

This section describes the Debug Control method, which has the capability to control any particular or 
groups of units within a debug function or multi-function. For example, one has the ability to enable the 
power for the complete TS, or a particular DIC, or a particular unit or units within a DIC. To make these 
objects accessible, the debug function shall expose a single Debug-Control Interface. This interface can 
contain the following endpoints: 

• A Control endpoint for manipulating TS, DIC, and Unit settings and retrieving the state of the 
debug function (for example, the debug state at the end of a debug session). This endpoint is 
mandatory, and the default endpoint 0 is used for this purpose. 

• An interrupt IN endpoint for status returns (for example, when a debug breakpoint fired). This 
endpoint is optional. 

A device shall use an Interface Association Descriptor to describe a Debug Interface Collection for each 
device function that requires a Debug-Control Interface and one or more Debug interfaces. (This 
requirement is necessary to satisfy the IAD specification, which requires >1 interface). 

The Interface Association Descriptor shall always be returned as part of the device’s complete 
configuration descriptor in response to a GET_DESCRIPTOR (Configuration) request. The Interface 
Association Descriptor shall be located before the Debug-Control Interface and its associated Debug 
Interface (including all alternate settings). All of the interface numbers in the set of associated interfaces 
shall be contiguous (there can be no gaps in the list of interface numbers).  

The Debug-Control interface is the single entry point to access the internals of the debug function. Thus, 
any Debug-Control request for the DIC or a Unit within the DIC shall be directed to the Debug-Control 
interface of the debug function. Figure 3-31 provides an example. The Debug-Control interface is the 
single entry point for the request, and thus the request is shown targeting interface1. The figure shows a 
read request (i.e., GET_CONFIG_DATA) of a global configuration register in the SoC (i.e., the complete TS). 
This SoC contains many different registers, shown labelled as Configuration, Power-management, etc. 
Some of these registers pertain to the complete TS, some to the complete DIC, and some to a particular 
Unit. This example is targeting the complete TS because the wValue field is 0 (see Section 5.3.2 “Request 
Examples” for more information). The wValue and wIndex fields of the Debug Request are used to direct 
the command to control the complete TS, or the complete DIC, or a specific Unit within a DIC. 
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Figure 3-31: Example of a Debug Control targeting the Global Configuration Register Control 

Table 3-3 lists the available Debug requests. 

Table 3-3: Supported Debug Commands 

Request Description 

GET/SET_CONFIG_DATA,  

SET_CONFIG_DATA_SINGLE 

This requests reads or writes the configuration registers in the TS, 
DIC, or specific Unit (e.g., Trace-Processing unit) 

GET/SET_CONFIG_ADDRESS This request reads or writes the Address used by the GET or 
SET_CONFIG_DATA commands 

GET/ SET_ALT_STACK  An SoC contains multiple cores, and any number of these could 
support the USB stack. In addition, debug may have a special 
hardware stack for this purpose. This command allows the host to 
select an alternative core or hardware for the USB stack support. 
The GET command also returns status on when the OS has booted 
so that the host knows when it can use the normal OS USB stack. 

GET/SET_OPERATING_MODE This request reads or configures the power-management mode for 
the TS, DIC, or specific Unit. For example, it can place the device 
into a debug power-mode. 

GET/SET_TRACE This requests sets or reads the vendor-specific trace configuration. 
The vendor can define one of 255 possible trace configurations. 
For example, Trace Configuration 1 may enable all traces within 
the TS, while Trace configuration 2 only enables the modem 
traces. This register is not a bit mask but a number corresponding 
to a set of enabled traces. 

SET_BUFFER This command performs basic operations on a trace buffer (e.g., 
flush, initialize). 

GET_BUFFER This command reads the buffer size for the TS, DIC, or specific 
Unit (e.g., Trace-Processing unit) 

SET_RESET This command resets the TS, DIC, or debug unit to its default state. 
This is useful if the debug logic has hung. 

GET_INFO This provides general information on the capabilities and support 
for the various Debug Class commands in the TS, DIC, or specific 
unit. Note that this is not information pertaining to the Debug 
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Function as such, but information pertaining to the supported 
debug commands and their capabilities. 

GET_ERROR This reports status on a debug request (e.g., success, fail, etc). 
This does not contain error information pertaining to a debug 
operation per se, but rather to the debug control requests. 

Full descriptions of the Debug Control requests are given in Section 5. 

3.6.7.1 Control Endpoint 

The Debug Class uses endpoint 0 (the default pipe) as the standard way to control the debug function 
using class-specific requests. These requests are directed to the complete TS, to a DIC, or to a Unit within 
a Debug Function. The format and contents of these requests are detailed in Section 5. 

USB Control transfers minimally have two transaction stages: Setup and Status. A control transfer may 
optionally contain a Data stage between the Setup and Status stages (see Figure 3-32 for an example). 
The Setup stage contains all information necessary to address a particular entity, specify the desired 
operation, and prepare for an optional Data stage. A Data stage can be host-to-device (OUT transactions), 
or device-to-host (IN transactions), depending on the direction and operation specified in the Setup stage 
via the bmRequestType and bRequest fields. 

In the context of the Debug Class specification, SET_* requests will always involve a Data stage from host 
to device, and GET_* requests will always involve a Data stage from device to host. 

The device shall use Protocol stall (and not Function stall) during the Data or Status stages if the device 
is unable to complete the Control transfer. The reasons for using Protocol stall include unsupported 
operations, invalid target entity, unexpected Data length, or invalid Data content. The device shall update 
the value of Request Error Control, and the host may use that control to determine the reason for the 
Protocol stall (see Section 5.4.13 "GET_ERROR"). The device shall not NAK, NRDY, or STALL the Setup 
transaction. 

Typically, the host will serialize Control Transfers, which means that the next Setup stage will not begin 
until the previous Status stage has completed. However, in situations where the Setup transaction is sent 
before the completion of the previous control transfer, then the device shall abandon the previous control 
transfer. 

Due to this command serialization, it is important that the duration of control transfers (from Setup stage 
through Status stage) be kept as short as possible. For this reason, as well as the desire to avoid polling 
for device status, this specification defines an interrupt status mechanism to convey status changes 
independently of the control transfers that caused the state change. This mechanism is described in 
Section 3.6.7.2, "Status Interrupt Endpoint". Any control that requires more than 10ms to respond to a 
SET_* request (referred to as “Slow control”), or that can change independently of any external SET_* 
request (“Self-Generated control”), shall send a Control-Change status interrupt. These characteristics 
will be reflected in the GET_INFO response for that control. 

If a SET _* request is issued to a Slow Control (i.e., >10ms slow response) with unsupported operations, 
invalid target entity, unexpected data Length or invalid data content, the device shall use Protocol stall 
since the device is unable to complete the Control transfer. The device shall update the value of the 
Request Error Control (see Section 5.4.13 "GET_ERROR"). 

In the case of a SET_* request with valid parameters to an Slow Control, the Control transfer operation 
shall enter the Status stage immediately after receiving the data transferred during the Data stage. Once 
the Status stage has successfully completed, the device shall eventually send a Control Change Interrupt 
that will reflect the outcome of the request: 

• If the request succeeded, the Control Change Interrupt will advertise the new value (see in 
3.6.7.2, "Status Interrupt Endpoint"). 

• If the request could not be executed, the device shall send a Control Change Interrupt using the 
Control Failure Change mechanism to describe the reason for the failure 
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The amount of time between the end of a successful Status stage and the Control-Change interrupt is 
implementation specific. For instance, a transition from a normal (non-debug), power state to a power 
mode that powers up the debug logic may take hundreds of milliseconds. 

The following flow diagrams show the Setup, Data and Status stages of SET_OPERATING Control 
Transfers. The example on the left successfully completes within 10ms. The example on the right takes 
longer, and thus the device issues a Control-Change Interrupt as soon as the operation completes. 
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Figure 3-32: Control Transfer Examples 

 

3.6.7.2 Status Interrupt Endpoint 

The Debug-Control interface can support an optional IN interrupt endpoint to inform the Host about the 
status of the different addressable entities (units and interfaces) inside the debug function. The interrupt 
endpoint, if present, is used by the entire Debug Interface Collection to convey status information to the 
Host. It is considered part of the Debug-Control interface because this is the anchor interface for the DIC. 

Possible uses for the interrupt endpoint include: 

• The device supports debug breakpoints or debug events (e.g., pressing a virtual button on a 
smartphone screen may start a debug trace). Hardware debug breakpoints of the main core are 
difficult to support via the Interrupt breakpoint, because the debug breakpoint may halt the core 
preventing the USB handler from supporting the Interrupt transaction. However, an 
implementation may choose to use a secondary core in an SoC, which is not being utilized by the 
application being debugged, to provide the necessary support for the Interrupt transaction. 

• The device implements any Self-Generated controls (controls supporting device initiated 
changes). For example, a debug device may automatically change a trace source upon some 
event (e.g., low battery, flight-mode, GPS was enabled, the core powered down, etc.), or it may 
dynamically request more available trace bandwidth (e.g., instructing the host debugger to turn 
off some other debug sources) based on new circumstances (e.g., graphics rendering started for 
WebGL content). 

• The device implements any Slow controls (i.e., the device requires more than 10ms to respond 
to a debug Control request). 

The interrupt packet is a variable-size data structure depending on the originator of the interrupt status. 
The bStatusType and the bOriginator fields contain information about the originator of the interrupt. The 
bEvent field contains information about the event triggering the interrupt. If the originator is the Debug-
Control Interface, the bSelector field reports which control issued the interrupt (e.g., Config, Power, etc.) 

Any addressable entity inside a debug function can be the originator of an interrupt.  
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The contents of the bOriginator field shall be interpreted according to the code in the bits <3:0> of the 
bStatusType field. If the originator is the Debug-Control Interface, the bOriginator field contains the Unit 
ID of the entity that caused the interrupt to occur. A bOriginator field set to zero indicates the virtual entity 
interface, which is used to report global Debug-Control Interface changes to the Host. This scheme is 
unambiguous because Units are not allowed to have an ID of zero. If the originator is any debug capability 
DxC.Dfx, DxC.GP, or DxC.Trace interface), then the bOriginator field contains the interface number of 
this interface.  

If the originator is the Debug-Control Interface, the bAttribute field indicates the type of Control change. 

The contents of the bEvent field shall also be interpreted according to the code in bStatusType<3:0>. If 
the originator is a DxC.GP, DxC.Dfx or DxC.Trace interface, there are additional debug events as defined 
in the table below – e.g., pressing a virtual button on a Smartphone may start trace generation. 

For all originators, there is a Control-Change event defined. Controls that support this event will trigger 
an interrupt when a host-initiated or externally-initiated control change occurs. The interrupt shall only be 
sent when the operation corresponding to the control changes is completed by the device. 

A control shall support Control-Change events if any of the following is true: 

• The Control state can be changed independently of the host control (e.g., on the Smartphone, a 
virtual button disables a debug-power mode). 

• The Control can take longer than 10ms from the start of the Data stage through the completion 
of the Status stage when transferring to the device (i.e., for a SET_* operation) 

If a control is required to support Control-Change events, the event shall be sent for all SET_* operations, 
even if the operation can be completed within the 10ms limit (and thus appears to be unnecessary). The 
device indicates support for Control-Change events for any particular control via the GET_INFO attribute. 

Table 3-4, Table 3-5, and Table 3-6 specify the format of the Status packet 

Table 3-4: Status Packet Format 

Offset Field Size 
(Bytes) 

Value Description 

0 bStatusType 1 BitMap/ 

Number 

<3:0>: Originator 

<0>: Debug-Control Interface 

<1>: Any of the possible DxC.Dfx interfaces 

<2>: Any of the possible DxC.Trace interface 

<3>: Any of the possible DxC.GP Trace interface 

<7:4>: reserved 

1 bOriginator 1 Number Unit ID or interface that is reporting the interrupt 

When the originator is a Debug-Control Interface, the rest of the structure is: 

Table 3-5: Status Packet Format (Debug-Control Interface as Originator) 

Offset Field Size 
(Bytes) 

Value Description 

2 bEvent 1 Number 0x00: Control Change 

Otherwise: reserved 
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3 bAttribute 1 Number Specify the type of control change: 

0x00: Control Value change 

0x01: Control Info change 

0x02: Control failure change 

Otherwise: reserved 

5 bValue 1 Number bAttribute: Description 

0x00  Equivalent to GET_CCONFIG_DATA 

0x01  Equivalent to GET_INFO 

0x02  Equivalent to GET_ERROR 

Otherwise: reserved 

When the originator is a DxC.Dfx, DxC.GP, or DxC.Trace interface, then the remainder of the structure 
is: 

Table 3-6: Status Packet Format (DxC.Dfx, DxC.GP, or DxC.Trace as Originator) 

Offset Field Size 
(Bytes) 

Value Description 

2 bEvent 1 BitMap/ 

Number 

All originators: 

<3:0>: reserved 

<7:4>: Vendor specific 

3 bValue 1 Number Debug Event: 

0x00: Debug “Button” released 

0x01: Debug “Button” pressed 

Otherwise: reserved 

 

3.6.7.3 Hardware Trigger Interrupts 

One possible usage of the Status-Interrupt endpoint is for hardware triggers to notify host software that a 
debug breakpoint/event occurred. A breakpoint could occur on an instruction match, data match, debug 
button press, etc. When the hardware detects a debug event, the Status-Interrupt endpoint will generate 
an interrupt originating from the relevant DxC.Dfx, DxC.GP, or DxC.Trace interface. The event triggering 
the interrupt (button press or release) is indicated in the interrupt packet. The default, initial state of the 
button is the "release" state. 

The device specifies whether it supports hardware triggers, and how the host software should respond to 
hardware-trigger events. These are specified in the class-specific Debug-Attributes descriptor (i.e., 
bmSupportedFeatures field) within the relevant DxC.Dfx, DxC.GP, or DxC.Trace interface. See Section 
4, "Descriptors". 

3.6.8 DxC.Trace Interface 
The DxC.Trace interface sends debug traces from the trace function to the Host. It is optional. A debug 
function can have zero or more DxC.Trace interfaces associated with it, each possibly carrying data of a 
different nature and format. Each DxC.Trace interface can have one isochronous or Bulk IN data endpoint 
for the data trace. Appendix C: describes a possible data format for the traces. 
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There are a number of debug trace scenarios that require use of Alternate settings. These are: 

• Case1: To select different bandwidths for isochronous traces. This is the typical usage case for 
alternate settings (e.g., video streaming in the Video class) 

o In this case, the bInterfaceClass = DxC.Trace, and the bInterfaceProtocol are the same 
value in all of the Alternate settings 

• Case 2: To select between different drivers for trace capture. For example, during a debug 
session, the user may wish to rapidly switch between a commercial debug tool and a proprietary 
tool, where each provides a different set of capabilities. See Section 3.6.5 for more information 
on multiple, mutually-exclusive drivers. 

o In this case, the bInterfaceClass = DxC.Trace, and the bInterfaceProtocol will be a 
different value for the different Alternate settings. Each Alternate setting will thus evoke 
a different driver 

• Case 3: This is similar to case 2, but in this case, it selects between alternate debug capabilities. 
A TS may have a restricted set of endpoints available for debug usages, and uses alternate 
settings to share these endpoints amongst different tools in a mutually-exclusive manner.  

o In this case, the bInterfaceClass will be a different value for each of the different Alternate 
Settings (e.g., DbC.Trace and DbC.Dfx). 

These options are not mutually exclusive, and may be combined. We give an example later (see Figure 
3-35). 

3.6.8.1 Alternate Settings – Case 1 

Case 1 is when the Alternate setting selects between various different isochronous bandwidths.  

An isochronous interface provides guaranteed bandwidth. However, a host may not be able to satisfy the 
requested bandwidth if it has already allocated bandwidth to another isochronous interface. For this 
reason, an isochronous interface needs to provide a set of bandwidth requirements (e.g., 50MB, 100MB, 
& 200MB) to allow the host application the flexibility to select the next-best bandwidth option.  

Thus, the rule is: A DvC.Trace interface with isochronous endpoints shall have alternate settings, which 
the host can use to change the bandwidth requirements that an active isochronous pipe imposes on the 
USB.  

In addition, such an endpoint shall incorporate a zero-bandwidth, default alternate setting (alternate 
setting zero)2. This setting gives the host software the option to temporarily relinquish USB bandwidth by 
switching to this alternate setting if required. For example, this may occur if a video application requires 
isochronous transfers and there is insufficient link bandwidth for both the current debug isochronous traffic 
and the video traffic to run concurrently. The zero-bandwidth, alternate setting for the isochronous 
interface shall not contain a non-zero bandwidth DvC.Trace isochronous data endpoint descriptor3.  

Figure 3-33 shows a possible example.  

                                                      

 
2 A Bulk endpoint is acceptable as a zero-bandwidth alternate setting. That is, the zero bandwidth setting is implied by the omission of an 
isochronous endpoint for alternate 0 
3 This statement only applies if one uses a zero-bandwidth isochronous endpoint instead of a Bulk endpoint for the zero bandwidth 
setting. 
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Figure 3-33: Example of DvC.Trace Descriptors 

Debug traces vary significantly in bandwidth requirements. For instance, software messages (e.g., printf-
type messages) typically require low bandwidth (2-30MB/s), whereas hardware traces from bus watchers, 
and processor-instruction traces can consume considerable bandwidth (800MB/s or more). During a 
debug session, the debugger may have configured the device to only send out software messages, 
hardware messages, or both. Consequently, an isochronous DvC.Trace interface should support a range 
(greater than two) of alternate interface settings with varying bandwidths. By doing so, the host would be 
able to select an appropriate alternate setting for a given debug-trace scenario that best utilizes the bus 
bandwidth. 

3.6.8.1 Alternate Settings – Case 2 and Case 3 

Case 2 is when the Alternate setting selects between a number of different Debug trace drivers. Case 3 
is similar, except that now the alternate setting selects between different debug capabilities (e.g., between 
DxC.Trace and DxC.Dfx). Either of these cases allows the sharing of different debug tools (including their 
drivers) across the same endpoints. Figure 3-34 shows the endpoints being shared across trace and Dfx. 

Device

Configuration
Alt. Setting 0

Alt. Setting 1

Interface (Debug Class)
Sub-Class = DvC.Trace 

Bulk IN Endpoint

Interface (Debug Class)
Sub-Class = DvC.Dfx 

Bulk IN Endpoint

Bulk OUT Endpoint
 

Figure 3-34: Example of Alternative setting for DvC.Trace and DvC.Dfx 

Figure 3-35 is a more extensive example that uses Cases 1, 2, and 3. The first set of Alternate settings 
evoke host driver A. This is for an isochronous trace and is an example of Case 1. The interfaces for this 
case have bInterfaceSubClass = DxC.Trace and bInterfaceProtocol = 0. 
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Device

Alt. Setting 0

Protocol = 0 

Configuration

Interface DvC.Trace

Bulk IN Endpoint
Alt. Setting 
1 to N

Protocol = 0 
Interface DvC.Trace

Isoch IN Endpoint

Triplet A
bInterfaceClass = 0xDC
bInterfaceSubClass = DvC.Trace
bInterfaceProtocol = 0

Host Driver A

Alt. Setting 
N+1

Protocol = 1 
Interface DvC.Trace

Bulk IN Endpoint
Alt. Setting 
N+2 to M

Protocol = 1 
Interface DvC.Trace

Isoch IN Endpoint

Triplet B
bInterfaceClass = 0xDC
bInterfaceSubClass = DvC.Trace
bInterfaceProtocol = 1

Alt. Setting 
M+1

Protocol = 0 
Interface DvC.Dfx

Bulk IN Endpoint Triplet C
bInterfaceClass = 0xDC
bInterfaceSubClass = DvC.Dfx
bInterfaceProtocol = 0Bulk OUT Endpoint

(for Trace Debugger 1)

Host Driver B
(for Trace Debugger 2)

Host Driver C
(for Dfx Debugger 1)

Case 1

Case 1

Case 2

Case 3

 

Figure 3-35: DvC.Trace Example using multiple different types of Alternate settings 

The second set of Alternate settings in Figure 3-35 evoke host driver B. The interfaces in this example 
are also for an isochronous trace, but this time they evoke a different trace driver. Thus, these two sets 
of interfaces (corresponding to Triplets A and B) are examples of Case 2. The interfaces for these two 
sets of interfaces have different values for bInterfaceProtocol, as highlighted in Figure 3-35. Note that 
within each of these two sets of interfaces we have examples of Case 1.   

The third set of Alternate settings is an example of Case 3 where the Alternate setting selects a Dfx host 
driver C. In this case, the bInterfaceSubClass field of the Interface descriptor is now equal to DvC.Dfx. 

3.6.8.2 DvC.Trace Isochronous Trace Comments 

Certain debug scenarios require the debug traces to share bandwidth with normal USB traffic (for 
example, when debugging a smartphone that is acting as a mass-storage device). Bulk transfers share 
the link bandwidth, and thus the debug trace will receive whatever bandwidth is left over. Isochronous 
transfers on the other hand, guarantee a minimum bandwidth, allowing the debugger to choose the 
appropriate bandwidth for a debug trace via an alternate setting.  

There is no negotiation involved between the debugger and the TS when assigning bandwidth (unlike, for 
example, the Video class). The debuggers know the type of traces they are capturing (i.e., software 
messages, hardware messages, processor traces, etc.) and can thus choose an alternate setting that 
provides sufficient bandwidth. 

The advantages of using isochronous transfers for debug traces are: 

• Certain debug traces, such as processor-instruction traces, require a minimum, guaranteed 
bandwidth to be useful. Such traces typically contain internal synchronization points that allow 
them to recover from an occasional loss of trace, but if these gaps become too frequent then the 
trace becomes worthless. When debug is sharing the USB bus with another function (e.g., mass 
storage), and both are in Bulk mode, then a burst of activity by a non-debug function could ruin 
the debug trace. If the debug sighting requires a non-debug function to be active, and this function 
robs the debug trace of its necessary bandwidth, then this could prevent debug of the sighting. 
 

• Generally, it is better to guarantee sufficient bandwidth for a quality debug trace, and hope that 
the remaining USB bandwidth is sufficient to provoke the bug scenario. The quality of a debug 
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trace is paramount because processor-instruction traces can take many hours (even a day) to 
process. At the time of debug capture, one knows if the trace contains the bug sighting, and thus 
one can keep repeating the test until it does. The converse scenario of capturing a bad trace for 
the bug sighting will waste many hours/days before one discovers that it is necessary to repeat 
the test. 

There are disadvantages to using isochronous. Debug traces can be very bursty with a high average 
bandwidth. This requires large buffers to smooth out the traffic. The minimum isochronous service-interval 
period is 125µs, which requires a 48KB debug trace buffer to sustain the bandwidth in the case of sporadic 
debug traces. For some implementations, dedicating a 48KB buffer for debug could be prohibitive. Thus 
some other solution is needed to reduce the size of the debug trace buffer. Appendix C: describes such 
a solution. However, the buffer cannot be too small because isochronous traffic accounts for 80% of the 
service interval. Figure 3-36 gives an example of a processor-instruction trace. This is typically bursty, as 
shown in the figure. If the device provides a trace buffer that is too small (e.g., smaller than 16KB), then 
portions of the trace will be lost every service interval. Such gaps in the trace can make it useless. 

 

USB3 isochronous 
transfer

Time à 

MIPs

Idle USB3 isochronous 
transfer Idle USB3 isochronous 

transfer Idle USB3 isochronous 
transfer Idle USB3 isochronous 

transfer Idle

Buffer fills

This portion of 
trace is lost

48KB (96us) 
About 384K inst. 

at 1bit/inst.

29us (14KB equivalent) 
Thus need about 16KB buffer 

to cover this idle period

 
Figure 3-36: Lost processor-instructions trace segments caused by inadequate trace buffers 
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4 Descriptors 

4.1 Descriptor Layout Overview 
Device

Configuration

IAD Debug Interface 
Collection 1

Interface (Debug Class)
Sub-Class = DvC.Control 

Alt. Setting 0

Alt. Setting 1

Alt. Setting nAlternate Settings 
1 to n (Alt Setting 

0 is the default)

Class-Specific Descriptor

Standard Descriptor

Bulk IN Endpoint

Bulk OUT Endpoint

Interface (Debug Class)
Sub-Class = DvC.Trace 

Bulk IN Endpoint

Interface (Debug Class)
Sub-Class = DvC.Trace 

Interface (Debug Class)
Sub-Class = DvC.Trace 

Isoch IN Endpoint

Isoch IN Endpoint

Sub-class = DvC.GP 

Output Connection Desc

Debug Topology 
Descriptors
(Optional)

Debug Attributes Desc

Debug Unit Descriptor

Input Connection Desc

Interface (Debug Class)
Sub-Class = DvC.Dfx 

DvC Debug

IAD

Interface (Debug Class)
Sub-Class = DvC.Control 

Debug Attributes Desc

Interface (Normal)

Bulk OUT Endpoint

Bulk IN Endpoint

Interface (Debug Class)

Bulk IN Endpoint

Bulk OUT Endpoint

Debug Interface 
Collection 2

 
Figure 4-1: Debug-Descriptor Sample Layout 

Figure 4-1 shows an example descriptor layout for the DvC Debug capability. DbC is identical except that 
it does not support non-debug “normal” USB interfaces.  

Figure 4-1 shows all three debug interfaces (DvC.Dfx, DvC.Trace, and DvC.GP). It assumes isochronous 
traffic for the debug traces, and thus shows a number of alternate settings for the various bandwidth 
options. In addition, the example shows the device supporting a “normal”, non-debug function. It also 
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shows an IAD forming a DIC out of the Debug Control, DvC.Dfx, and the DvC.Trace interfaces. There is 
a second DIC for the DvC.GP capability. The DICs shown in this figure are purely examples, and other 
DIC configurations are possible. 

The Debug Class allows for multiple configurations and multiple alternate settings (see Sections 3.6.1 
and 3.6.2). One reason for this flexibility is because a TS may only have a very small number of endpoints 
available for debug, and would thus need to share them via alternate settings or multiple configurations.  

The Debug Class supports a number of Debug Class-specific descriptors. It contains an IAD followed by 
a Debug-Control Interface descriptor, followed by a Debug-Attributes descriptor. See Figure 3-23. The 
Debug-Attributes descriptor describes which debug features the DIC supports. Next, there are optional 
topology descriptors followed by an optional interrupt endpoint (not shown in Figure 4-1). Finally, the DIC 
contains a Debug Capability interface descriptor or descriptors (e.g., DxC.Trace and/or DxC.Dfx and/or 
DxC.GP) together with their corresponding endpoints. 

4.1.1 Class-Specific Topology Descriptors 
Figure 4-2 is an example of a simple debug topology that is merging and selecting traces from a number 
of sources. Associated with each debug unit (e.g., Core, Merge unit, etc.) is an optional Debug Class-
specific descriptor that provides the following information:  

• A unique Unit ID that identifies each of the debug units in the topology. The Unit ID = 0 is reserved 
for accessing a “virtual” unit corresponding to the complete TS or a Debug-Interface collection. 
See the Control Section 5 for more details. 

• Type of debug unit (e.g., Trace-Generation unit, Trace-Processing unit, etc.) 
• Sub-type of debug unit (e.g., audio, graphics, core, modem for a Trace-Generation unit) 
• Unit ID of an Alias debug unit. For example, a trace-generator unit can only generate a single 

output trace, but a functional unit may create multiple output streams (e.g., a core may generate 
software messages from the firmware and the OS, and a processor-instruction trace). The Alias 
field links this descriptor to the Unit ID of the same physical unit, thus informing the debugger that 
they are the same functional unit. If we need to alias more than two units, then we arbitrarily 
chose one as the reference.   
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Figure 4-2: Debug-Unit Descriptor Example 

• Number of input pins and their connectivity. The connectivity defines the Unit ID and the output 
pin ID of the source driving the input pin.  

• Number of output pins 
• Trace Format on the output pins of the unit. Each output pin can have a different Trace format. 

They are listed in order in the descriptor fields. 
• Stream ID of the output trace. This is implementation dependent. For example, it could denote 

the identifier of the trace source (e.g., Master ID for a MIPI STPv1 trace). There is a StreamID 
per output trace, listed in order. 

• Control Mask – this defines the Debug Class-specific commands that the debug unit supports 
• Optional Auxiliary Data: 

o Base Address of the Debug Configuration registers 
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o A Global-Unique Identifier (GUID) for the debug unit 
o Supplementary debug data – a vendor &/or a Standards body could provide additional 

information in this field 

Note that in the figure there are two instantiations of the same Main core. The Alias ID associates these 
debug units together. This is necessary because a Trace Generator unit can only generate a single output. 
However, in this example, the main core is actually generating two debug traces: a software 
instrumentation trace from the OS, and a processor-instruction trace. Consequently, two Trace Generator 
icons are required to define these traces.  

The first Debug Class descriptors is the optional Debug-Control descriptor, followed by its associated 
Debug-Attributes descriptor, followed by the optional debug-topology (Input-Connection, Output-
Connection, and Debug-Unit) descriptors. The debug-topology descriptors apply to all of the Debug 
interfaces (i.e., DxC.Dfx, DxC.Trace, and DxC.GP) within a DIC. The wTotalLength field in the Debug-
Attributes descriptor defines the total size for the immediately following Debug Class-specific descriptors.  

Note that the GUID in the topology descriptors is for the particular debug unit (e.g., Trace-Processing 
unit). This allows the debugger to recognize different variants of a specific IP block. For example, a 
particular IP block maybe an early adaptor of a protocol, and thus may not fully satisfy the protocol 
standard. The Debug Attributes descriptor provides the global GUID, which could, for example, be used 
as a unique link to a XML file describing additional information on the SoC.  

The StreamID is an identifier that denotes information about the trace stream. For example, it could 
denote the identifier of the trace source. For example, it could be a trace from a particular core or it could 
be the instrumentation trace from the operating system or the application running on the core. 

Typically the identifier denoting the trace source remains static throughout a debug session. However, it 
may change during a debug session when there are more trace sources than can be expressed by the 
identifier field of the trace protocol. Consequently, the TS may reassign the trace identifier during a debug 
session. The Stream ID field of the descriptor provides the initial assignment of the trace identifier. For 
some implementations this could be a static assignment that never varies; while for others it could be a 
dynamic value that can vary depending on when the descriptors are accessed (e.g., during USB 
enumeration). In other words, for some implementations the descriptors could be constantly updated by 
a debug application running on the TS, and the Host can access the updated descriptors during a debug 
session via a GET_DESCRIPTOR command. 

It is implementation dependent how the TS informs the debugger of a reassignment of the stream ID 
should the implementation support dynamically varying StreamIDs. One option is for the debugger to 
periodically poll with a USB standard GET_DESCRIPTOR request. Alternatively, the debugger could 
periodically issue Debug Class-specific GET_CONFIG request to an implementation-specific configuration 
register throughout the debug session. 

Figure 4-3 is an example implementation showing the MIPI STM unit of Figure 4-2. The two input traces 
to the MIPI STM have StreamIDs (i.e., Master IDs) of 84 and 73, while the output of the MIPI STM has a 
StreamID of 3. The StreamID for the output of the MIPI STM unit in Figure 4-3 corresponds to the Master 
ID of the output MIPI STP trace. This output trace is the merged result of the two input streams, and thus 
the StreamID identifier’s of the input traces is actually embedded within the output trace – see Figure 4-3. 

The Stream ID number space is unique to each trace stream. Thus in this particular example, the 
StreamID values are all different for the three different traces. However, it is possible that all three traces 
have the same value by happenstance. For example, all three traces shown in Figure 4-3 could have the 
same value for StreamID = 5, 5, and 5, instead of 84, 73, and 3. The fact that the StreamID is the same 
is pure coincidence and does not imply any correlation between the three traces.  
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Figure 4-3: StreamID Example 

 

4.2 xHCI-Compliant DbC Standard Descriptors 
The USB3.1 Debug Class supports the legacy, xHCI-compliant DbC. Please refer to the xHC specification 
for details of these Descriptors [3]. 

4.3  Debug Standard Descriptors 

4.3.1 USB 2.0 Descriptors 
If the device provides USB 2.0 debug support then it shall support the following standard USB 2.0 
descriptors for DxC: 

• Device: Each USB device has one device descriptor (per USB Specification). 

• Configuration: Each USB device has at least one default configuration descriptor, which 
supports at least one interface. (That is, multiple configurations are allowed, but not 
recommended – see Section 3.6.2). 

• Interface: The device shall support at least one debug interface. Some devices may support 
additional (normal, non-debug) interfaces to provide other capabilities (e.g., Mass storage). 

• Endpoint: The device shall support at least one of the debug endpoint sets, in addition to the 
default pipe that is required of all USB devices (see Table 4-1): 

Table 4-1: DxC Debug Endpoints 
Debug Capability Endpoint  Data Type 
DxC.Trace  IN Bulk, Isochronous 
DxC.Dfx 
 IN, OUT Bulk 
DxC.GP 
 IN, OUT Bulk 

Debug Control IN, OUT 
Control 

Interrupt (optional) 

Some devices may support additional endpoints to provide other non-debug capabilities. The 
host shall use the first reported endpoints for the selected interface. 
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• String: The device shall supply a unique serial number. 

The rest of this section describes the standard USB device, configuration, interface, endpoint, and string 
descriptors for the device. For superseding information about these and other standard descriptors, see 
Chapter 9, “USB Device Framework,” of the USB Specification [4]. 

4.3.1.1 USB 2.0 Device Descriptor 

Because debug functionality always resides at the Interface level, this class specification does not define 
a specific debug Device descriptor.  

If a Debug Class device uses an Interface Association Descriptor in order to describe a Debug Interface 
Collection, then it shall set the bDeviceClass, bDeviceSubClass and bDeviceProtocol fields to 0xEF, 
0x02, and 0x01 respectively. This set of class codes defines the Multi-interface Function Class codes.  

If there is no IAD, then the device descriptor shall indicate that class information is to be found at the 
interface level. Therefore, the bDeviceClass field of the device descriptor shall contain zero so that 
enumeration software looks down at the interface level to determine the Interface Class. The 
bDeviceSubClass and bDeviceProtocol fields shall be set to zero.  

All other fields of the device descriptor shall comply with the definitions in section 9.6.1 “Device” of USB 
Specification [4]. There is no class-specific Device descriptor. 

4.3.1.2 USB 2.0 Device-Qualifier Descriptor 

The Device-Qualifier descriptor is required for all USB 2.0 high-speed capable devices. The rules that 
apply for setting the bDeviceClass, bDeviceSubClass and bDeviceProtocol fields in the Device 
Descriptor apply for this descriptor as well. All other fields of the device qualifier descriptor shall comply 
with the definitions in section 9.6.2 “Device Qualifier” of USB Specification [4]. 

4.3.1.3 USB 2.0 Configuration Descriptor 

The Configuration descriptor for a device containing a debug function is identical to the standard 
Configuration descriptor defined in section 9.6.3 “Configuration” of USB Specification [4]. There is no 
class-specific configuration descriptor.  

4.3.1.4 Other_Speed_ Configuration Descriptor 

The Other_Speed_Configuration descriptor is required for USB 2.0 devices that are capable of operating 
at both full-speed and high-speed modes. It is identical to the standard Other_Speed_Configuration 
descriptor defined in section 9.6.4 “Other_Speed_Configuration” of USB Specification [4]. 

The Debug Class recommends High-speed only. 
  



 USB 3.1 Debug Class 7/14/2015 

 

- 58 -   

4.3.1.5 Interface Association Descriptor 

A device shall use an Interface-Association Descriptor to describe a Debug-Interface Collection. See 
Section 3.6.4 for more details and examples. 

When using an IAD, the iFunction field in the IAD and the interface field in the Standard Debug Class 
Interface descriptor for this Debug-Interface Collection shall be equal. 

Table 4-2 defines the Interface-Association Descriptor. 

Table 4-2: Interface Association Descriptor 

Part Offset 
(Byte) 

Size 
(Bytes) Description Value 

bLength 0 1 Numeric expression specifying the size of 
this descriptor in bytes. 

Number 

bDescriptorType 1 1 INTERFACE ASSOCIATION Descriptor  Constant 

bFirstInterface 2 1 Interface number of the first Debug-Control 
Interface that is associated with this 
function 

Number 

bInterfaceCount 3 1 Number of Debug interfaces that are 
associated with this function. The interface 
numbers in the set of associated interfaces 
are contiguous (there can be no gaps in 
the list of interface numbers). The count 
includes the first Debug-Control interface 
and all its associated Debug interfaces 
(i.e., DxC.Dfx, DxC.Trace). 

Number 

bFunctionClass 4 1 Class code 0xDC 

CC_DEBUG. 
See 
Appendix A: 

bFunctionSubClass 5 1 Sub-class code SC_DEBUG. 
See 
Appendix A:  

bFunctionProtocol
  

6 1 Protocol code PC_DEBUG 
See 
Appendix A: 

iFunction 7 1 Index of string descriptor describing this 
function. The value is zero if there is no 
string descriptor. 

xxh 

The USB 3.1 specification strongly recommends that device implementations utilizing the IAD use the 
Multi-Interface Function class codes in the device descriptor. This allows simple and easy identification 
of these devices and allows on some operating systems, installation of an upgrade driver that can parse 
and enumerate configurations that include the IAD. The Multi-Interface Function class is documented at 
http://www.usb.org/developers/docs. 

http://www.usb.org/developers/docs
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The class and subclass fields of the IAD are not required to match the class and subclass fields of the 
interfaces in the interface collection that the IAD describes. However, Microsoft recommends that the first 
interface of the collection have class and subclass fields that match the class and subclass fields of the 
IAD. Table 4-3 indicates which fields should match. 

Table 4-3: IAD and Interface Descriptor Matching 

IAD field Corresponding field of the 1st Interface  Value 

bFunctionClass                      bInterfaceClass CC_DEBUG 

bFunctionSubclassClass        bInterfaceSubClass SC_DEBUG 

Typically, a DIC will have start with a Debug-Control Interface descriptor, and thus the Class field will be 
DCh for both the IAD and the Debug-Control Interface, and the SubClass = SC_DEBUG_CONTROL = 0x08. 

The bFirstInterface field of the IAD indicates the number of the first interface in the function. The 
bInterfaceCount field of the IAD indicates how many interfaces are in the interface collection. Interfaces 
in an IAD interface collection shall be contiguous (there can be no gaps in the list of interface numbers), 
and so a count with a first interface number is sufficient to specify all of the interfaces in the collection. 

4.3.1.6 USB 2.0 Interface Descriptor 

This section defines the Interface Descriptor for the Debug class.  

Table 4-4: USB 2.0 Standard Interface Descriptor for the Debug Class  

Part Offset 
(Byte) 

Size 
(Bytes) Description Value 

bLength 0 1 Numeric expression specifying the size of 
this descriptor in bytes. 

09h 

bDescriptorType 1 1 Interface Descriptor Type (assigned by 
USB) 

04h 

bInterfaceNumber 2 1 Number of the interface. A zero-based 
value identifying the index in the array of 
concurrent interfaces supported by this 
configuration 

xxh 

bAlternateSetting 3 1 Value used to select alternate setting for 
the interface identified in the prior field. 

xxh 

bNumEndpoints 4 1 Number of endpoints used by this interface 
(excluding endpoint zero). This number is 
0 or 1 depending on whether the optional 
status interrupt endpoint is present 

xxh 

bInterfaceClass  5 1 Class code  0xDC 

(Diagnostic 
Class) 
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Part Offset 
(Byte) 

Size 
(Bytes) Description Value 

bInterfaceSubClass 6 1 Sub-class code: Debug Capability 

DbC.GP, DbC.Dfx, DbC.Trace 

DvC, DvC.Dfx, DvC.Trace 

Debug Control 

SC_DEBUG. 
See 
Appendix A: 

bInterfaceProtocol 7 1 Protocol code: PC_DEBUG 
See 
Appendix A: 

iInterface 8 1 Index of string descriptor describing this 
interface. 

xxh 

The Interface descriptor of a Debug Class device includes a Sub-class field and a Protocol field, as shown 
in Figure 4-4. 
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Diagnostic Class
(0xDC)

0x02: DbC.GP

32-255: reserved

bInterfaceClass bInterfaceSubClass bInterfaceProtocol

1: GNU Remote-Debug Command Set

0x03: DbC.Dfx

0x04: DbC.Trace

0x00
0x01

reserved (See Note 1)

1: USB2 Compliance Device
reserved

0x08: Debug Control

0-15: DTS/Dfx 0-15

2-15: DTS/GP 2-15

0-15: DTS/Trace 0-15

0-15: DTS/Control 0-15

32-255: reserved
16-31: Vendor Defined

32-255: reserved
16-31: Vendor Defined

0: DTS/GP0

0x05: DvC.GP

32-255: reserved

1: GNU Remote-Debug Command Set 

0x06: DvC.Dfx

0x07: DvC.Trace

0-15: DTS/Dfx 0-15

2-15: DTS/GP 2-15

0-15: DTS/Trace 0-15

16-31: Vendor Defined

32-255: reserved
16-31: Vendor Defined

32-255: reserved
16-31: Vendor Defined

0: DTS/GP 0

32-255: reserved
16-31: Vendor Defined

Note 1: The xHCI-Compliant DbC specifies bInterfaceSubClass = 0x00. Thus, bInterfaceClass = 
0XDC, bInterfaceSubClass = 0x00 can point to a legacy xHCI-Compliant DbC device.

16-31: Vendor Defined

 
Figure 4-4: Diagnostic Class, Sub-Class, and Protocol partitioning 

The subclass field defines the debug capability. The Protocol field defines is used to define different 
instantiations of debug interface (e.g., DvC.GP0, DvC.GP1, etc.), or to support different debug tools via 
the Set Alternate interfaces (see Section 3.6.5) in the first 16 entries, and the following 16 are vendor 
defined. The actual debug tools in the first 16 entries are also vendor defined. The 16 DTS slots allow up 
to sixteen different drivers to be resident on the host machine corresponding to sixteen different 
debuggers. 

It is not-unusual to have multiple debuggers in the lab, with varying capabilities. For example, one TAP 
debugger could be a commercial offering while another is a vendor-proprietary tool that provides access 
to proprietary data structures. Thus, for DxC.Dfx, the TS vendor may choose to use bInterfaceProtocol = 
1 for one of these debuggers and bInterfaceProtocol = 2 for the other. This will result in the host 
instantiating two different drivers, which will simplify the coexistence of two debuggers on a single host. 
See Section 3.6.5. 

The assignment of Protocol fields for DbC.GP matches that of the original xHCI DbC. For compatibility, 
DvC.GP uses the same assignment.  
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4.3.1.7 USB 2.0 Endpoint Descriptors  

The endpoint descriptor is identical to the standard endpoint descriptor defined in section 9.6.6 
“Endpoint” of USB Specification [4].  

4.3.2 USB 3.1 Standard Descriptors 
The USB 3.1 descriptors are defined in the USB 3.1.0 specification and are not duplicated here. 

4.4 Debug Class-Specific Descriptors 

4.4.1 Introduction 
There are a number of Debug Class-specific descriptors associated with the various debug capabilities 
(DxC.Dfx, DxC.Trace, and DxC.GP). Figure 4-5 shows an example implementation of an SoC device, 
which also provides debug connectivity to an external modem, allowing the debug logic within the SoC to 
configure and capture debug traces from the Modem. The right-hand-side of the figure shows the standard 
and class-specific descriptors associated with these debug hooks. The yellow and blue shaded 
descriptors are the class-specific descriptors. These class-specific descriptors define the capabilities of 
the debug hooks (e.g., whether the core can create processor traces or not), and how these hooks are 
interconnected.  
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Figure 4-5: Debug Topology and Descriptor Hierarchy Example 1 

The example in Figure 4-5 uses the DvC.Dfx and DvC.Trace capabilities. The class-specific descriptors 
are shaded the same color as their corresponding debug logic. 
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Note that the example in Figure 4-5 shows hardware debug units. However, one can use the topology to 
describe the interconnection of software applications (e.g., GNU debugger, data loggers, etc.). These 
would most naturally use the DxC.GP interface. 

The example in Figure 4-5 shows the debug interfaces grouped into a pair of Debug-Interface Collections 
using Interface Association Descriptors. IAD1 group Interface 1 and 2, while IAD2 groups Interfaces 3 
and 4. These two DICs will connect to two different drivers in the host. Alternatively, Figure 4-6 uses a 
single IAD to group together interfaces 1, 2, and 3. In this case, a single driver in the host will control all 
of the debug interfaces. We recommend the grouping of Figure 4-5 rather than Figure 4-6 when the two 
debug functions are independent. However, Figure 4-6 is appropriate if the implementation uses an IP 
block for complete Dfx/Trace unit and the Dfx needs to deal with this IP block as an entity (e.g., when 
using a vendor’s IP for a composite debug block with an associated debugger). 

Note that a device may ship with the descriptors corresponding to Figure 4-5 and the user can change 
them to those of Figure 4-6 via Android adb or some other similar mechanism. 

The DvC.Dfx interface in either Figure 4-5 or Figure 4-6 communicates with a Dfx unit, which in this 
example contains a TAP controller, a memory-access unit, and an external-access unit that interfaces to 
a modem outside the SoC. This outbound path allows the Dfx unit to configure the modem to generate 
debug traces. The modem traces return on the inbound path. 

The DvC.Trace portion consists of four agents generating traces (graphics, core, video, and audio units). 
The Trace-Processing unit 1 combines the traces from the graphics, core, and video units. The Trace-
Processing unit 2 packetizes the single audio traces into a standard trace format. The Trace-Select unit 
chooses between the two possible traces streams.  

The Output Connection (OC) and an Input Connection (IC) define inputs and outputs to the debug logic. 
Three of these Connections connect to the USB 3.1 endpoints, two connect to an external modem, and 
the final two connect to the JTAG pins on the device. The later capability allows the TAP controller to act 
as a JTAG master and control external chips via a JTAG chain. 

The class-specific, Debug-Unit descriptors defines the capabilities of the debug unit (e.g., whether the 
unit is a trace-generator unit, or a Trace-Processing unit, etc.)  It also defines the type of the debug unit 
(e.g., Audio unit, graphics unit, modem, etc.).  

The example in Figure 4-5 shows a generic Dfx Unit, which consists of three sub components (i.e., TAP 
controller, memory-access unit, and external-access unit). There are no specific descriptors for these sub 
components. Thus, the debugger will treat the Dfx unit as single entity. 

Note that an implementation may choose to define a Debug-Unit descriptor of type Dfx for each of these 
sub-components. This is implementation specific. For some designs, it may be preferable to treat these 
3 sub-components as independent Dfx units, while for others it may be preferable to treat these as a 
single, combined unit. 
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Figure 4-6: Debug Topology and Descriptor Hierarchy Example 2 

4.4.2 Debug-Control Interface Descriptors 
The optional Debug-Control Interface descriptors contain all relevant information to fully characterize the 
corresponding Debug function. There are two descriptors associated with debug control: 

1. Debug-Control Interface descriptor: This is a standard USB interface descriptor that characterizes 
the interface itself. This descriptor is optional. 

2. Debug-Attributes descriptor: This is a class-specific interface descriptor that provides additional 
information concerning the internals of the debug function. It specifies the revision level and lists 
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the general debug capabilities of the complete TS. This descriptor is mandatory if the associated 
Debug-Control Interface descriptor exists. 

The topology of the debug function is defined by zero or more of the following optional descriptors in any 
order: 

o Input Connection descriptor 

o Output Connection descriptor 

o Debug Unit Descriptor 

The Debug Control requests can manipulate/control any of the units within the above topology, or the DIC 
that encompasses this topology, or even the complete TS that encompasses one or more DICs. 

The Debug-Control interface has no dedicated endpoints associated with it. It uses the default pipe 
(endpoint 0) for all communication purposes, except for optional event notification, in which case the 
interrupt endpoint is used. Class-specific debug control requests are sent using the default pipe. 

The Debug-Control Interface may use multiple alternate setting. For example, when sharing an endpoint 
between GP and Dfx, as per the example in Section 3.6.2, then each capability may require different 
Debug Commands, and would thus need different Debug Control and Debug Attributes descriptors.  

The standard Debug-Control Interface descriptor is identical to the standard interface descriptor defined 
in section 9.6.5 "Interface" of USB Specification Revision 2.0, except that some fields have dedicated 
values (see Table 4-5). 

Table 4-5: Standard Debug-Control Interface Descriptor 

Part Offset 
(Byte) 

Size 
(Bytes) Description Value 

bLength 0 1 Numeric expression specifying the size of 
this descriptor in bytes. 

09h 

bDescriptorType 1 1 INTERFACE 04h 

bInterfaceNumber 2 1 Index of this interface xxh 

bAlternateSetting 3 1 Value used to select alternate setting for 
the interface identified in the prior field. 

xxh 

bNumEndpoints 4 1 1 optional endpoint (interrupt endpoint) xxh 

bInterfaceClass  5 1 CC_DEBUG DCh 

bInterfaceSubClass 6 1 SC_DEBUG_CONTROL 80h 

bInterfaceProtocol 7 1 Not used. Set to 
PC_PROTOCOL_UNDEFINED 

00h 

iInterface 8 1 This is a TAG that has to match the 
iFunction field in the Debug Interface 
Collection IAD. 

xxh 
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4.4.3 Debug-Attributes Descriptor 
The Debug Control & Debug-Attributes interface descriptors contain all relevant information to fully 
characterize the corresponding debug function. The standard, Debug-Control interface descriptor 
characterizes the interface itself, whereas the class-specific Debug-Attributes interface descriptor 
provides pertinent information concerning the internals of the debug function. It specifies revision level 
information and lists the capabilities of each Unit and Terminal.  

This Debug-Attributes descriptor is located immediately after the Debug-Control Interface descriptor and 
is mandatory if the Debug-Control Descriptor exits. Thus, the Debug-Attributes descriptor is always paired 
with the Debug-Control descriptor. 

Table 4-6 defines the Debug-Attributes descriptor.  

Table 4-6: Debug Class Debug-Attributes Descriptor 

Part Offset 
(Byte) 

Size 
(Bytes) Description Value 

bLength 0 1 Numeric expression specifying the size of 
this descriptor in bytes. 

Number 

bDescriptorType 1 1 CS_INTERFACE 24h 

bDescriptorSubType 2 1 DC_DEBUG_ATTRIBUTES  04h 

bcdDC 3 2 Revision number of Debug Class 
specification that this TS/DIC is based on. 

0100h 

(rev 1) 

wTotalLength 5 2 Total size of the topology and interrupt 
class-specific descriptors for this debug 
function. It does not include the debug 
Capability descriptors (e.g., DxC.Dfx) 

Number 

bTSorDIC 7 1 Defines whether this descriptor pertains to 
the complete TS or to a DIC 

0: DIC 

1:TS 

Otherwise: reserved 

Number 

bmSupportedEvents 

 

8 1 Defines if debug interrupt events are 
supported (i.e., triggers, hot button): 

D0: Debug Event supported on TS if true 

D1: Debugger starts trace capture if 
debug “button” asserts and D0 is 1. 

D2: D3: reserved 

D4-D7: Vendor specific 

Bitmap 

bControlSize 9 1 Size of the bmControls field, in bytes: n Number 
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Part Offset 
(Byte) 

Size 
(Bytes) Description Value 

bmControl 

(See Section 5.1 for 
more information) 

10 n A bit set to 1 indicates that the following 
Debug-Control requests are supported  
by the DIC/TS depending on the setting of 
bTSorDIC. Note that a Debug unit within 
the TS or DIC may support completely 
different debug commands – these are 
defined in the corresponding field of the 
Debug-Unit descriptor. 

D0: SET_CONFIG_DATA_SINGLE 

D1: SET_CONFIG_DATA 

D2: GET_CCONFIG_DATA 

D3: SET_CONFIG_ADDRESS 

D4: GET_CONFIG_ADDRESS 

D5: SET_ALT_STACK  

D6: GET_ALT_STACK 

D7: SET_OPERATING_MODE 

D8: GET_OPERATING_MODE 

D9: SET_TRACE_CONFIGURATION 

D10: GET_TRACE_CONFIGURATION 

D11: SET_BUFFER 

D12: GET_BUFFER 

D13: SET_RESET 

D(n*8-1)..14: reserved 

If SET_CCONFIG_ADDRESS is not supported 
but SET/GET_CCONFIG_DATA is supported, 
then Configuration address defaults to 
value 0. 

Bitmap 

bAuxDataSize 10+n  1 This field defines the size of the next two 
fields. If there is no auxiliary data then = 0, 
otherwise 24. 

Number 

qBaseAddress 11+n 8 Base Address to the Configuration 
registers of the DIC or the TS depending 
on the value of bTSorDIC. 

A Base Address = 0 is used to indicate that 
there is no Base Address.  

Constant 

hGlobalID 19 + n 16 Identifier for the complete TS or DIC 
depending on the value of bTSorDIC. For 
example, this could be the GUID for the 
TS. 

Constant 
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Part Offset 
(Byte) 

Size 
(Bytes) Description Value 

wVendorDataSize 10+n or 

35+n 

2 This field defines the size of the remaining 
bytes in the descriptor in bytes: q 

Number 

Vendor Data 12+n or 

37+n 

q Vendor defined data (q bytes) Number 

 

The bcdDC is the revision of Debug Class specification that this TS/DIC is based upon. Note that a DIC 
may contain a DxC.Trace interface and a DxC.Dfx interface that each support a different revision of the 
specification. In this case, the DIC requires Debug-Unit descriptors for the Trace and Dfx to state which 
revision they support. For example: 

• DIC containing Trace and Dfx interfaces, and the DIC itself only supports Rev 1.0 Debug 
Commands (e.g., Rev 1.0 commands to power-on the debug logic). 

 Thus, Debug Attribute (bTSorDIC = 1, bcdDC = 1.0) 
o Debug-Unit Descriptor for Trace unit supports rev 2.0 & thus has bcdDC = 2.0 
o Debug-Unit Descriptor for Dfx unit supports rev1.0 & thus has bcdDC = 1.0 

The wTotalLength field reflects the total length in bytes of all the descriptors that are used to fully describe 
the debug function, which is the topology and any interrupt descriptor. Thus, all Debug-Unit descriptors, 
all Input-Connection and Output-Connection descriptors, together with the Interrupt descriptor. 

The bTSorDIC is used to define whether this Debug-Attributes descriptor pertains to the complete TS or 
the DIC. In particular, this is used to define Debug Commands that are specific to the TS or to a DIC. For 
example, it may only be possible to Power-on/off all the debug logic within a TS but not power-on/off 
individual DICs. Thus, to allow this capability, we need the following: 

TS: Debug Control & Attributes (bTSorDIC) = TS and bmControl allows Operating Modes 

DIC: Debug Control & Attributes (bTSorDIC) = DIC & bmControl does not allow Operating Modes 

Figure 4-7 shows an example where there is a pair of Debug-Control and Debug Attributes descriptors 
defining the capability of the complete TS, and a pair of Debug-Control and Debug Attributes descriptors 
defining the capability of a DIC. 
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Figure 4-7: Example of TS and DIC Debug Control & Attributes descriptor usage 

The bmSupportedEvents field indicates if the TS or DIC supports Interrupts for breakpoints, low-power-
transitions, etc. If supported, then an Interrupt interface is mandatory. The Debug Class only supports IN 
endpoints for the Interrupt interface, and thus the TS can only send out interrupts to the DTS, but not vice-
versa. If the DTS needs to communicate with the TS, it can use the Debug-Control Interface. 

The bmControl field is a bitmask indicating which commands the DIC (if bTSorDIC = 0) or TS (if 
bTSorDIC=1) supports. The optional Debug-Unit descriptors define the Debug Commands supported by 
the optional individual debug units.  

A non-zero wAuxDataSize indicates that the descriptor contains an auxiliary debug data structure for the 
remainder of the descriptor starting immediately after the wAuxDataSize field. This data structure consists 
of a number of fields:  

• Input and Output buffer sizes for the DIC 
• Address to this data structure in the qBaseAddress field 
• The GUID for this TS in the hGlobalID field. The hGlobalID provides an ID (e.g., GUID) for the 

complete debug entity (and not for this particular DIC). Thus if there are multiple DICs, then each 
Debug Attributes descriptor should provide the same information (or the subsequent descriptors 
should provide zero Auxiliary Data). Otherwise, if each Auxiliary data structure is different in the 
various DICs, then the interpretation is vendor-specific.  
 
The hGlobalID could, for example be used as a unique link to a XML file providing additional 
debug information on the debug entity.  

• Optional supplementary data. This data could be proprietary to a vendor or defined via a 
standards body.  

Following the Debug-Attribute descriptor are zero or more class-specific descriptors. There is at least one 
Debug Class-specific descriptor if the bTotalLength value exceeds the bLength field. These class-specific 
descriptors are the optional debug-topology descriptors. The layout of the topology descriptors depends 
on the type of Unit or Connection they represent. 

Note: A Standards body will want to create a set of Debug commands for their particular Dfx/Trace unit. 
It is unlikely (at least for the foreseeable future) that a Standards group will want to create debug 
commands for the complete DIC or TS. Consequently, the Debug Class specification only provides 
support for Vendor data and not for Standards bodies. Instead, the Debug-Unit descriptor provides this 
support (see later). This shortcoming could be addressed in a future revision of the Debug Class 
specification should this be necessary. 

The Debug-Control Interface may use multiple alternate settings, and thus each of these alternate settings 
will have an associated Debug-Attributes descriptor. There is no Alternate Settings field in the Debug- 
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Attributes descriptor because the Debug-Control and the Debug-Attributes descriptors are always paired 
with each other: 

Debug-Control (Alt.Setting = 0)    Debug-Control (Alt.Setting = 1) 
Debug-Attributes descriptor A   Debug-Attributes descriptor B 

 

4.4.4 Input-Connection Descriptor 
The Input-Connection descriptor describes functional aspects of the Input-Connection to the device. 

The value in the bConnectionID field uniquely identifies an Input-connection. No other Unit or Connection 
within the same DIC may have the same ID. For example, each Connection and each Unit within a DIC 
shall have a unique ID, but different DICs can reuse the same ID. 

The bConnectionType field defines where the Input Connection connects. This could be a USB OUT 
endpoint, an external debug-in connection, etc. 

The bAssocConnection field associates an Output Connection to this Input Connection, effectively 
implementing a bi-directional Connection pair. For instance, this would link the JTAG input and output 
pins. If the bAssocConnection field is used, both associated Connections shall belong to the bi-directional 
Connection Type group. If no association exists, the bAssocConnection field shall be set to zero. 

The Host software can treat the associated Connections as being physically or logically related. In many 
cases, one Connection cannot exist without the other. An index to a string descriptor is provided to further 
describe the Input-Connection. 

The IC may be carrying traces. The trace format is defined by the (optional) dTraceFormat field. This field 
is at the end of the descriptor, and thus if the IC does not carry traces then this field is not required. In this 
case, the bLength = 07h, otherwise it is 0Bh. 

The optional dStreamID provides information on the ID of the trace. For example, this could be the Master 
ID for a MIPI STP trace. 

Table 4-7 describes the Input-Connection descriptor: 

Table 4-7: Input Connection Descriptor 

Part Offset 
(Byte) 

Size 
(Bytes) Description Value 

bLength 0 1 Numeric expression specifying the size of this 
descriptor in bytes. 

07h or 
0Bh 

bDescriptorType 1 1 CS_INTERFACE 24h 

bDescriptorSubType 2 1 DC_INPUT_CONNECTION 01h 

bConnectionID 3 1 A non-zero constant that uniquely identifies the 
Connection within the debug capability 
(DxC.Dfx or DxC.Trace).  

Constant 
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Part Offset 
(Byte) 

Size 
(Bytes) Description Value 

bConnectionType 4 1 Constant that characterizes the type of 
Connection.  

0: USB OUT endpoint 

1: Debug Port input pin (Control, e.g., JTAG) 

2: Debug Port input pin (Data) 

3: Debug Port input pin (Data or Control)  

4 – 127: reserved 

Constant 

bAssocConnection 5 1 ID of the Output Connection to which this Input 
Connection is associated, or zero (0) if no such 
association exists. 

Constant 

iConnection 6 1 Index of a string descriptor, describing the Input 
Connection 

Constant 

dTraceFormat 

(optional field) 

7 4 Trace Format on the input pins to the Debug 
Unit. See Table 4-11 

Constant 

dStreamID 

(optional field) 

11 4 ID for the output trace (e.g., Master ID for MIPI 
STP). The TS may change this value during a 
debug session.  

A Stream_ID = 0xFFFF indicates that there is no 
Stream_ID. 

Constant 

4.4.5 Output Connection Descriptor 
The Output Connection descriptor describes functional aspects of the Output Connection to the host. 

The value in the bConnectionID field uniquely identifies an Output Connection. No other Unit or 
Connection within the same debug capability may have the same ID. For example, each Connection and 
each Unit within DxC.Dfx shall have a unique ID, but DxC.Dfx and DxC.Trace can reuse the same ID. 

The bConnectionType field defines where the Output Connection connects. This could be a USB IN 
endpoint, an external debug out connection, etc. 

The bAssocConnection field associates an Input Connection to this Output Connection, effectively 
implementing a bi-directional Connection pair. For instance, this would link the JTAG input and output 
pins. If the bAssocConnection field is used, both associated Connections shall belong to the bi-directional 
Connection Type group. If no association exists, the bAssocConnection field shall be set to zero. 

The Host software can treat the associated Connections as being physically related. In many cases, one 
Connection cannot exist without the other. An index to a string descriptor is provided to further describe 
the Output Connection. 

The following table describes the Output Connection descriptor: 
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Table 4-8: Output Connection Descriptor 

Part Offset 
(Byte) 

Size 
(Bytes) Description Value 

bLength 0 1 Numeric expression specifying the size of 
this descriptor in bytes. 

09h 

bDescriptorType 1 1 CS_INTERFACE 24h 

bDescriptorSubType 2 1 DC_OUTPUT_CONNECTION 02h 

bConnectionID 3 1 A non-zero constant that uniquely 
identifies the Connection within the debug 
debug capability (DxC.Dfx or DxC.Trace).  

Constant 

bConnectionType 4 1 Constant that characterizes the type of 
Connection.  

0: USB IN endpoint 

1: Debug Port output pin (Control) 

2: Debug Port output pin (Data) 

3: Debug Port output pin (Data or Control) 

4 – 127: reserved 

Constant 

bAssocConnection 5 1 ID of the Input Connection to which this 
Output Connection is associated, or zero 
(0) if no such association exists. 

Constant 

wSourceID 6 2 ID of the Unit or Connection to which the 
Input Pin of this Output Connection is 
connected in the first byte, and the output 
pin is in the second byte. 

Constant 

iConnection 8 1 Index of a string descriptor, describing the 
Output Connection 

Constant 

4.4.6 Debug-Unit Descriptor 
This descriptor defines the type of debug unit (e.g., Dfx unit, Trace-Processing unit, Trace-Generation 
unit, etc.) together with connectivity information describing which output pins on which debug units are 
driving the input pins on this unit. Figure 4-8 gives an example interconnect between four Dfx Units and 
Table 4-9 defines the Debug-Unit descriptor fields. 

The value in the bUnitID field of the Dfx-Unit descriptor uniquely identifies the debug Unit. No other Unit 
or Connection within the same DIC may have the same ID.  

The bSourceID field describes the input connectivity for this Debug Unit. It contains the ID of the Unit or 
Connection to which this Debug Unit connects via its Input Pin, together with the output pin driving this 
input pin (see Figure 4-8) 

The bDebugUnitType defines the type of debug unit (e.g., Trace-generation unit, Trace-Router unit, etc). 
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The Debug-Unit Descriptor allows the hardware designer to define any arbitrary debug functionality that 
the class driver passes to the host debugger application. This could be some special debug hardware, or 
debug associated hardware, such as authentication, or a test-pattern generator, that is not covered by 
this specification. This could also be a software application or structure. 

The bNrInPins field defines the number of input pins. The wSourceID defines the connectivity of each of 
these input pins. The wSourceID consists of a pair of bytes: the first defines the unit ID driving this input, 
while the second byte defines the actual output pin driving the signal. 

The bNrOutPins field defines the number of output pins. 

 
Figure 4-8: Example interconnect between a number of Dfx Units 

 

The dTraceFormat fields define the trace format for each of the output pins of the debug unit. Note that 
the inputs to the Dfx unit could each have a different trace format, which the Dfx unit may convert into a 
set of different formats on its output pins. See Figure 4-2 for an example. 

The dStreamID give the source of a Trace/Stream Protocol. This value may change during a debug 
session. Debug Software running on the TS may thus update this value. See Section 4.1.1 for more 
details. 

The qBaseAddress provides a 64-bit address to the Configuration registers in the debug unit. 

The bmControls field is a bitmap, indicating the availability of certain debug controls for the debug unit 
stream. For future expandability, the number of bytes occupied by the bmControls field is indicated in the 
bControlSize field. The bControlSize field is permitted to specify a value less than the value needed to 
cover all the control bits (including zero), in which case the unspecified bmControls bytes will not be 
present and these control bits are implicitly zero. 

A non-zero wAuxDataSize indicates that the descriptor contains a data structure for supplemental debug 
data. This data structure consists of: 

• The qBaseAddress field pointing to a implementation-specific, Debug-Data structure 
• A GUID for this debug unit in the hIPID field. The hIPID provides an ID (e.g., GUID) for the actual 

implementation of the debug unit. For example, a certain IP block may have implemented an 
early version of a protocol and may thus suffer from a number of limitations. The hIPID allows 
the debugger to recognize such units and act accordingly. 
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A non-zero wStandardsDataSize indicates that the descriptor contains a data structure for supplemental 
debug data defined by a Standards body. See Section 4.5 for more details and examples. A Standards 
body can define a debug unit, and there could be many debug units within a TS defined by different 
standards. This data structure consists of: 

• An identifier, bStandardsID, indicating the Standards body 
• Standards Data, which is a data structure defined by the Standards body.  

A non-zero wVendorDataSize indicates that the descriptor contains a data structure for supplemental 
debug data defined by the vendor. For example, the vendor may need to know the state of the TS prior 
to the start of a debug session. They may use this data field for this purpose.  

 

Note that the standard GET_DESCRIPTOR request can fetch at most 64KB. Thus the complete descriptor, 
including any Standards body’s and Vendor’s extensions must not exceed this limit.  

An index to a string descriptor (iDebugUnitType) is provided to further describe the Debug Unit. 

The following table defines the Debug-Unit descriptor: 

Table 4-9: Debug Unit Descriptor 

Part Offset 
(Byte) 

Size 
(Bytes) Description Value 

bLength 0 1 Numeric expression specifying the size of 
this descriptor in bytes. 

41 + 2p 

bDescriptorType 1 1 CS_INTERFACE 24h 

bDescriptorSubType 2 1 DC_DEBUG_UNIT 03h 

bcdDC 3 2 Revision number of Debug Class 
specification that this Debug Unit is based 
on. 

0100h 

(rev 1) 

bUnitlD 3 1 A non-zero constant that uniquely 
identifies the Debug Class unit. 

Constant 
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Part Offset 
(Byte) 

Size 
(Bytes) Description Value 

bDebugUnitType 

 

 

4 1 0: Un-defined unit 

1: Dfx Unit  

2: Select Unit 

3: Trace-Router Unit 

4: Trace-Processing Unit 

5: Trace-Generation Unit 

6: Trace-Sink Unit 

7: Control Unit 

8-63: reserved 

64:95: Vendor Specific 

96:127: For use by Standards body 

128-255: reserved 

xxh 

bDebugSubUnitType 5 1 E.g., Audio, GFX, Core, Modem, etc. – see 
Table 4-10. 

 

bAliasUnitID 6 1 ID of the Debug Unit to which this debug 
unit is associated, or zero (0) if no such 
association exists.  

For example, a Trace-Generator unit only 
has a single output and thus can only 
generate a single output trace. However, a 
CPU core may generate multiple trace 
streams, e.g., software messages from the 
OS and also processor-instruction traces. 
In this case, there will be two Trace-
Generator units, and the bAliasUnitID field 
would link these together, indicating that 
they are the same physical device. This 
information maybe useful for the DTS 
when it is powering on/off debug units. 

If 3 or more units need to be aliased 
together, then arbitrarily choose one as the 
reference unit that the others will alias to. 

Constant 

bNrInPins 7 1 Number of Input Pins on this Unit: p Constant 

wSourceID(1) 8 2 ID of the Unit or Connection to which the 
first Input Pin of this Debug Unit is 
connected in the first byte, and the output 
pin is in the second byte. 

Constant 

⁞ ⁞ ⁞ ⁞  



 USB 3.1 Debug Class 7/14/2015 

 

- 76 -   

Part Offset 
(Byte) 

Size 
(Bytes) Description Value 

wSourceID(p) 8 + 2(p-
1) 

2 ID of the Unit or Connection to which the 
pth Input Pin of this Debug Unit is 
connected in the first byte, and the output: 
pin is in the second byte. 

Constant 

bNrOutPins 8 + 2p 1 Number of Output Pins on this Unit: q Constant 

dTraceFormat(1) 9 + 2p 4 Trace Format on the first output pins for the 
Debug Unit. See Table 4-11 

Constant 

dStreamID(1) 

 

13+2p  4 ID for the the above output trace (e.g., 
Master ID for MIPI STP). The TS may 
change this value during a debug session. 
It is implementation specific how the 
Debugger reads the new value at the end 
of the debug session.  

0xFFFF: Null (no StreamID) 

Constant 

⁞ ⁞ ⁞ ⁞  

dTraceFormat(q) 9 + 2p + 
8q 

4 Trace Format on the qth output pins for the 
Debug Unit. See Table 4-11 

Note: If all outputs have the same trace 
then all of these fields will be the same. 

Constant 

dStreamID (q) 

 

13+2p 
+ 8q 

4 ID for the output trace (e.g., Master ID for 
MIPI STP).  

0xFFFF: Null (no StreamID) 

Constant 

bControlSize 17+2p 
+ 8q 

1 Size of the bmControls field, in bytes: n Number 
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Part Offset 
(Byte) 

Size 
(Bytes) Description Value 

bmControl 

(See Section 5.1 for 
more information) 

 

18+2p 
+ 8q 

n A bit set to 1 indicates that the mentioned 
Debug-Control request is supported:  

D0: SET_CCONFIG_DATA_SINGLE 

D1: SET_CONFIG_DATA 

D2: GET_CCONFIG_DATA 

D3: SET_CONFIG_ADDRESS 

D4: GET_CONFIG_ADDRESS 

D5: reserved 

D6: reserved 

D7: SET_OPERATING_MODE 

D8: GET_OPERATING_MODE 

D9: reserved 

D10: reserved 

D11: SET_BUFFER 

D12: GET_BUFFER 

D13: SET_RESET 

D23..D14: reserved 

D31..D24: Vendor-specific 

If SET_CONFIG_ADDRESS is not supported 
but SET/GET_CONFIG_DATA is supported, 
then Configuration address defaults to 
value 0. 

Bitmap 

bAuxDataSize 18+2p 
+ 8q+n  

1 This field defines the size of the next two 
fields. If there is no auxiliary data then = 0, 
otherwise 24. 

Number 

qBaseAddress 19+2p 
+ 8q+n 

8 Base Address to the configuration 
registers of the debug IP block. 

If there are no configuration registers then 
qBaseAddress = 0 

Constant 

hGUID 27+2p 
+ 8q+n 

16 Global-unique identifer (GUID) for the IP  Constant 

wStandardsDataSize 45+2p 
+ 8q+n 

2 This fields defines the size of the next two 
fields, which are p bytes in size. 

If there is no Standards data then p = 0. 

Number 
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Part Offset 
(Byte) 

Size 
(Bytes) Description Value 

bStandardsID 47+2p 
+ 8q+n 

1 0: Data format is not a Standard 

1: MIPI Standards Organization 

2: IEEE Standards Organization 

otherwise: reserved 

Number 

Standards Data 48+2p 
+ 8q+n 

p-1 Standards data. For example, which 
Specification, bit mask for supported 
commands, buffer sizes, etc.  

Size is (p-1) bytes 

Constant 

wVendorDataSize 47+2p 
+8q+n 
+p 

2 This field defines the size of the remaining 
bytes in the descriptor in bytes: q 

Number 

Vendor Data 49+2p 
+8q+n 
+p 

q Vendor defined data (q bytes) Number 

iDebugUnitType 49+2p 
+8q+n 
+p+q 

1 Index of a string descriptor, identifing the 
Debug Unit (and Sub-unit) type 

Index 
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Table 4-10: Debug Sub-Unit Type 

Part Description Value 

bDebugSubunitType Constant that characterizes the subtype of 
Unit:  
0: Not defined (Null unit) 
1: CPU 
2: Graphics 
3: Video 
4: Imaging 
5: Audio 
6: Modem 
7: Bluetooth  
8: Power-Management agent 
9: Security agent 
10: Sensor Unit 
11: Bus-Watcher 
12: Location (GNSS, GPS, Glonass) 
13: Trace Compressor 
14: TAP Controller 
15: Memory Access Unit 
16: Configuration Unit 
17 - 62: reserved 
63: Other 
64: SW Trace Logger 
65: SW Router 
66: SW Unit 
67: SW Configuration Unit 
68: SW Debugger 
69 - 127: reserved 
128 - 191: Vendor Specific 
192-254: reserved 
255: Standards Body 

Constant 

 

 

Table 4-11: dTraceFormat 

dTraceFormat 

<31:24> 

Type/ 

Vendor 

dTraceFormat 

<23:0> 
Value 

0x00 N/A 0: Pass-through (no change of trace format) 
1: Debug Header Format (see Appendix C:) 
2: Debug Footer Format (see Appendix C:) 
3 - 4: reserved 
5: Use GUID for trace format (i.e., Proprietary 
trace format) 
6: UTF8 string format 
Otherwise: reserved 

Constant 
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dTraceFormat 

<31:24> 

Type/ 

Vendor 

dTraceFormat 

<23:0> 
Value 

0x01 Intel Vendor defined Constant 

0x02 ARM ARM defined Constant 

0x03 ST Vendor defined Constant 

0x04 TI Vendor defined Constant 

0x05 Qualcomm Vendor defined Constant 

0x06 AMD Vendor defined Constant 

0x07-0x7F reserved  Constant 

0x80 MIPI 
Standards 

MIPI defined Constant 

0x81 
Nexus 

Standards 
Nexus defined Constant 

Otherwise reserved  Constant 

 

 

 

4.5 Standards-Body Support 
Standard bodies can extend the Debug Class to support a new debug function by defining extensions to 
the Debug-Unit descriptor. Figure 4-9 shows an example of a new debug unit, a Bus-Watcher, which 
sends trace packets to the DxC.Trace interface when it observes specific bus traffic. The standards-body 
could define a set of commands pertinent to this unit, such as SET_MATCH_ADDRESS, SET_MATCH_DATA, 
and SET_ENABLE_BUS_WATCHER. This Debug Class specification does not define these new commands; 
instead, it allows a standards body to define these commands and capabilities as an adjunct to this 
specification.  
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HOST 
(DTS)

Debug Target (TS)

DxC.Trace

Debug Commands De
bu

gg
er

New Debug Unit 
(e.g., Bus-Watcher) 

defined by a Standards 
Body

 
Figure 4-9: New Debug Function created by a Standards Body accessed via the Debug Class 

A standards body shall use a Debug Unit descriptor to define its commands and capabilities. See Figure 
4-10. Note that the Debug-Attributes descriptor also defines commands, but these are Debug Class-
specific, and a standards body cannot change or extend these. Furthermore, the Debug-Attribute 
descriptor defines the commands pertinent to the TS or DIC level; the Debug-unit descriptor defines 
commands pertinent to a debug unit. Hence, a standards body cannot define commands for the TS or the 
DIC; it can only define commands for a Debug unit. 

Configuration Descriptor

Interface 1 Descriptor (Debug Control)
Debug Attributes Descriptor

Interface Association Descriptor 1

Interface 2 Descriptor (DxC.Dfx)
Endpoint IN
Endpoint OUT

The Debug-Class specific 
commands itemized in the 
Debug Attributes descriptor 
pertain to the TS or the DIC

Device Descriptor

TS

Debug Unit Desc. (Standards Body)

DIC

Debug Unit
(Standards Body)

DxC.Dfx

The Debug Unit Descriptor 
defines the Standards Body’s 
Debug unit. The commands 
itemized in this descriptor 
pertain to the Standards body 
Debug unit.  

Figure 4-10: Standards bodies can only define commands at the Debug-unit level 

For illustrative purposes, Table 4-12 shows the fields of the Debug-Unit descriptor pertinent to a 
Standards body. The hypothetical values are for a Dfx unit defined by the MIPI Standards body. 

Table 4-12: Debug-Unit Descriptor fields for an Example Standard Body’s Dfx Unit 

Part Value Description 

bDebugUnitType 0 A Dfx Unit 

bDebugSubUnitType 255 Standards Body 

…   

wStandardsDataSize 6 The next 6 bytes of the descriptor pertain to the 
Standards body 

bStandardsID 1 A MIPI standard 
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Part Value Description 

Standards Data Number 5 Byte Data structure defined by the MIPI Standards 
organization.  

For example, this data structure could define the 
Specification version number; a bit mask for supported 
commands; etc. See Table 4-13 for an example of a 5-
Byte structure. 

…    

Table 4-13 is a hypothetical example of a possible Standards-Data structure, given purely for illustrative 
purposes. This example provides a specification version number, a bitmask for the supported commands 
together with a size field defining this length of thus bitmask. The tabulated commands are hypothetical 
and are given purely as an example. 

Table 4-13: Example of Standards Data  

Part Offset 
(Byte) 

Size 
(Bytes) Description Value 

bcdStandard 0 2 Revision of Standards body 
specification. 

0100h 

bStandCntrlSize 2 1 Size of the bmStandControl field, in 
bytes: n 

Number 

bmStandControl 3 2 A bit set to 1 indicates that the 
mentioned Standard-body specific 
Control request is supported:  

D0: SET_INITIALIZE 

D1: SET_ADDRESS_TRIGGER  

D2: GET_ADDRESS_TRIGGER 

D3: SET_DATA_TRIGGER 

D4: GET_DATA_TRIGGER 

D5: reserved 

D6: reserved 

D7: SET_START 

D8: SET_HALT 

D9..D15: reserved 

Bitmap 

 

A TS may contain multiple, different debug units, each defined by a different Standards body. Figure 4-11 
shows an example of a TS containing two such debug units. 
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Configuration Descriptor

Interface 1 Descriptor (Debug Control)
Debug Attributes Descriptor

Interface Association Descriptor 1

Interface 2 Descriptor (DxC.Dfx)
Endpoint IN
Endpoint OUT

Device Descriptor

TS

Debug Unit Desc. (Standards Body A)

DIC 1

Debug Unit
(Standards Body A)

DxC.Dfx

This Debug-Unit descriptor 
describes the capabilities of the 
Debug Unit defined by Standard 
Body A

DIC 2

Debug Unit
(Standards Body B)

DxC.Trace

Interface 3 Descriptor (Debug Control)
Debug Attributes Descriptor

Interface Association Descriptor 2

Interface 4 Descriptor (DxC.Trace)
Endpoint IN

Debug Unit Desc. (Standards Body B)

This Debug-Unit descriptor 
describes the capabilities of the 
Debug Unit defined by Standard 
Body A

 
Figure 4-11: A TS containing two Debug units defined by different Standards bodies 
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5 Class-Specific Requests 

5.1 Introduction 
The Debug Class-specific requests are an optional set of commands that allow the debugger to perform 
basic operations on the debug logic via the default endpoint. These include reads and writes (i.e., GET 
and SET) of data structures (e.g., configuration registers); the enabling of power-management modes; the 
selection of a particular trace generation configuration; the ability to select a backup core for the USB 
stack on the TS in case the main OS hangs4; and so on. Table 5-1 lists the available commands.  

                                                      

 
4 Presumably, the TS will use hardware decode for this request, otherwise it defeats the purpose of providing this command 
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The Debug Commands are completely optional, but if they are supported then the following descriptors 
are mandatory: 

• If TS supports ANY debug commands then 

o (Debug Command Interface + Debug Attributes) Descriptor are mandatory  

 Debug Attributes defines the supported TS commands 

o GET_INFO & GET_ERROR are mandatory to TS, DIC, or Unit even if there is no DIC 
or Unit (i.e., fail safe if the SW mistakenly targeted the wrong thing). 

• If DIC supports ANY debug commands then 

o IAD is mandatory to create DIC 

o (Debug Command Interface + Debug Attributes) Descriptor are mandatory  

 Debug Attributes defines the supported DIC commands  

o GET_INFO & GET_ERROR are mandatory to TS, DIC, or Unit 

• If a Debug Unit supports ANY debug commands then 

o IAD is mandatory to create DIC containing the Unit 

o (Debug Command Interface + Debug Attributes) Descriptor are mandatory for the 
DIC containing the Unit 

 Debug Unit Descriptor defines the supported Unit commands 

o GET_INFO & GET_ERROR are mandatory to TS, DIC, or Unit 

Figure 5-1 is an example showing which of the various bmControl fields of the Debug Attributes and the 
Debug-Unit descriptors define the commands supported by that particular level (TS, DIC, or Debug Unit). 

DvC.Trace
 IN Endpoint

Interface 1 Descriptor (Debug Control)

Debug-Unit Desc: Trace Processing Unit (1)

Debug-Unit Desc: Trace-Gen (Graphics)
Debug-Unit Desc: Trace-Gen (Core)

 

Debug-Unit Desc: Trace-Gen (Video)

Debug Attributes Descriptor (TS)

Interface 2 Descriptor (Debug Control)

Endpoint Descriptor Bulk IN

Debug Attributes Descriptor (DIC)

Output Connection Descriptor àUSB3

Debug-Unit Desc: Trace-Gen (Audio)

Core

Graphics

Video

Audio

Trace 
Proc. Unit 

(1)

Trace 
Proc. Unit 

(2)

Trace Processing 
Unit (3)

OC

Interface 3 Descriptor (DvC.Trace)

Debug-Unit Desc: Trace Processing Unit (2)

Interface Association Descriptor IAD1

DIC 1

DIC 1

Device Descriptor
Configuration DescriptorTS Power-Management Unit

DIC Power-Management Unit
bmControl defines 

supported DIC 
Debug Commands

bmControl of Debug-
Unit Desc. defines 
supported Debug 
Unit Commands

Etc.

bmControl defines 
supported TS Debug 

Commands

TS

TS

 

Figure 5-1: Which bmControl field defines the Debug Control for the TS, DIC, and Unit level 

The Debug Class only supports a basic, limited set of debug requests, because there is considerable 
variation in the debug hooks provided by the chip vendors, and thus it is difficult to define more extensive 
commands. For example, a bus-watcher requires address, command, and data filters, but there is 
considerable variation in the number of such filters, their masking capabilities, and so on. Furthermore, 
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some bus-watchers observe proprietary sideband signals, while others provide event counters with 
varying outcomes, and so on. Consequently, it is difficult to develop a set of generic debug commands 
that are applicable to the majority of designs.  

Nonetheless, the set of requests provided are still valuable, and a Standards body could develop their 
own set of commands, using these as a basis. The current set of commands allow the following useful 
scenarios: 

• The Debug-Control interface allows for a low-cost debug trace solution using a single DxC.Trace 
endpoint. In this scenario, the debugger uses the default endpoint 0 to configure and enable the 
TS to generate debug traces. Otherwise, the debugger would require additional endpoints to 
provide a means to configure the device, such as a COM-type interface via DxC.GP or a TAP-
type interface via DxC.Dfx. Such a single-endpoint, debug solution is very attractive for low-cost 
devices. 

• A TS may support just the Debug-Control interface and no other DxC interface. In this case, there 
will be no endpoints used for debug apart from the default endpoint 0. Figure 5-2 shows a possible 
scenario. In this example, the Debug Class specific SET_CONFIG_DATA requests configure the 
Trace Unit and later extract trace data from the memory buffer. 

Traces

USB3 Hardware 
Controller

HOST 
(DTS) 

Traces

USB Device (TS)

D
eb

ug
ge

r

Endpoint 0 IN

Endpoint 0 OUT

Debug-Class-specific 
Commands

Trace 
Processing 

Unit

Debug Driver

Configure Trace-Processing unit via 
TAP controller using MMIO reads/writes

Memory

Read Memory

 
Figure 5-2: Debug Example using only the Debug-Control Interface 

5.2 Debug-Control Overview 
The Debug-Control requests may target the complete TS, or a particular DIC, or a specific Unit. For 
example, the debugger may wish to power-down all of the debug-related logic in the complete TS; or 
perhaps, the debugger may wish to power-down the trace logic but leave the TAP logic powered on; or 
the debugger may wish to power-down the debug-trace logic associated with the graphics unit, but 
maintain power on all the other trace-generation units. Table 5-1 shows whether the Debug Control 
requests target the Global entity (i.e., complete TS), a Local entity (i.e., DIC) or a Specific entity (i.e., 
Debug unit). 

Table 5-1: Debug-Control Request Resolution 

Debug Control Request Global 

(Complete TS) 

Local 

(DIC) 

Specific 

(Debug Unit) 

SET/ GET_CONFIG_DATA 

SET_CONFIG_DATA_SINGLE 

Yes Yes Yes 

SET/GET_CONFIG_ADDRESS Yes Yes Yes 

SET/GET_OPERATING_MODE Yes Yes Yes 

SET/GET_TRACE Yes Yes Yes 

SET/GET_ALT_STACK Yes N/A N/A 

SET/GET_BUFFER Yes Yes Yes 
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Debug Control Request Global 

(Complete TS) 

Local 

(DIC) 

Specific 

(Debug Unit) 

SET_RESET Yes Yes Yes 

GET_INFO Yes Yes Yes 

GET_ERROR Yes Yes Yes 

The actual commands supported by the TS, DIC or Debug unit are defined via the bmControl fields in the 
Debug-Attributes descriptor for the TS and for the DIC, and in the Debug-Unit descriptor for the debug 
unit. Thus, after enumeration, the debugger will know which commands are supported by which entities. 
See Figure 5-1 for an example. 

If a Debug unit supports a command, then this does not imply that the DIC also supports this command. 
For example, a DIC may consist of a collection of Trace-Processing units, some of which provide the 
ability to be powered-down. However, the DIC itself may not provide the facility to be completely powered 
down. Thus, the bmControl field of the Debug-Attribute descriptor is not inclusive of its children debug 
units.  

The Debug-Attribute Descriptor may have the bmControl = 0, indicating that the DIC supports no Control 
requests. In this case, the Debug-Control descriptors simply define the debug topology and the trace 
format. 

If a device supports any Debug Control Requests then it shall support the mandatory requests (i.e., Get 
Error & Get Info). If a debug function does not support a certain request, it shall indicate this by Stalling 
the control pipe when that request is issued to access the function. 

5.3 Request Layout 
The following paragraphs describe the general structure of the SET and GET requests. Subsequent 
paragraphs detail the use of the SET/GET requests for the different request types 

5.3.1 Request Layout 
The SET requests are used to set an attribute of a Control inside an entity of the debug function, and the 
GET requests read the attribute inside the entity. Table 5-2 shows the fields for a USB request as used 
by the Debug class. 

Table 5-2: SET and GET Requests 

bmRequestType bRequest wValue wIndex wLength 

00100001 

SET_CONFIG_DATA 
SET_CONFIG_DATA_ADDRESS 
SET_ ALT_STACK 
SET_OPERATING_MODE 
SET_TRACE 
SET_BUFFER 
SET_RESET 

See following 
paragraphs. 

Typically use 
wValue<7:0> to 
select between 
Global and 

See following 
paragraphs. 

Typically used 
to select 
between Local 
and Specific 

Length of 
the Data 
Paramet
er block 
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bmRequestType bRequest wValue wIndex wLength 
10100001 GET_CONFIG_DATA 

GET_CONFIG_DATA_ADDRESS 
GET_ALT_STACK 
GET_OPERATING_MODE 
GET_TRACE 
GET_ BUFFER 
GET_INFO 
GET_ERROR 

Local entity 
(see Table 5-5) 

wValue<15:8> 
typically used 
for sub-
commands 

unit (see 
Table 5-5) 

The bmRequestType field specifies that this is a SET request (D7=0) or a GET request (D7=1). It is a 
class-specific request (D6..5=01), directed to a Debug interface (D4..0=00001). 

The bRequest field contains a constant that identifies which attribute of the addressed Control is to be 
modified. Possible attributes for a Control are: 

• Write and Read to the Debug Data Structure/Configuration register (SET_CONFIG_DATA, 
GET_CONFIG_DATA) 

• Write and Read the Power Mode control (SET_OPERATING, GET_OPERATING) 
• Set a Trace configuration (SET_TRACE, GET_TRACE) 
• Access Buffer size information in the Debug Function (SET_BUFFER, GET_BUFFER) 
• Restore the Debug function to its default state (SET_RESET) 
• Read the Error state pertaining to the USB command (GET_ERROR) 
• Read the Information state pertaining to the available USB commands (GET_INFO) 

If the addressed Control or entity does not support modification of a certain attribute, the control pipe shall 
gracefully ignore the request by indicating a Stall when an attempt is made to modify that attribute. 

The wValue field interpretation is qualified by the value in the wIndex field. These two fields are typically 
used to select between the TS (Global), DIC (Local) or a specific Debug unit. See Table 5-3. Depending 
on what entity is addressed, the layout of the wValue field changes. Later sections describe the contents 
of the wValue field for each entity separately.  

The low byte of the wIndex field specifies the interface to be addressed, and the high byte specifies the 
Unit ID of the debug unit or zero. If the wIndex is addressing an interface, then the virtual entity "interface" 
can be addressed by specifying zero in the high byte (i.e., Unit ID = 0). In general, one can make a request 
to a global structure (e.g., the configuration registers for the complete TS), a local structure within a DIC, 
and a specific structure within a debug unit (e.g., see Table 5-5). 

Table 5-3: Debug Command Selection of TS, DIC, and Unit 

Command Target wValue wIndex 

TS 00 00 00 ii 

Where ii is the interface number 
of any arbitrary Debug-Control 
Interface in any DIC in the TS. 

DIC interface #ii 00 01 00 ii 

Where ii is the interface number 
of the desired Debug-Control 
Interface. 

Unit #uu of DIC #ii xx xx (Don’t care) 

Note: Unit ID = 0 is reserved for 
accessing the complete TS or a 

uu ii 
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DIC. Hence, the wValue is 
ignored if uu ≠ 0 

Section 5.3.2 gives examples to clarify the addressing capabilities. 

The values in wIndex shall be appropriate to the recipient. Only existing entities in the debug function can 
be addressed, and only appropriate interface numbers may be used. If the request specifies an unknown 
unit ID or an unknown interface then the control pipe shall indicate a stall.  

The actual parameter(s) for the SET/GET request are passed in the data stage of the control transfer. 
The length of the parameter block is indicated in the wLength field of the request. The layout of the 
parameter blocks are given later. 

5.3.2 Request Examples 
Figure 5-3 and Figure 5-4 illustrate and explain how the Debug commands access the TS, a DIC, or a 
specific debug unit. Figure 5-3 illustrates how to access a specific Debug unit, while Figure 5-4 illustrates 
how to access a specific DIC. The explanation within Figure 5-4 also explains how to access the complete 
TS. 

wIndex<15:8> wIndex<7:0>
Debug Unit ID

≠ 0
Interface ID = 

bInterfaceNumber

• wIndex<7:0> is the Interface ID (i.e., bInterfaceNumber) of 
the Debug-Control Descriptor within the desired DIC 

• Thus, the Interface ID indirectly defines the desired DIC 
• A non-zero Debug-Unit ID defines the debug unit within this 

DIC
• E.g., to access the Trace Processing unit of DIC1, the 

wIndex = 0x0100 (i.e., Debug-unit ID = 1 & Interface ID = 0)

SET/GET Request wIndex Data

Debug Request to a specific Debug Unit:

Configuration Descriptor

Interface Descriptor (Debug Control); bInterfaceNumber = 0
Debug Attributes Descriptor

Interface Association Descriptor 1

Interface Descriptor (DvC.Trace); bInterfaceNumber = 1
Endpoint IN DIC 1

Device Descriptor

wValue

Debug Unit Descriptor (Trace Processing Unit, UnitID = 1)

 

Figure 5-3: Debug Control accessing a specific Debug Unit 

A non-zero wIndex<15:8> field defines the desired debug unit that the debug command is targeting. If 
wIndex<15:8> = 0 (i.e., Unit ID = 0), then the command is targeting the TS or the DIC, where the 
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wValue<1> bit defines whether the command is targeting the complete TS or a specific DIC. When 
targeting the TS, then the command is free to point to any of the DICs within the TS. 

wIndex<15:8> wIndex<7:0>
Debug Unit ID

= 0
Interface ID = 

bInterfaceNumber

SET/GET Request wIndex Data

Debug Request to a specific DIC or the complete TS:

Configuration Descriptor

Interface Descriptor (Debug Control); bInterfaceNumber = 0
Debug Attributes Descriptor

Interface Association Descriptor 1

Interface Descriptor (DvC.Trace); bInterfaceNumber = 1
Endpoint IN

DIC 1

Device Descriptor

wValue

Debug Unit Descriptor (Trace Processing Unit, UnitID = 1)

Interface Descriptor (Debug Control); bInterfaceNumber = 2
Debug Attributes Descriptor

Interface Association Descriptor 1

Interface Descriptor (DvC.Dfx); bInterfaceNumber = 3
Endpoint IN

DIC 2Debug Unit Descriptor (Dfx Unit, UnitID = 1)

Endpoint OUT

wValue
TS:  wValue<1> = 0
DIC: wValue<1> = 1

• A Debug-Unit ID = 0 indicates that the command is 
targeting a specific DIC or the complete TS

• The wValue<1> defines if accessing DIC or TS

• If accessing a DIC, then wIndex<7:0> is the Interface ID 
(i.e., bInterfaceNumber) of the Debug-Control Descriptor 
within the desired DIC

• For example, to access DIC2, the wIndex = 0x0002 (i.e., 
Debug-unit ID = 0 and the Interface ID = 2). In addition, 
wValue<1> = 1 to access a specific DIC

 

Figure 5-4: Debug Control accessing a specific DIC or the complete TS 

Figure 5-5 is an example of a GET_CONFIG_DATA request to a global data structure. This is the highest-
level data structure corresponding to the complete debug entity (i.e., the TS, which may consist of a 
collection of chips if the debug topology spans multiple chips).  

Note that an access to the global data structure via any of the Debug-Control Interface descriptors (e.g., 
interface 1 and 3 in Figure 5-5) aliases to the same data structure. 

 

GET Config wIndex = 0x0001 or 3 Data

Debug Request to a Global Data Structure

Configuration Descriptor

Interface 1 Descriptor (Debug Control)
Debug Attributes Descriptor

Interface Association Descriptor 1

Interface 2 Descriptor (DvC.Trace)
Endpoint IN

Interface 3 Descriptor (Debug Control)
Debug Attributes Descriptor

Interface 4 Descriptor (DvC.Dfx)
Endpoint IN
Endpoint OUT

Interface Association Descriptor 2

DIC 1

Device Descriptor

TS
DIC 1 Data Structure

TS 
Data 

Structure/
Config 

Registers

DIC 1
Config Registers

MIPI STM
Config Reg

Debug Unit 1
(MIPI STM)

wValue = 0

Debug Unit 1 Descriptor (MIPI STM)
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Figure 5-5: Debug Request to Global Configuration Registers 

Note that one can also target a Debug Command directly if there is a Debug-Control Interface & Debug-
Attributes descriptor pair dedicated to the TS, as per the example in Figure 4-7. In this case, we 
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specifically address that Debug-Control Interface using the scheme shown below in Figure 5-6 (i.e., 
wValue = 0x0001 and wIndex points to the Debug-Control Interface associated with the TS). 

Figure 5-6 is an example of a GET_CONFIG_DATA request to a local (DIC) data structure. Unlike the 
previous global request, an access to a specific Debug-Control Interface descriptor (e.g., interface 1 or 3 
in Figure 5-6) access the data structure for that corresponding DIC. This figure shows two examples of 
GET_CONFIG_DATA: one to interface 1 and a second example (in dotted arrows) to interface 3. 

GET_CONFIG wIndex = 0x0001 or 3 Data
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Configuration Descriptor

Interface 1 Descriptor (Debug Control)
Debug Attributes Descriptor

Interface Association Descriptor 1

Interface 2 Descriptor (DvC.Trace)
Endpoint IN

Interface 3 Descriptor (Debug Control)
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Debug Unit 1 Descriptor (MIPI STM)
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(TAP Controller)

UnitID = 0x00
Interface = 0x01

wValue = 0x0001 (DIC)

DIC 2

wValue = 0x0001 (DIC)

UnitID = 0x00
Interface = 0x03

 
Figure 5-6: Debug Request to DIC Configuration Registers 

Figure 5-7 is an example of a GET_CONFIG_DATA request to a specific data structure within a debug unit 
(e.g., a MIPI STM unit). This is the lowest-level data structure corresponding to a specific Unit ID. In this 
case, the wIndex defines the Unit ID within a particular DIC. 
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Figure 5-7 Debug Request to Debug-Unit Configuration Registers 
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5.4 Debug Control Requests 

5.4.1 SET_CONFIG_DATA and GET_CONFIG_DATA Overview 
Figure 5-8 shows an example of a SET_CONFIG_DATA, GET_CONFIG_DATA, and a 
SET_CONFIG_DATA_SINGLE command. These commands provide read and write access to the memory 
space.  

64-bit wide

Memory

SET_DATA

SET Conf ig Single wIndex wLength (of  Parameter block)wValue

Byte Address <63:0>

Data <63:0>
Maskreserved

GET Conf ig wIndex wLength (of  Data Block)wValue Configuration Address<63:0>

SET Conf ig wIndex wLength (of  Parameter block)wValue

Byte 0

Byte wLength -1

0x0000 0000 0000 0000

0xFFFF FFFF FFFF FFF8

SET_DATA

GET_DATA

 
Figure 5-8: Example of SET_CONFIG_DATA, SET_CONFIG_DATA_SINGLE, and 

GET_CONFIG_DATA access of Memory space 

The SET_CONFIG_DATA_SINGLE command writes a contiguous, byte-masked data value, from 0 to 8 bytes 
in size, to a 64-bit byte address. The address, data and byte mask are contained within the 32B Parameter 
block. 

The SET_CONFIG_DATA command writes N contiguous data bytes to the 32-bit aligned, 64-bit byte address 
specified by the Configuration Address register. The SET_CONFIG_ADDRESS and the 
GET_CONFIG_ADDRESS commands read and write this register. The wLength field in the 
SET_CONFIG_DATA command defines the number of bytes to write. 

The GET_CONFIG_DATA command reads N contiguous bytes starting at the 32-bit aligned, 64-bit byte 
address specified by the Configuration Address register. The wLength field in the GET_CONFIG_DATA 
command defines the number of bytes to read. 

5.4.2 Debug Commands and Operating Modes  
Debug commands are intended for configuration of the debug units at the start of a debug session and 
for “housekeeping” tasks during a debug session. They are not intended for general debug. Of course, 
the Get/Set Configuration data can read/write memory, but there are no debug commands for stop-mode 
or run-mode operations (e.g., Set breakpoint, Single-step, etc.). These should be done via DxC.Dfx or 
DxC.GP as appropriate. 

The UBS device hardware controllers support either software or hardware decode of the debug control. 
The simplest implementation uses software decode, where the device hardware controller interrupts the 
USB stack, and software performs the operation. Hardware decode, on the other hand, performs the 
debug request in hardware without disturbing the OS. This is preferable for debug.  

Note that a DbC is a standard USB device, in the sense that it supports a Default Control endpoint, which 
responds to standard USB requests, e.g. SET_ADDRESS, GET_DESCRIPTOR, GET_CONFIGURATION, etc. 
Typical DbC implementations provide hardware support for these commands and thus implementations 
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may choose to extend this hardware to include the additional debug commands. From a debug 
perspective, this is the preferred implementation. 

If a debug function does not support a certain request, it must indicate this by stalling the control pipe 
when that request is issued to the function. 

5.4.3 SET_CONFIG_DATA_SINGLE 
The SET_CONFIG_DATA_SINGLE command writes a contiguous, byte-masked data value, from 0 to 8 bytes 
in size, to a 64-bit byte address. The address, data and byte mask are contained within the 32B Parameter 
block. 

Table 5-4: SET_CONFIG_DATA_SINGLE Control Request 

Offset 

(Byte) 

Field Size 

(Bytes) 

Value Description 

0 bmRequestType 1 0x21 D7 = 0 à Host to device 

D6..5 = 01 à Class request 

D4..0 = 00001 à Recipient is interface 

1 bRequest 1 0x02 SET_CONFIG_DATA_SINGLE 

2 wValue 2 Number wValue<15:8>: reserved 

wValue<7:0>: See Table 5-5 

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID 

wIndex <7:0>  = Interface ID 

6 wLength 2 Number Parameter Block Length: 

• 32B for Debug Class specific parameter block 
• Variable-length for Vendor specific. 

Table 5-5 defines the selection between these 2 options 

The wIndex and wValue fields define whether the access is to the Global, Local, or a Specific unit (see 
Table 5-5). In addition, these fields define whether the access is a 64-bit access using an architected 32B 
data parameter block, or if the data-parameter block is vendor specific.  

Table 5-5: SET & GET_CONFIG_DATA Debug Data Structure Selection 

wIndex<15:8> wValue<7:0> Debug Data Structure 

UnitID = 0 

0x00 (Debug Class defined Parameter Block)  

0x01 (Vendor defined Parameter Block) 

Global (i.e., the complete TS, for 
example the SoC) 

0x02 (Debug Class defined Parameter Block)  

0x03 (Vendor defined Parameter Block) 

Otherwise: reserved 

Local (i.e., DIC) 

 UnitID ≠ 0 

0x00 (Debug Class defined Parameter Block)  

0x01 (Vendor defined Parameter Block) 

Otherwise: reserved 

Specific (i.e., Debug unit) 

The Debug Class specific SET_CONFIG_DATA Parameter block (see Table 5-5) is 32 Bytes in size and 
consists of the following, little-endian format: 
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reserved

Byte Address<63:32>

Byte Address<31:0>

Data<63:32>

Data<31:0>

Data Byte Mask<7:0>

reserved

reserved

reserved

Byte Address 00

MS Byte Address

 
Figure 5-9: Debug Class Specific Parameter Block for SET_CONFIG_DATA Request 

The address within the parameter block is a quad-word aligned 64-bit address and thus address<2:0> 
are ignored.  

5.4.4 SET_CONFIG_DATA 
The SET_CONFIG_DATA command writes N contiguous data bytes to the 32-bit aligned, 64-bit byte address 
specified by the Configuration Address register. The SET_CONFIG_ADDRESS and the 
GET_CONFIG_ADDRESS commands read and write this Configuration-Address register. The wLength field 
in the SET_CONFIG_DATA command defines the number of bytes to write. 

Table 5-6 defines the SET_CONFIG_DATA command. 

Table 5-6: SET_CONFIG_DATA Control Request 

Offset 

(Byte) 

Field Size 

(Bytes) 

Value Description 

0 bmRequestType 1 0x21 D7 = 0 à Host to device 

D6..5 = 01 à Class request 

D4..0 = 00001 à Recipient is interface 

1 bRequest 1 0x01 SET_CONFIG_DATA  

2 wValue 2 Number wValue<15:8>: reserved  

wValue<7:0>: See Table 5-5 

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID 

wIndex <7:0>  = Interface ID 

6 wLength 2 Number Parameter Block Length:  

Number of data bytes in the parameter block. The 
number of bytes equals wLength+1. Thus, the 
SET_CONFIG_DATA can write from 1 to 64KB.   

The wIndex and wValue fields define whether the access is to the Global, Local, or a Specific unit (see 
Table 5-5). 

5.4.5 GET_CONFIG_DATA 
The GET_CONFIG_DATA command reads N contiguous bytes starting at the 32-bit aligned, 64-bit byte 
address specified by the Configuration Address register. The wLength field in the GET_CONFIG_DATA 
command defines the number of bytes to read, from 1 to wLength+1. The SET_CONFIG_ADDRESS and the 
GET_CONFIG_ADDRESS commands read and write this register. The data is in little-endian format. 
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Table 5-7: Get Config Data Control Request 

Offset 

(Byte) 

Field Size 

(Bytes) 

Value Description 

0 bmRequestType 1 0xA1 D7 = 1 à Device to Host 

D6..5 = 01 à Class request 

D4..0 = 00001 à Recipient is interface 

1 bRequest 1 0x81 GET_CONFIG_DATA 

2 wValue 2 Number wValue<15:8>: reserved 

wValue<7:0>: See Table 5-5 

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID 

wIndex <7:0>  = Interface ID 

6 wLength 2 Number Parameter Block Length.  

Size of the data to be fetched in bytes, from 1 
byte up to a maximum, of 64KB (i.e., wLength 
+1) 

5.4.6 SET_CONFIG_ADDRESS 
This command writes to the 64-bit, Dword aligned byte Configuration Address register. The architecture 
defines a Configuration Address per Global, Local, or per Specific debug unit via the wIndex and wValue 
fields (see Table 5-5). However, an implementation may choose to alias these three memory spaces into 
a single Configuration Address registers, thus defining a single, unified address space. 

If the TS does not support this command then the Configuration Address defaults to the value 0. 

Table 5-8: SET_CONFIG_ADDRESS Control Request 

Offset 

(Byte) 

Field Size 

(Bytes) 

Value Description 

0 bmRequestType 1 0x21 D7 = 0 à Host to device 

D6..5 = 01 à Class request 

D4..0 = 00001 à Recipient is interface 

1 bRequest 1 0x03 SET_CONFIG_ADDRESS 

2 wValue 2 Number wValue<15:8>: reserved 

wValue<7:0>: See Table 5-5 

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID 

wIndex <7:0>  = Interface ID 

6 wLength 2 0x0008 Parameter Block Length = 8 

The parameter block contains the 64-bit, Dword aligned 
address to place in the Configuration Address register   
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5.4.7 GET_CONFIG_ADDRESS 
This command reads from the 64-bit Configuration Address register. 

Table 5-9: GET_CONFIG_ADDRESS Control Request 

Offset 

(Byte) 

Field Size 

(Bytes) 

Value Description 

0 bmRequestType 1 0xA1 D7 = 1 à Device to device 

D6..5 = 01 à Class request 

D4..0 = 00001 à Recipient is interface 

1 bRequest 1 0x83 GET_CONFIG_ADDRESS 

2 wValue 2 Number wValue<15:8>: reserved 

wValue<7:0>: See Table 5-5 

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID 

wIndex <7:0>  = Interface ID 

6 wLength 2 0x0008 Parameter Block Length = 8 bytes 

Read all 8 bytes of the 64-bit, Dword-aligned address in 
the Configuration Address register.  

5.4.8 SET_ ALT_STACK 
Typical SoC’s contain many cores, where one or more may support the USB stack. For example, during 
initial boot, a secondary core may provide basic USB device support for downloading new firmware or 
Operating System images. Later, the main OS takes over and provides the USB stack after it has booted. 
It is advantageous to allow the DTS to switch between these various USB stacks as necessary. For 
example, if the main OS hangs, then switching the USB stack to a secondary core will allow debug to 
continue. 

The SET_ALT_STACK command is optional, and selects between the various options defined by the 
GET_ALT_STACK vendor specific. See the GET_ALT_STACK section.  

Table 5-10: Set_ Alt_Stack Control Request 

Offset 

(Byte) 

Field Size 

(Bytes) 

Value Description 

0 bmRequestType 1 0x21 D7 = 0 à Host to device 

D6..5 = 01 à Class request 

D4..0 = 00001 à Recipient is interface 

1 bRequest 1 0x04 SET_ALT_STACK  

2 wValue 2 0x0000 Not used (This command only applies to the complete 
TS and not to a DIC or debug unit) 

4 wIndex 2 Number This numbers selects one of the options supported by 
the GET_ALT_STACK 

6 wLength 2 0x0000 No Parameter Block   
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5.4.9 GET_ALT_STACK 
This command returns information on the state of the various “cores” within the SoC that support a USB 
stack. Because SoC designs vary considerably, then this capability is vendor specific. However, we 
provide an example usage as a guide. 

Table 5-11: GET_ALT_STACK Control Request 

Offset 

(Byte) 

Field Size 

(Bytes) 

Value Description 

0 bmRequestType 1 0xA1 D7 = 1 à Device to Host 

D6..5 = 01 à Class request 

D4..0 = 00001 à Recipient is interface 

1 bRequest 1 0x84 GET_ALT_STACK 

2 wValue 2 0 Not used (This command only applies to the complete 
TS and not to a DIC or debug unit) 

4 wIndex 2 0 Not used 

6 wLength 2 Number Parameter Block from 1 byte up to a maximum, of 64KB 
(i.e., wLength +1). This is vendor specific, but see Table 
5-12 for an example. 

The Debug Class specific GET_ALT_STACK Parameter block is a 2-Byte bitmask: 

 

Table 5-12: Example GET_ALT_STACK Parameter Block 

Bit Description 

<0> Running on USB Stack 1 

<1> USB Stack 1 is available 

<2> Running on USB Stack 2 

<3> USB Stack 2 is available 

<4> Running on USB Stack 3 

<5> USB Stack 3 is available 

<6> Running on USB Stack 4 

<7> USB Stack 4 is available 

 

Table 5-12 is for an implementation that supports four alternate USB stacks, labelled 1 to 3. The even 
bits <0, 2, 4, and 6> are mutually exclusive and indicate which Stack is active. For example, the main 
core could be USB Stack 0, while the boot core could be USB Stack 1. Clearly, only 1 USB stack can be 
running at a time.  

The odd bits <1, 3, 5, & 7> indicate if the associated core that can run the USB stack is available. For 
example, it has booted and is not in a powered-down, inactive state. 

Table 5-13 defines the corresponding values for wIndex in the SET_ALT_STACK. Each pair of consecutive 
bits corresponds to the different USB stacks. The DTS selects which USB Stack it wishes to use next by 
setting one of the even bits <0, 2, etc.> The DTS host then performs a USB reset, forcing the TS to use 
the new USB Stack for enumeration. Consequently, the TS must preserve the information on which USB 
Stack to use when a USB Reset occurs. 
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The odd bits of Table 5-13 allow the DTS to tell a core it can go back to sleep if it wishes to – in other 
words, the DTS no longer need the core to be active. For example, an SoC may go into a sleep state 
where the USB hardware logic is alive but the rest of the chip is in a low-power state. In this case, the 
“USB Stack N is available” bit of the active USB Stack of Table 5-12 will be 0 indicating that the core is 
asleep. The DTS this asserts the corresponding even bit of Table 5-13 when it needs to wake up the core 
in order to perform a debug operation; and then later sets the odd bit, when it has finished with the debug 
operation. 

Table 5-13 Example SET_ALT_STACK wIndex 

Bit Description 

<0> Use USB stack 1 for the debug capabilities 

<1> Allow USB Stack 1 to go to sleep if required. 

<2> Use USB stack 2 for the debug capabilities 

<3> Allow USB Stack 2 to go to sleep if required. 

<4> Use USB stack 3 for the debug capabilities 

<5> Allow USB Stack 3 to go to sleep if required. 

<6> Use USB stack 4 for the debug capabilities 

<7> Allow USB Stack 5 to go to sleep if required. 

 

 

5.4.10 SET_OPERATING_MODE 
The SET_OPERATING_MODE is used to control the voltage, clocks, initialization, etc. of the TS, DIC, or 
Debug Unit. This command thus defines whether the debug logic is available for use or not. The 
SET_OPERATING_MODE selects a specified debug operating mode, and then the software or hardware in 
the TS, DIC, or Debug Unit places the debug hardware in the desired mode. 
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Figure 5-10: SET_OPERATING_MODE Example 

Figure 5-10 shows an example of a TS consisting of two DICs: one for the DvC.Trace capability and one 
for the DvC.Dfx capability. In this example, each of the TS, DICs, and Debug units have an associated 
Power-Management unit, allowing fine-grain control of which unit(s) are powered-on. An actual 
implementation may provide less capability, but this example shows extensive capability for the purpose 
of illustration. 

Note that each entity (TS, DIC or Debug unit) can allow power-management of the debug control logic 
(and any associated configuration registers) as well as of the “main” debug functional hardware (e.g., the 
trace-merge hardware). Thus, for example, one can power down the debug control capability while 
keeping the trace hardware powered on. 

Consider, for example, the scenario where the DTS is only capturing traces from the core in Figure 5-10, 
and the DTS wishes to power down all the remaining debug logic to avoid excessive battery drain of the 
TS. In this case, the DTS will do the following: 

• Disable the power being applied to the Debug-command logic for the TS, DIC1, DIC2, Trace-
Processing unit 1, Trace-Processing unit 2, and the Dfx Unit. This assumes that the debug control 
logic and associated configuration registers are in a separate sub-power well that is distinct from 
the trace and Dfx logic in the debug units. Admittedly, this is unlikely in current-generation parts, 
but is being considered here for the purpose of illustration. 

• Disable the Trace Processing unit 1 hardware associated with the Modem traces, since the DTS 
is not interested in these traces. 

• Disable the Dfx unit hardware logic since the DTS is only interested in core traces and is thus not 
using the Dfx interface. 

The SET_OPERATING_MODE (Debug-Operating mode) request can target the TS Control Interface, or the 
Control/capability interfaces within a DIC. Thus, for example, the SET_OPERATING_MODE (Debug-
Operating mode) can power off the Debug-Control logic associated with the Debug trace but still keep the 
debug trace hardware powered-on. 

At the other extreme, a TS may need to turn on/off all of the debug logic, and it would be inconvenient to 
have to individually enable/disable each DIC and Debug Unit. For this reason, the SET_OPERATING_MODE 
supports a Debug-All mode, which turns all of the debug logic on or off. 
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The SET_OPERATING_MODE request configures the operating mode in the Global (TS), Local (DIC), or 
Specific debug unit as specified by the wIndex and wValue fields (see Table 5-16). Thus, if we are only 
interested in capturing traces from a specific unit (e.g., the modem) then this command allows us to enable 
the power and clocks in the specific unit or DIC that contains the relevant logic. An implementation may 
choose to not support this level of granularity. For example, an implementation may choose to enable the 
power for all of the debug logic in a TS, even though the SET_OPERATING_MODE command targeted a 
particular DIC within the TS.  

A device may choose to not provide the SET_OPERATING_MODE control. In this case, it shall default to the 
equivalent of the Debug-All-mode = ON for all of the supported debug logic within the TS.  

The operating modes are defined in the Table 5-14: 

Table 5-14: SET_OPERATING_MODE Definitions 

Mode Description 

Debug All 0: Debug-All mode = OFF 

1: Debug-All mode = ON 

Certain SoC will only provide the capability to enable/disable all of the 
debug hardware (i.e., Traces, Dfx, Control, etc.) and nothing less. In 
this case, the SET_OPERATING_MODE (Debug-Logic mode = ON/OFF) 
enables/disables all of the debug logic within the TS. 

Note that the other modes allow fine-grain enabling/disabling of the 
power to individual debug components.  

An SoC may choose to use the Debug-All = ON mode similarly to a 
UART Wakeup. In this case, if the SoC has gone to sleep, then it will 
awaken when the DTS issues a Debug-All mode = ON. If the TS 
supports preservation of debug state across a wakeup, then it set the 
Graceful-Wakeup-Supported bit in the parameter block of Table 5-17.  

This mode is optional. 
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Mode Description 

Debug Operating  

 

 

0: Debug-Operating mode = OFF 

1: Debug-Operating mode = ON 

The SET_OPERATING_MODE (Debug-Operating) request can target the 
TS Control Interface, or the Control or Capability interfaces within a 
DIC. In this way, this request can power on/off the Trace, Dfx, or GP 
hardware capability or the Debug Control logic associated with the TS, 
DIC or debug unit. 

The DTS uses the SET_OPERATING_MODE (Debug-Operating = ON) 
command to place the Command or Functional component of the TS, 
DIC or Debug Unit into a fully functional mode with regards the 
supported Debug capability. Thus, to the DTS, the specified debug 
command or capability appears to be fully functional even though 
portions of the SoC (including the debug logic) could be asleep.  

For example, when the Debug-Operating Mode = ON, a TS may keep 
the debug logic always powered up; or it may choose  to power-down 
the debug logic, but awaken it automatically and transparently 
whenever it receives a command from the DTS. In either case, the DTS 
will be under the impression that the debug commands or capability 
associated with the TS, DIC, or Debug unit is seamlessly, always 
available. 

Debug-Operating Mode = OFF means that the targeted hardware is 
powered down, and thus not operational. However, in this mode, the 
SET_OPERATING_MODE command should provide support for the DTS 
to set Debug-Operating mode = ON, thus allowing subsequent re-
enabling of the debug operations. If the TS does not provide this 
support, then it will STALL the request. 

This mode is optional. 

Debug Emulate Low-Power  

 

This command affects the debug logic within the complete TS, within 
the DIC, or within a specific Debug unit as defined by Table 5-16. 

In this mode, the device emulates the steps it takes to transition 
between low-power states, but does not actually power down the 
hardware. Thus, the device goes through the motions, but does not 
actually change the power state. This avoids the TS having to save 
debug state that would be lost during an actual power transition. 

This mode is optional. 

Graceful Degrade In this mode, the TS, DIC or Debug Unit are allowed to autonomously 
disable functionality. For example, a DIC may stop generating traces 
when the device’s battery power becomes too low. The TS, DIC, or 
Debug unit should issue an interrupt to notify the DTS whenever it 
disables any debug functionality.  

This mode is optional. 
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Mode Description 

Force Debug There are situations where the DTS needs to inform the TS not to 
disable the debug logic. For example, enabling all of the debug logic in 
a SoC may place it outside the safe operating mode of the device. A 
lab debugger may require the device to be in this potentially damaging 
state, because this may be the only way to debug a sighting. 

In addition, forcing a debug unit to be on, prevents the power-
management logic from powering it off when in the Graceful-Degrade 
mode (e.g. when the battery is running low). Presumably, the power-
management logic will instead power down some other logic in this 
scenario. 

This mode is optional, and will probably be fused off in a production 
part. 

Close Debug At the end of a debug session, the DTS may need to send a command 
to the TS, DIC or Debug Unit to gracefully disable the debug logic. 
Otherwise, for example, a trace buffer may overflow and hang the SoC 
if it is not gracefully disconnected prior to a USB3 link disconnect. 

 

Table 5-15 defines the SET_OPERATING_MODE Control request. 

Table 5-15: SET_OPERATING_MODE Control Request 

Offset 

(Byte) 

Field Size 

(Bytes) 

Value Description 

0 bmRequestType 1 0x21 D7 = 0 à Host to device 

D6..5 = 01 à Class request 

D4..0 = 00001 à Recipient is interface 

1 bRequest 1 0x05 SET_OPERATING_MODE 

2 wValue 2 Number wValue<15:8>: reserved  

wValue<7:0>: See Table 5-16 

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID 

wIndex <7:0>  = Interface ID 

6 wLength 2 0x0004 Device Operating Mode Parameter Block. 4–byte 
Bitmap. See Table 5-17 

 

Table 5-16: SET & GET OPERATING MODE Debug Structure 

wIndex<15:8> wValue<7:0> Debug Structure 

UnitID = 0 

0x00  Global (i.e., TS) 

0x02  

Otherwise: reserved 

Local (i.e., DIC) 

 UnitID ≠ 0 
0x00  

Otherwise: reserved 

Specific (i.e., Debug unit) 

The Debug Class specific SET OPERATING Parameter block is a 2-Byte bitmask Table 5-17.  
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Table 5-17: Device Operating-Mode Parameter Block 

Bit Description Read/Write 

<0> Debug-All mode  RW 

<1> Debug-All supported R 

<2> Graceful-Wakeup-Supported R 

<3> reserved  

<4> Debug-Operating mode  RW 

<5> Debug-Operating mode supported R 

<6> Debug Emulate low-power RW 

<7> Debug Emulate low-power mode supported R 

<8> Graceful-Degrade RW 

<9> Graceful-Degrade mode supported R 

<10> Force-Debug RW 

<11> Force-Debug mode supported R 

<12> Device uses power supplied by USB.  RW-opt 

<13> Device uses power supplied by Battery RW-opt 

<14> Device uses power supplied by AC RW-opt 

<15> Close Debug RW 

<16> Close Debug mode supported R 

<31:17> Vendor-specific operating modes RW-opt 

The bit fields in the parameter block provides Information regarding operating modes and power sources: 

• D16, D11, D9, D7, D5, D2, D1 define whether the TS, DIC, or the Debug unit supports the 
specified operation mode 

• D15, D10, D8, D6, D4, D0 enable/disabled the specified operation mode in the TS, DIC, or Debug 
unit. These bits are mutually exclusive. The behavior if multiple bits are enabled is undefined  

• D14..D12 indicates which power source is currently used in the USB device. These bits are 
mutually exclusive. The behavior if multiple bits are enabled is undefined.  
 
The bits D14..D12 are set by the device and are usually informational. However, it is 
recommended that the TS allows the debugger to force the device to use a different power 
source, which is why these bits are designated as RW-opt (Read & Write-optional). For example, 
when debugging over USB, the device will normally be charging over the USB cable instead of 
using its internal battery. However, during a battery-consumption test, one needs to force the 
device to use its internal battery. 

• D31..D17 are vendor-specific operating modes  

5.4.11 GET_OPERATING_MODE 
This Control request reads the parameter block in the specified debug unit. 
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Table 5-18: GET_OPERATING_MODE Control Request 

Offset 

(Byte) 

Field Size 

(Bytes) 

Value Description 

0 bmRequestType 1 0xA1 D7 = 1 à Device to Host 

D6..5 = 01 à Class request 

D4..0 = 00001 à Recipient is interface 

1 bRequest 1 0x85 GET_OPERATING_MODE 

2 wValue 2 Number wValue<15:8>: reserved  

wValue<7:0>: See Table 5-16 

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID 

wIndex <7:0>  = Interface ID 

6 wLength 2 0x0004 Device Power Mode Parameter Block. 4–byte Bitmap. 
See Table 5-17 

5.4.12 GET_INFO 
The GET_INFO request queries the capabilities and status of the specified control. This command is 
mandatory if a device supports at least one Debug Command. 

Table 5-19: GET_INFO Control Request 

Offset 

(Byte) 

Field Size 

(Bytes) 

Value Description 

0 bmRequestType 1 0xA1 D7 = 1 à Device to Host 

D6..5 = 01 à Class request 

D4..0 = 00001 à Recipient is interface 

1 bRequest 1 0x87 GET_INFO 

2 wValue 2 Number wValue<15:8>: reserved  

wValue<7:0>: See Table 5-16 

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID 

wIndex <7:0>  = Interface ID 

6 wLength 4 0x0004 GET_INFO Parameter Block. See Table 5-17 

When issuing the GET_INFO request, the wLength field shall always be set to a value of 1 byte. The result 
returned is a bit mask reporting the capabilities of the control. The bits are defined as: 

Table 5-20: GET_INFO Parameter Block 

Bit Field Description Bit state 

<0> 1 = Supports SET_CONFIG_DATA_SINGLE Capability 

<1> 1 = Supports Set_Config_Data Capability 

<2> 1 = GET_CONFIG_DATA Capability 

<3> 1 = SET_CONFIG_ADDRESS Capability 

<4> 1 = GET_CONFIG_ADDRESS Capability 
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Bit Field Description Bit state 

<5> 1 = SET_ALT_STACK  Capability 

<6> 1 = GET ALT STACK Capability 

<7> 1 = SET OPERATING MODE Capability 

<8> 1 = GET OPERATING MODE Capability 

<9> 1 = SET TRACE CONFIGURATION Capability 

<10> 1 = GET TRACE CONFIGURATION Capability 

<11> 1 = SET BUFFER Capability 

<12> 1 = GET BUFFER Capability 

<13> 1 = SET RESET Capability 

<28:14> reserved (Set to 0) -- 

<29> 1=Disabled due to automatic mode (under device control) State 

<30> 1= Self-Generated Control (see Section 3.6.7.2, "Status Interrupt 
Endpoint") 

Capability 

<31> 1= Slow Control (see Section 3.6.7.2, "Status Interrupt Endpoint") Capability 

5.4.13 GET_ERROR  
This read-only control indicates the status of each host-initiated request to a Unit or interface of the debug 
function. If the device is unable to fulfill the request, it will indicate a Stall on the control pipe and update 
this control with the appropriate code to indicate the cause. This control will be reset to 0 (i.e., No Error) 
upon the successful completion of any control request (including requests to this control). Slow control 
requests are a special case, where the initial request will update this control, but the final result is delivered 
via the Status Interrupt Endpoint (see sections 3.6.7.2, "Status Interrupt Endpoint"). This command is 
mandatory if a device supports at least one Debug Command. 

Table 5-21: GET_ERROR Control Request 

Offset 

(Byte) 

Field Size 

(Bytes) 

Value Description 

0 bmRequestType 1 0xA1 D7 = 1 à Device to Host 

D6..5 = 01 à Class request 

D4..0 = 00001 à Recipient is interface 

1 bRequest 1 0x88 GET_ERROR 

2 wValue 2 Number wValue<15:8>: reserved  

wValue<7:0>: See Table 5-16 

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID 

wIndex <7:0>  = Interface ID 

6 wLength 2 0x1 ERROR CODE Parameter Block. See Table 5-22 
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Table 5-22: Error Code Parameter Block 

Offset 

(Byte) 

Field Size 

(Bytes) 

Value Description 

0 bRequestErrorCode 1 Number 0x00: No error 

0x01: Not ready 

0x02: Wrong state 

0x03: Insufficient Power Available 

0x04: Max Power Violation 

0x05: Operating-mode unavailable 

0x06: Out of range 

0x07: Invalid unit 

0x08: Invalid control 

0x09: Invalid Request 

0x0A: Permission denied 

0x0B-0xFE: reserved  

0xFF: Unknown 

The bit field in the parameter block provides status information regarding error conditions: 

• No error: The request succeeded. 

• Not ready: The device has not completed a previous operation. The device will recover from this 
state as soon as the previous operation has completed. 

• Wrong State: The device is in a state that disallows the specific request. The device will remain 
in this state until a specific action from the host or the user is completed. 

• Insufficient Power available: The actual Operating Mode of the device is insufficient to complete 
the Request. For example: 

o The TS may be able to support a request when AC powered but not when battery 
powered (or when the battery is almost dead). 

o The TS is in an operating mode where the Trace DIC is powered-off thus preventing 
access to the configuration register via the SET_CONFIG_DATA command. The debugger 
may need to first change the operating mode and then resubmit the request. 

• Max Power Violation: The requested debug operation would exceed the maximum operating 
conditions of the TS and was denied 

• Operating-mode unavailable: The operating mode requested is not available 

• Out of Range: Result of a SET_CONFIG_DATA Request when attempting to write to a non-
existent/out-of-range address. 

• Invalid Unit: The Unit ID addressed in this Request is not assigned. 

• Invalid Control: The Control addressed by this Request is not supported. 

• Permission Denied: The request was denied by the security state.  

• Invalid Request: This Request is not supported by the Control. 
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A request to an unauthenticated debug unit, DIC or TS stalls the command and reports an Invalid Control 
or Permission Denied depending on the implementation. 

5.4.14 SET_TRACE 
The SET_TRACE request enables one of 255 trace configurations. SET_TRACE (0) disables traces. The 
actual traces enabled is vendor specific and beyond the scope of this document.  

This requests sets or reads the vendor-specific trace configuration. The vendor can define one of 255 
possible trace configurations. For example, Trace Configuration 1 may enable all traces within the TS, 
while Trace configuration 2 only enables the modem traces. This register is not a bit mask but a number 
corresponding to a set of allowed traces. 

Enabling debug power mode may automatically start a vendor-defined trace configuration. The debugger 
can use the GET_TRACE_CONFIGURATION to determine which configuration is enabled. 

Table 5-23: SET_TRACE Control Request 

Offset 

(Byte) 

Field Size 

(Bytes) 

Value Description 

0 bmRequestType 1 0x21 D7 = 0 à Device to Host 

D6..5 = 01 à Class request 

D4..0 = 00001 à Recipient is interface 

1 bRequest 1 0x06 SET_TRACE  

2 wValue 2 0x0000 Not used (This command only applies to the complete 
TS and not to a DIC or debug unit) 

4 wIndex 2 Number Trace Configuration: 

0: Disable Trace 

1-255: Vendor-specific trace configuration 

Otherwise: reserved 

6 wLength 2 0x0000 No Parameter Block   

5.4.15 GET_TRACE 
The GET_TRACE returns a number indicating which trace configuration is currently active. 

Table 5-24: GET_TRACE Control Request 

Offset 

(Byte) 

Field Size 

(Bytes) 

Value Description 

0 bmRequestType 1 0xA1 D7 = 1 à Host to device 

D6..5 = 01 à Class request 

D4..0 = 00001 à Recipient is interface 

1 bRequest 1 0x86 GET_TRACE  

2 wValue 2 0x0000 Not used (This command only applies to the complete 
TS and not to a DIC or debug unit) 
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Offset 

(Byte) 

Field Size 

(Bytes) 

Value Description 

4 wIndex 2 Number Trace Configuration: 

0: There are no Trace configurations  

1-255: Vendor-specific trace configuration 

Otherwise: reserved 

6 wLength 2 0x2 Returns 2-byte Parameter Block containing the number 
of the active Trace Configuration    

 

5.4.16 SET_BUFFER 
The Set Buffer command performs basic operations on buffer(s) within a TS, DIC, or Debug Unit. Table 
5-25 defines the command. 

Table 5-25: SET_BUFFER Request 

Offset 

(Byte) 

Field Size 

(Bytes) 

Value Description 

0 bmRequestType 1 0x21 D7 = 0 à Host to device 

D6..5 = 01 à Class request 

D4..0 = 00001 à Recipient is interface 

1 bRequest 1 0x09 SET_BUFFER  

2 wValue 2 Number wValue<15:8>: reserved 

wValue<7:0>: See Table 5-16 

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID 

wIndex <7:0>  = Interface ID 

6 wLength 8 0x0008 Buffer Parameter Block. 8–byte structure. See Table 
5-26. 

Table 5-26 defines the parameter block for the SET_BUFFER_INFO command. 

Table 5-26: Buffer Parameter Block 

Bit Description 

<7:0> Command: 

0: Flush Buffer 

1: Initialize Buffer 

3: Set Buffer Size (size in bits <31:16>) 

Otherwise: reserved 

<15:8> Vendor-Specific Buffer Modes 

<31:16> Buffer Size in bytes 

<64:32> reserved 
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5.4.17 GET_BUFFER 
The GET_BUFFER command reads the buffer size corresponding to a TS, DIC, or Debug Unit. Table 
5-25 defines the command. 

Table 5-27: GET_BUFFER Request 

Offset 

(Byte) 

Field Size 

(Bytes) 

Value Description 

0 bmRequestType 1 0xA1 D7 = 1 à Host to device 

D6..5 = 01 à Class request 

D4..0 = 00001 à Recipient is interface 

1 bRequest 1 0x89 GET_BUFFER 

2 wValue 2 Number wValue<15:8>: Bit Map 

<0>: Buffer was Flushed 

<1>: Buffer was Initialized 

<2>: Get Buffer Size 

wValue<7:0>: See Table 5-16 

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID 

wIndex <7:0>  = Interface ID 

6 wLength 2 0x0004 4-byte Parameter Block. Only applicable for 
wValue<15:8> = Get_Buffer_Size 

<31:0>: Buffer Size 

 

5.4.18 SET_RESET 
The SET_RESET request resets and initializes the TS, DIC, or Debug unit logic as specified by the wValue 
field. This class-specific request shall return the function to its default, initialized state with all buffers 
cleared, and the configuration registers in their default state. The DTS can use this request to resume 
debug functionality when the TS, DIC, or debug unit has unexpectedly stopped functioning. 
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Table 5-28: SET_RESET Control Request 

Offset 

(Byte) 

Field Size 

(Bytes) 

Value Description 

0 bmRequestType 1 0x21 D7 = 0 à Device to Host 

D6..5 = 01 à Class request 

D4..0 = 00001 à Recipient is interface 

1 bRequest 1 0x0A SET_RESET  

2 wValue 2 Number wValue<15:8>: reserved  

wValue<7:0>: See Table 5-16 

4 wIndex 2 Number wIndex<15:8> = Debug Unit ID 

wIndex <7:0>  = Interface ID 

6 wLength 2 0x0000 No Parameter Block   

A reset recovery consists of performing the following steps in order: 

1. Set Reset 

2. Clear Feature (ENDPOINT_HALT) standard USB request for the IN endpoint for the debug 
interface that has stopped functioning. 

3. Clear Feature (ENDPOINT_HALT) standard USB request for the OUT endpoint for the debug 
interface that has stopped functioning 
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6 Debug Payload 

6.1 Debug Trace Overview 
The Debug Class driver simply passes the data payload for all three capabilities (DxC.Trace, DxC.Dfx, 
DxC.GP) up to the software stack, and is oblivious of their content. These are vendor-specific or maybe 
defined by another standards body. However, Appendix C: provides information on a suggested debug-
trace format.  
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7 USB 3.1 Debug Security 

7.1 Overview 
The Debug Class specification does not address security issues. The requirement is that the TS will 
provide implementation-specific security features on the USB 3.1 debug hooks. The USB 3.1 interface is 
essentially a “virtual” debug port allowing access to the debug hooks within the device. Any security 
features that the device uses to protect access via physical debug ports (e.g., JTAG) are equally 
applicable to the debug access via the USB “virtual” debug port. 

Note that it is possible to conceal debug features: For example, via alternate interfaces as described in 
section 3.6.1.  
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8 USB 3.1 Debug Data Structures 

8.1 Overview 
The Debug Class specification has defined a number of mechanisms to access debug data structures 
within the TS, within a DIC, or within an actual debug unit. These mechanisms are: 

• GET_CONFIG_DATA and SET_CONFIG_DATA commands (see Section 5 for more details) 
• Data structures contained within the Debug-Attributes and Debug-Unit descriptors (see Sections 

4.4.3 and 4.4.6) 

These data structures are vendor specific and do not necessarily point to the same data structure. An 
implementation may choose to alias the data structures contained within the descriptors to those 
accessed via GET_CONFIG_DATA and SET_CONFIG_DATA; but this is not required. 

There is no BOS descriptor defined for debug data. 

 



 USB 3.1 Debug Class 7/14/2015 

 

- 114 -   

 Debug-Device-Class Codes 
Figure 4-4 shows the information in the following tables as a diagram. 

Table 8-1: Debug Interface Class Code (CC_DEBUG) 

Debug Interface Class Code Value 

CC_DEBUG 0xDC 

 

Table 8-2: Debug Interface Sub-Class Code (SC_DEBUG) 

Debug Interface Sub-Class Code (SC_DEBUG) Value 

SC_DbC 0x02 

SC_DbC_DFX 0x03 

SC_DbC_TRACE 0x04 

SC_DvC_GP 0x05 

SC_DvC_DFX 0x06 

SC_DvC_TRACE 0x07 

SC_DEBUG_CONTROL 0x08 

 

Table 8-3: Debug Interface Protocol Code (PC_DEBUG) 

SC_DbC Interface Protocol Code Value 

Protocol code (see xHCI specification) DCDDI1 DbC Protocol Field 

SC_DbC_Dfx Interface Protocol Code Value 

PC_PROTOCOL_CODE_UNDEFINED 0x00 

PC_PROTOCOL_TARGET_VENDOR 0x01 

SC_DbC_Trace Interface Protocol Code Value 

PC_PROTOCOL_CODE_UNDEFINED 0x00 

PC_PROTOCOL_TARGET_VENDOR 0x01 

SC_DvC_GP Interface Protocol Code Value 

PC_PROTOCOL_TARGET_VENDOR 0x00 

PC_PROTOCOL_GNU 0x01 

SC_DvC_Dfx Interface Protocol Code Value 

PC_PROTOCOL_CODE_UNDEFINED 0x00 

PC_PROTOCOL_TARGET_VENDOR 0x01 

SC_DvC_Trace Interface Protocol Code Value 

PC_PROTOCOL_CODE_UNDEFINED 0x00 

PC_PROTOCOL_TARGET_VENDOR 0x01 
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Debug Class-Specific Descriptor Types 
Table 8-4: Debug Class-Specific Descriptor Types 

Debug Class-Specific Descriptor Type Value 

SC_DvC_Trace Interface Protocol Code Value 

CS_UNDEFINED 0x20 

CS_DEVICE 

CS_CONFIGURATION 

CS_STRING 

CS_INTERFACE 

CS_ENDPOINT 

0x21 

0x22 

0x23 

0x24 

0x25 

 

Table 8-5: Debug Class-Specific Commands bRequest 

Debug Class-Specific Commands (bRequest) Value 

SET_CONFIG_DATA 0x01 

SET_CONFIG_DATA_SINGLE 0x02 

SET_CONFIG_ADDRESS 0x03 

SET_ ALT_STACK 0x04 

SET_OPERATING_MODE 0x05 

SET_TTRACE 0x06 

reserved 0x07, 0x08 

SET_BUFFER 0x09 

SET_RESET 0x0A 
  

GET_CONFIG_DATA 0x81 

GET_CONFIG_DATA_SINGLE 0x82 

GET_CONFIG_ADDRESS 0x83 

GET_ALT_STACK 0x84 

GET_OPERATING_MODE 0x85 

GET_TRACE 0x86 

GET_INFO 0x87 

GET_ERROR  0x88 

GET_BUFFER 0x89 



 USB 3.1 Debug Class 7/14/2015 

 

- 116 -   

Debug Class-Specific Descriptor Sub-Types 
Table 8-6: Debug Class-Specific Descriptor SubTypes 

Debug Class-Specific Descriptor SubType Value 

DC_UNDEFINED 0x00 

DC_INPUT_CONNECTION 0x01 

DC_OUTPUT_CONNECTION 0x02 

DC_DEBUG_UNIT 0x03 

DC_DEBUG _ATTRIBUTES 0x04 
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 Descriptor Examples 

Overview 
This Appendix gives a few examples of USB 3.1 debug descriptors for common scenarios. The examples 
in Figure 8-1 show corresponding descriptors aligned horizontally, to help highlight the differences and 
similarities between the various examples. 

Configuration Descriptor

Debug Attributes Descriptor

Interface 1 Descriptor (DvC.Trace)
Endpoint IN

Device Descriptor

Debug Unit 1 Descriptor (MIPI STM)

(1) Trace- Single Endpoint

Configuration Descriptor

Debug Attributes Descriptor

Interface 1 Descriptor (DvC.Dfx)
Endpoint IN

Device Descriptor

(2) Dfx Unit (No Topology)

Endpoint OUT 

Interface 0 Descriptor (Debug Control)
Interface Association Descriptor 1

Interface 0 Desc. (Debug Control)
Interface Association Descriptor 1

DIC
DIC

Configuration Descriptor

Device Descriptor

(3) GNU Debug

Configuration Descriptor

Debug Attributes Descriptor

Device Descriptor

(4) GNU Debug & Stop-mode

Interface 2 Descriptor (DvC.GP)
Endpoint IN
Endpoint OUT 

Interface 1 Descriptor (DvC.Dfx)
Endpoint IN
Endpoint OUT 

Interface 0 Descriptor (Debug Control)
Interface Association Descriptor 1

Interface 1 Descriptor (DvC.GP)
Endpoint IN
Endpoint OUT 

DIC

 
Figure 8-1: USB 3.1 Debug Class Descriptor Examples 

 

Example (1) in Figure 8-1 is for a low-cost system with only one bulk endpoint available for trace. The 
debugger uses the default endpoint 0 for the configuration and enabling of the traces. An Interface 
Association descriptor is required to “group” the control and DvC.Trace interfaces into a single DIC, if the 
control is associated with the Trace unit. Otherwise, see Figure 8-4 and associated text. 

Example (2) in Figure 8-1 is for an interface to a standard Dfx unit such as the TAP. This example shows 
a Debug-Control Interface associated with the Dfx interface, and thus requires an IAD to form a DIC. 

Example (3) in Figure 8-1 is for an interface to a kernel debugger using the DvC.GP capability. This is the 
similar to Example (2) except that there is no Debug-Attributes and Debug Control descriptors, and thus 
no IAD/DIC. 

Example (4) in Figure 8-1 is one possible combination of examples (2) and (3). In this example, the 
Interface Association descriptor spans the DvC.Dfx and the DvC.GP capabilities creating a single DIC. If 
alternatively, we wished for separate DICs for each capability, then we would require an additional IAD 
together with the two debug control descriptors for each debug capability, as shown in Figure 8-2.  The 
intention behind Example (4), is a debug tool that is primarily used for kernel debug via the GP interface, 
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but if the kernel debugger hangs, then the debug tool can use TAP commands via the Dfx interface to 
debug the bug scenario. 

 

Configuration Descriptor

Device Descriptor

(5) GNU Debug & Stop-mode with 2 DICs

Interface 1 Descriptor (DvC.Dfx)
Endpoint IN
Endpoint OUT 

DIC 1

Interface 3 Descriptor (DvC.GP)
Endpoint IN
Endpoint OUT 

Debug Attributes Descriptor
Interface 0 Descriptor (Debug Control)
Interface Association Descriptor 1

Debug Attributes Descriptor
Interface 2 Descriptor (Debug Control)
Interface Association Descriptor 2

DIC 2

 
Figure 8-2: USB 3.1 Debug Class Descriptor example of two DICs 

Figure 8-3 shows an implementation that only supports debug commands. There is no DIC in this case 
because there is only the singe Debug-Control Interface (i.e., an IAD requires 2 or more interfaces, which 
is why this example is not a DIC). An implementation that simply saves traces to an internal Sink (e.g., 
memory) does not requires a DxC.Trace interface, and can simply use the Debug-Control Interface to 
control the trace generation and then the extraction from the Sink. 

Configuration Descriptor

Device Descriptor

(6) Debug Control only

Debug Attributes Descriptor
Interface 0 Descriptor (Debug Control)

 
Figure 8-3: USB 3.1 Debug Class Descriptor example of Debug Control only 

Figure 8-4 shows three debug interfaces – Debug Control, DvC.Trace and DvC.Dfx. There is NO 
IAD/DIC in this example because the Debug-Control Interface is for the TS and not for the Trace of Dfx 
interfaces. For example, the TS may only support the command to enable/disable all of the debug logic. 
Thus, the Debug Control is not associated specifically with the Trace or Dfx interfaces, and thus no 
IAD/DIC is required. 



 USB 3.1 Debug Class 7/14/2015 

 

- 119 -   

Configuration Descriptor

Device Descriptor

(7) Multiple Debug Interfaces with no IAD

Interface 1 Descriptor (DvC.Trace)
Endpoint IN

Interface 3 Descriptor (DvC.Dfx)
Endpoint IN
Endpoint OUT 

Debug Attributes Descriptor
Interface 0 Descriptor (Debug Control) TS related 

Control only

 
Figure 8-4: Example of Multiple Debug interface without a DIC 
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 Debug Trace Payload Format 
 

This Appendix describes three suggested debug trace formats. These formats apply to DxC.Trace and 
DxC.Dfx. The USB 3.1 Debug Class is oblivious of the payload format and simply pipes the payload 
upstream. However, debug does not always have to be robust – for example, receiving a corrupted trace 
very infrequently could be acceptable. This allows debug to “cheat” and violate rules. This Appendix 
describes a trace format that is tolerant of such cheating, including avoiding some USB specific 
requirements.  

This Appendix provides specific details of a payload structure suitable for SuperSpeed and HighSpeed, 
and is tolerant of dropped packets under bulk retries. 

Debug Trace Payload 
A debug trace refers to a stream of debug data of an arbitrary byte length encapsulated in an integer 
multiple of 1KB segments for SuperSpeed and optionally 512B or 1KB segments for HighSpeed. Each 
1KB/512B segment of the debug trace contains either a header at the start of the payload, or a Footer at 
the end of the payload. The figure below shows an example using a Footer. 

 
Figure 8-5: Example of a Debug Trace 

Debug Trace Payload Size 
USB 2.0 HighSpeed allows a max-packet-size of 512B for bulk transfers and 1KB for isochronous 
transfers. SuperSpeed allows 1KB for both isochronous and bulk transfers. Depending on the hardware 
implementation, the TS may send the trace as either 512B or 1KB segments in either HighSpeed or 
SuperSpeed. In other words, a TS may send a header/footer per 1KB data payload, even in HighSpeed. 

Debug Trace Header/Footer 
A Figure 8-6 shows two formats, one with a header and one with a footer. The header and footer are 
identical and are each 4 bytes in size. Table 4-11 “dTraceFormat” field of the Debug Unit descriptor of the 
Input Connector descriptor selects between these two trace formats. 

Payload Data

Payload 
Footer

Payload Data           Payload Data

Debug Trace

1KB or 512B section

Trace length
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Figure 8-6: Debug Trace Footer Formats 

Table 8-7 defines the fields in the trace header/footer. 

Table 8-7: Header Fields 

Field Size Description 

Trace Length 9:0  Length of Debug trace in bytes for the data portion of a 1KB/512B region. 
Typically, this equals 1020/508 bytes when the data portion of the 
1KB/512B region is full of trace data. However, at the end of a debug 
session, the data portion of the 1KB/512B region could be partially filled. 

The size of the data portion (1KB/512B) is defined in the Status & 
Information field of this footer. 

Debug Sequence 
Number 

5:0 The TS increments the sequence number whenever it completes writing to 
a 1KB region of the debug trace buffer. This field wraps. 

NB: This is not the same as the USB 3.1 Sequence number. 

Status 7:0 The definition of the field <7:0> bits are:  

<0>: No trace data (i.e., “”NULL” packet) 
<1>: Bulk Retry occurred (optional, informational for the debugger) 
<2>: Backpressure occurred (optional, informational for the debugger) 
<3>: All Trace Data Flushed out of TS 
<4:5>: reserved 
<6>: Size of the Trace Payload 

0: 1KB 
1: 512B 

<7>: reserved 

Trace ID 3:0 0x0 – 0x7F: Vendor Specific 

Otherwise: reserved 

The Trace ID field is vendor specific and allows the device to intermix multiple different traces together at 
a 1KB/512B granularity.  

USB3 Debug Trace Footer

Footer

1KB Debug Trace 
Payload 

Valid Trace 
Data

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Sequence # Trace Length (Bytes)StatusReserved

Invalid Data

Trace ID

USB3 Debug Trace Header

Header

1KB Debug Trace 
Payload 

Valid Trace 
Data

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Sequence #Status

Invalid Data

Trace ID Trace Length (Bytes)Reserved
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Debug Trace Sequence Number 
A USB3 Device-hardware-controller typically buffers a local copy of the data in case it needs it for a link 
retry. This is common for the typical USB 2.0 device controller. See Figure 8-7.  

USB2 Device 
Hardware 
Controller

HOST USB Device

Endpoint A INDMA read DvC.Trace

Local Retry 
Buffer

Memory 
Buffer

 
Figure 8-7: Local Retry Buffer within USB3 Device Controller 

However, the high bandwidth of SuperSpeed makes such buffering expensive, and some 
implementations of the device controller do not provide this local retry buffering. Instead, the device 
controller re-fetches the data from the memory buffer if a link retry is necessary. Typically, buffers in 
memory are very large (many MB in size) and thus large enough to cover the retry latency. Thus the 
application is unlikely to have overwritten the data necessary for the retry. Furthermore, the software 
manages the buffer pointers such that overwriting of the data in memory is impossible.  

The situation for debug trace buffers is different. Because of cost constraints, typical trace buffers are 
small in size, and in addition the hardware state machine only provides elementary pointer management 
logic that cannot handle overflows. Consequently, in such a simple implementation, the data required for 
the USB-link retry may have been overwritten. Figure 8-8 shows a typical debug scenario, with the USB3 
device controller making a retry request from the trace buffer.  
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Figure 8-8: No Local Retry Buffer within the USB3 Device Controller 

For some debug traces this is of no concern – they can tolerate occasional dropped trace data. The Trace 
Payload format described here is designed to handle such scenarios. 

Bulk transfers provide guaranteed delivery across the USB link by retrying a failed transfer. However, for 
the situation described above, the retry will deliver the wrong data if the required data was overwritten in 
the trace buffer. The debug trace header/footer provides a sequence number that increments whenever 
the TS dispatches a trace packet from the trace buffer. Under normal operation, the debugger will receive 
an incrementing sequence number. If a retry resulted in trace data being lost, then the sequence number 
will have a gap in the sequence. The debugger running on the host thus knows when there is a gap in 
the trace data, and act accordingly.  

Bulk retry errors are expected to be rare, and thus loosing data occasionally in a debug trace is an 
acceptable tradeoff for a simpler and cheaper implementation. Note that since most USB 2.0 device 
controllers contain local retry buffers, and thus no trace data will be lost because of retries. Hence, initial 
debug, when the USB link is possibly unreliable, should use HighSpeed transfers for guaranteed delivery 
of traces (albeit at a lower bandwidth). 
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Note that an implementation may be aware of the fact that it is unable to supply the correct data for a link 
retry from the trace buffer. For example, an implementation may have a 4KB trace buffer. Under normal 
operations, the USB3 device controller will DMA read consecutive 1KB SuperSpeed packets. However, 
for a retry, the DMA address will be for an earlier location. For example, the DMA may be requesting the 
first 1KB buffer entry instead of the expected third 1KB buffer entry. In other words, the DMA read 
sequence was for payloads 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 1,… 

In this case, the hardware can mark the “Bulk-Retry occurred” bit in the Status field of the header/footer, 
thus giving the debugger additional information that a Bulk-retry occurred.  

Figure 8-9 shows an example of such a bulk retry. In this example, the Host issues IN requests with NumP 
= 4, and thus each IN fetches four Data Packets, each of 1KB max-packet size. There are two different 
sequence numbers shown in the figure. The Sequence number within the data payload (i.e., 21, 22, 23, 
etc.) corresponds to the sequence number in the Debug Header. The other sequence number is the 
sequence number used by the USB 3.1 protocol layer to signal which Data Packet to resend for a Bulk 
retry. This Sequence number starts at 0 in the figure.  

 
Figure 8-9: Bulk Retry example 

Suppose that the Data packet corresponding to USB 3.1-Sequence number 4 has errors. The host xHC 
will thus restart the requests from sequence 4 and continue consecutively from that point onward. Note 
that although the host received the data packets corresponding to USB 3.1 Sequence number 5, 6, and 
7 correctly, it will still refetch these. Hence, in this example, the host refetched the data packets 
corresponding to USB 3.1 sequence number 4, 5, 6, and 7.  

However, in this example, the retry request arrived late at the debug-trace buffer logic, after the TS has 
overwritten the trace buffer. Thus, the debug-trace buffer has progressed as far as the data packet 
corresponding to Debug-Sequence number 29. 

Consequently, when the USB 3.1 Device hardware controller attempts to refetch the retry data, the trace 
buffer will return data corresponding to Debug-Sequence number 29. The debugger will thus notice there 
is a discontinuity in the Debug Sequence numbers (see right-hand side of Figure 8-9). In this example, 
they jump from 24 to 29. The debugger thus knows that a retry occurred on data 25-28, and that it did not 
receive this data. 

Isochronous Operations and “NULL” data 
A Debug trace data is sporadic and bursty. Consequently, the debugger running on the host has no idea 
how much trace data the TS has generated at any given time; instead, the debugger shall assume the 
worse-case scenario, and issue IN packets corresponding to the maximum trace bandwidth.  
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The USB architecture does provide NRDY and Zero-length packets to deal with such bursty traffic, but 
not all host controllers handle these operations efficiently. Thus, although the TS could inform the host 
that it has no data (via a NRDY or zero-length packet), the xHC devices could take a long time before it 
re-requests the trace data. For example, for isochronous transfers, the xHC will wait until the next service 
interval, which could be 256uS later or even longer. Such a long delay could result in a small debug trace 
buffer (e.g., 48KB) overflowing. 

For this reason, we allow the TS to supply Null packets if it has nothing to send, thus avoiding the need 
for NRDY or zero-length packets. Thus, the debugger is constantly requesting debug trace data at the 
maximum rate appropriate for the particular trace type (e.g., 30MB/s for printf-type software messages, 
or 400MB/s for processor traces). The debug logic in the TS will satisfy these requests by either supplying 
the actual trace data if it is available, or otherwise supplying a Null trace packet (i.e., Status [No Trace 
data] = 1). 

Figure 8-10 shows an example with interspersed “NULL” data packets when the debug Trace buffer does 
not have debug trace-data available. The debugger simply discards the NULL packets. 

 
Figure 8-10: Isochronous Example showing interspersed “NULL” data 

Note that the Debug Sequence number does not increment for a Null packet. All valid trace data has a 
monotonically increasing Debug sequence number, modulo the sequence field width. 
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 Power Management 
The Debug Class does not address the USB 3.1 Power management features and capabilities. These 
are vendor specific – some implementations may allow debug to coexist with the link-power management, 
while other will simply ignore the U1 and U2 link power state change requests and remain in U0. This is 
most likely the case with DbC, since the DbC implementation does not cost many gates.  

The DbC or DvC cannot refuse a U3 request. However, during a debug session, the debugger is likely to 
configure the host software to not evoke U3. 
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 Example Debug Scenarios 

Software Stack Model 
Figure 8-11 shows an example of a Software stack creating Software instrumentation messages. The 
traces then drive a Hardware MIPI STM Trace-Processing unit. The traces use the DvC.Trace interface 
while the configuration and control of the software stack is done via the Debug-Control Interface. 
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Figure 8-11: Example of a Software Stack driving traces to a Hardware Trace-Processing unit 

TS as Host 
Figure 8-12 shows two examples where the TS is a USB host and is streaming traces to an external USB 
device that captures the trace. Example 1 is a simple mass-storage device. In this case, the TS has a 
driver that is streaming the traces to a mass-storage device. This is out of scope of the USB 3.1 Debug 
Class specification. 

 
Figure 8-12: Two examples showing the TS streaming traces to external devices 
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supports the USB 3.1 Debug Class. In particular, this example supports the DvC.Dfx capability, which 
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provides access to a trace buffer in memory. The debugger could be an application running on the TS 
device itself, and could thus configure the external debug device. This detail is not shown in the figure.  

Alternatively, this external debug device could be a debug probe that an external DTS configures via a 
private connection, and the DTS configures the TS via a JTAG connection to enable tracing: 

 
Figure 8-13: Debug Probe providing DvC.Dfx support 
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 Software Stack Overview 
Figure 8-14 shows an example of a host connected to a device, showing the different hardware and 
software layers. Note that normal (non-debug) USB 3.1 applications and debug applications can co-exist 
and run concurrently. This document defines the Debug Class driver running on the host and the 
descriptors that the debug driver on the TS supplies during enumeration. 

 
Figure 8-14: DvC Debug Mode S/W stack example 

 

For comparison, Figure 8-15 shows the DbC stack on a multi-port TS. This example has a single DbC. 
From the host’s perspective, the DbC appears similar to the DvC. For example, an OTG device may 
support both DbC and DvC. The host DTS shall support both, depending on which USB cable links the 
device to the host.  

The USB stack on the device consists of four components: 

1) USB Device Hardware Controller Driver: this directly communicates with the USB controller 
hardware. It is a hardware abstraction layer that exports the hardware functionalities to the layers 
above. 

2) USB Gadget driver: this provides the basic USB framework support, such as managing the USB 
state transitions (Attached, Powered, Default, Addressed, and Configured), endpoint 0 
enumeration, and so on.  

3) USB Composite Driver: This provides support for composite (multi-function) USB devices. Note 
that debug requires a composite driver when using a DIC, because this involves two or more 
interfaces (e.g., Debug Control together with DvC.Trace). In addition, debug may run at the same 
time as a normal USB interface (e.g., mass storage), which is a further reason for a composite 
driver. 

4) USB Class drivers: these implement the application functionality of the device, which is generally 
independent of the USB protocol. These drivers provide the descriptor information (i.e., Interface 
type, endpoint type, etc.) for a given function. In a multi-function device. The composite driver 
blends these descriptors together so that they represent the multi-function device. Thus, a 
GET_DESCRIPTOR command received by the USB device goes all the way up the USB stack 
(USB Controller driver à USB Gadget driver à USB Composite driver à Class driver) to gather 
and assemble the appropriate data. 
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Figure 8-15: The xHCI DbC Software stack 

The Debug Class driver thus provides the descriptor information for enumerating the debug capabilities, 
as defined by the USB 3.1 Debug Class specification. A typical USB Class driver provides three 
capabilities: 

• USB Characteristics: this routine provides the descriptor information and the interaction with the 
composite driver. A debug use case may change the descriptors between sessions (e.g., to use 
a different debugger via new descriptors that define an Alternate Setting), which then becomes 
active when the host resets or reconfigures the USB device. 

• Class Operations: the USB 3.1 Debug class allows for basic control operations, such as writing 
to a configuration register in a debug unit, such as the Trace Processing unit, and thus enabling 
trace output. See Section 5 for more details. 

• File system: this allows the device to interact with the OS file system. DvC.Dfx and DvC.Trace 
typically use hardware buffers and so do not access the OS file system, whereas the DvC.GP 
may. 

In addition, Figure 8-14 shows that some secondary core may also provide USB stack, which will 
provide debug support prior to the OS boot. This is implementation specific. 
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