
RESEARCH PAPER

USB LATENCY REQUIREMENTS AND
THE EFFECT OF VIDEO ADAPTER PCI
RETRY CONDITION ON MAINTAINING

USB STREAMING PIPELINES

by

Alberto Martinez

Dr. Sures Vadhva

California State University, Sacramento

Department of Electrical and Electronic Engineering

March 20, 1997

ii

California State University, Sacramento

Abstract

USB LATENCY REQUIREMENTS AND
THE EFFECT OF VIDEO ADAPTER PCI

RETRY CONDITION ON
MAINTAINING USB STREAMING

PIPELINES

by

Alberto Martinez

Dr. Sures Vadhva

The Universal Serial Bus (USB) in a PC system has strong latency requirements to

maintain the data stream for any active device. These requirements are especially true in

the case of isochronous pipes, when large data transfers must be executed in a timely

manner. In a typical PC architecture the USB controller is located in the PCI bus South

Bridge; thus, USB traffic and latency are susceptible to PCI utilization and arbitration.

This paper provides an analysis of the effect of the PCI retry mechanism on USB latency.

This document also provides suggestions for an architectural redefinition that addresses

this issue.

TABLE OF CONTENTS

Background ... 6
Problem description... 6
Debug process ... 7
Issues workaround... 10
Assumptions.. 11
USB Interface Analysis.. 11

USB Software Solution... 12
USB Hardware Controller Solution .. 13

PCI Interface Analysis. .. 13
USB Controller memory Access.. 14
PCI Retry Mechanism... 15
Determining Buffer Requirements... 16
Driver and Graphic Pipeline Control... 16

About a balanced design.. 18
Further work.. 18

4

LIST OF FIGURES

Number Page
Figure 1: USB-Enhanced System Architecture... 7
Figure 2: Placement of Isochronous Transactions in USB Schedule Frames....................... 9
Figure 3: Detail of Isochronous Packet Overlapping into Start of Next Frame 9
Figure 4 Producer-Consumer Model and Water Marks Usage.. 17

5

ACKNOWLEDGMENTS

The authors wish to acknowledge the contribution by the following individuals and

institutions to the preparation of this document:

John Trelford (Intel Corporation, Intel Platform Support Labs)

Bill Wager (Intel Corporation, Intel Platform Support Labs)

6

C h a p t e r 1

CASE STUDY: USB VIDEO CAMERA AND PCI GRAPHICS ACCELERATORS

Background

To provide the required frame for this document, we have chosen to first describe the initial

problem that started the investigation of USB latency in PCI. This chapter will describe

the facts of the investigation without making any assumptions about the cause of, or

possible resolution to the problem.

Problem description

A USB camera was installed in a Pentium® processor 82430HX/PIIX3 based system (see

figure No. 1). The camera was used as a video input device in a “Video Telephone”

configuration, which was bundled as a part of a PC system, and included a PCI Video

graphic accelerator card. The system displayed the video input from the camera in a small

window on the screen. The application software included a “video mute” function that

blocked the camera image from been displayed. To accomplish this function, a bitmap of a

closed curtain was superimposed over the actual video display window. A possible

application of this feature is to block the video feed for privacy, allowing voice only

communication.

It was while executing the video mute function that the telephone application “stopped

responding” to user inputs. This anomaly is usually called application “Hang-up”. Notice

that in the majority of occasions the actual OS (Windows* 95 Intel* USB Stack

Supplement) was still active allowing launch and usage of different applications. To

recover video telephone functionality, the system had to be re-initialized. A soft reset was

sufficient to recover.

7

Host Processor
Intel Pentium(r)

Processor

PCI/Memory
Controller

Intel 430VX

DRAM

PCI Bus

PCI South
Bridge/USB
Controller

USB Bus

USB Camera

ISA Bus

Graphic
Controller

IDE Bus
Data

HDD

Display

Figure 1: USB-Enhanced System Architecture

Debug process

A debug process followed; our intention was to determine the root cause of the problem.

Our major concern at the time was to rule out a hardware malfunction. Given that the USB

camera uses two isochronous pipes to provide the actual video stream, our first task was to

ensure all master latency timers (MLT) in bus master devices where configured as

recommended by performance analysis1 on USB functionality.

The performance analysis indicated master latency should be set for a maximum of 1 ms for

any PCI Bus Master and 2 ms minimum for the PIIX3 Function 2 (USB controller), to

allow isochronous transactions under a defined maximum load. These time parameters

translate to MLT values of 20h for all Bus Master and 40h for the USB controller.

Changing the MLT values to these recommended setting did not correct the issue;

consequently, it was decided to used a more intrusive approach to identify the nature of the

failure. A USB protocol checker (designed by Intel/IPSL) was connected to snoop the

USB cable during the failure. Proceeding accordingly, it was found that during the failure

8

a “babble” condition was present at the end of an isochronous package. This condition

caused the USB controller to shut down the active port, which eventually was reflected as

an application failure.

The next step was to understand the nature of the babble condition. For this purpose, a

Tektronix® DAS 9200 was used to probe the PCI Bus by means of a signal interface on

the Intel/IPSL PCI Protocol Checker. Concurrently, the USB bus was monitored by means

of a Intel/IPSL USB Monitor. After the analysis was completed, it was found that the

PIIX3 was requesting the PCI bus on behalf of the USB Controller. The intention of the

controller was to upload 32 Bytes of data to memory. This data was a data block from the

current USB isochronous packet. Simultaneously, (but starting when the bitmap displayed

on the video telephone window), the graphic accelerator was retrying command

transactions intended to the video controller pipeline. The PCI arbiter was repeatedly

granting the bus to the north bridge (82430HX) but not to the USB controller, preventing

the USB controller from reading the next transfer descriptor from memory as well as

blocking data package transfers to memory. The retry process usually exceeded 2 ms,

eventually causing two independent failure scenarios:

1.- USB FIFO overrun. Data for the next video frame is dumped (lost), reducing the total

frame per second count. This loss eventually degrades the video camera display

performance and ultimately the user experience.

2.- Port “babble” condition. By delaying the IN token from the next transfer a port

“Babble” condition occurs, causing the USB port to be automatically disabled, resulting in

an application error. FIFO overrun is undesirable; however, port babble causes a system

failure, making the anomaly critical.

Figure 2 below shows how isochronous transfers fit into a USB schedule. Note they

appear first in a 1ms USB frame. Figure 3 below shows in greater detail the structure of a

single frame, indicating the region of frame (n+1) over which the isochronous transfer from

frame n overlaps. Expanding the time used for the isochronous transfer beyond the nth

frame’s boundary violates the frame structure, resulting in port babble.

9

Isoch.
Transfers

Bulk/Interrupt
Transfers

Isoch.
Transfers

Bulk/Interrup
Transfers

Bulk/Interrupt
Transfers

Isoch.
Transfers

Start of Frame

1 ms period 1 ms period 1 ms period

Figure 2: Placement of Isochronous Transactions in USB Schedule Frames

Figure 3: Detail of Isochronous Packet Overlapping into Start of Next Frame

Bable!

Video Isoch. Packages

1 ms period

Isoc. Transfer Idle Time

SOF
Pack.

Token IN
Pack

ISOC
Data

ISOC
Data

ISOC
Data

ISOC
Data

ISOC
Data

ISOC
Data

PCI Trans. Frame Pointer
List. Next QH and TD IN

Any large delayes do to
video retries in PCI bus

could cause a Bable
c`ondition by extending

the initial IN token
above minimum latency

EOF

10

These issues were reproduced using three different hardware-accelerated video adapters.

These tests corroborated the common nature of the problem.

Issues workaround

After consulting with the graphic card manufacturers it was found that to obtain the

maximum possible video display rate, as measured by a popular video benchmark

software, the video driver continuously writes commands to the Graphic Accelerator

command pipeline. Eventually the command pipeline is full, and no commands can be

received:. the graphic controller retries additional incoming commands. At this point, if a

USB-to-PCI transaction is initiated, the host controller arbiter will not grant the PCI bus to

the USB controller until all North bridge internal posting buffers are flushed. Given that

the video commands are still in these posting buffers, effectively blocking USB controller

access to memory, the USB transaction will eventually fail to complete within the required

time frame.

One possible workaround is to disable Windows 95 hardware acceleration capabilities.

This fix is made in the Windows95 System Properties menu, under the Performance tab,

using the Graphics button. It is possible to select a setting in between Full Hardware

Acceleration and No Hardware Acceleration that will suffice as a work around this

issue. However, using No Hardware Acceleration will visibly impact the video

adapter’s performance.

A second possible workaround is to enable the video drivers to throttle the commands

send to the graphic controller. All the video adapters tested allowed some level of control

by adding an initialization entry to the system.ini file. When throttling was enabled, the

video drivers avoid overrunning the video adapter command pipeline. Consequently, this

throttling reduces arbitration turnaround, allowing USB traffic to properly access memory.

This option will also impact the video performance; however, the performance reduction is

not clearly appreciated unless a benchmark program is used.

C h a p t e r 2

ARCHITECTURAL ANALYSIS

Assumptions

For the purpose of this analysis, we will concentrate on the second failure mechanism,

babble condition. The sequence of events that result in the application error after a port

babble also cause frame drop condition. Therefore, the architectural analysis and possible

resolution of the port babble will also largely apply to the frame drop condition. It will be

indicated in the text below when this underlying assumption is no longer valid.

The system failure is based on the system’s sensitivity to graphic accelerator

responsiveness (or lack thereof) to pending device driver requests.

The PCI Specification2 does not limit the number of retries a PCI target may execute, and

does not indicate any maximum latency before a target must complete a retry condition.

Thus, the retry behavior of the graphic accelerator in this case is not in conflict with the

current PCI specification.

To try to understand the true nature of the issue, we will break down the failure mechanism

into its minimal components, starting with the USB physical layer, then moving to the

graphic accelerator driver. It is hoped that with this analysis, an economical and viable

solution could be identified.

USB Interface Analysis.

At the instant of a failure, the USB device is transferring an isochronous data package.

This data package, over 300 bytes, is large but still within the parameters indicated by the

USB Specification3. It is true that if the data package were smaller, the probability of

occurrence of the failure would be proportionally reduced. However, the same failure

12

mechanism could be reproduced with a large number of smaller packages. Thus, it does

not look like constraining the package size and/or the total allocable USB bandwidth

would remove the failure mechanism. Practically speaking, any architectural redefinition in

this area should encompass a larger bandwidth availability to allow more appealing results

in video conferencing-like applications.

If the above assumptions are true, then different approaches should be considered:

1.- Is it possible to recover from the babble condition in a way that will not result in a port

shut down and application error?

2.- Is it possible to introduce a more effective fail safe mechanism to prevent the port

babble condition?

USB Software Solution

The underlying assumption behind a port shut down in USB is a device malfunctioning.

Data transmission after the EOF is assumed to be caused by a defective device, therefore

unrecoverable in nature, except by unplugging the device from the port. But in this case,

the device is functioning properly; a system latency issue results in the babble condition.

Here the failure goes beyond the original fail tolerance introduced in the USB specification.

Without introducing changes to the USB specification, there is a limited solution at the

USB peripheral driver and USB Stack interface. The Universal Host Controller Driver

(UHCD) to device driver interface could be modified to allow a fly-by re-initialization of

the port and device. The application would then pause while the port and device re-

initialize, and the system would not hang. Permanent port shutdown would not be

required. This scenario assumes the underlying PCI retry mechanism on the graphics

accelerator is a statistical anomaly, occurring infrequently.

If the babble condition repeats at a predetermine rate, a final shut-down could be executed,

in this case under the assumption a device or critical system failure has occurred.

13

USB Hardware Controller Solution

Answering the second question above is possibly more complex, given that a solution

requires a larger modification to the USB Specification and UHCI interface. Such a

proposal is probably material for a more detailed analysis, which is beyond the scope of

this document. Nevertheless, we will try to summarize a mechanism that should be

sufficient to prevent latency-based babble conditions.

It is possible to introduce a timer/counter mechanism based on current location of

execution in the frame and the timing of the reception of the transfer descriptor (TD) for the

next IN/OUT token. The current TD contains the expected package length and using the

value in the newly-defined timer, comparing it to the estimated execution time for the

current packet, an estimated likelihood of a babble condition occurring could be calculated.

If babble is likely, then the IN/OUT token would not be submitted, and the transaction

would be treated as a time-out.

Note that the USB controller hardware requirements, gate count and the like, should be

part of any feasibility study for this solution. Also note that this mechanism would not be

able to resolve the less-critical frame drop condition. The frame drop condition has

dependencies on the transmission of data already received from the USB controller and sent

to memory. The timer and TD solution described above does not address the inter-package

latencies typical of this failure.

PCI Interface Analysis.

It is in the PCI side of the system architecture where a more complete solution could be

identified. At the same time it is on the PCI bus were more complex interactions take

place, thus making any possible solution more involved not only technically, but also from

the industry interactions required.

Trying to understand the PCI side of the issue, two questions could be posted:

1.- Why is the PCI North bridge not granting memory access to the USB controller?

14

2.- Why is the PCI graphics accelerator using the retry mechanism carelessly, negatively

affecting PCI latencies?

USB Controller memory Access

The USB controller (see fig. 1) resides as function no. 2 inside the PCI South

(compatibility) bridge. This location places the USB controller as a member of the PCI to

ISA bridge family of devices, together with the proper ISA bridge and IDE controller

inside the Intel PIIX3 device. There are a number of advantages to designing such a

location for USB; however, this location in the current design forces all PCI arbitration to

have the same architectural constraints as does ISA bridge arbitration. When the South

bridge requests the bus on behalf of an ISA device, the PCI arbiter must ensure that all

pending PCI transactions are flushed (completed) before the PCI bus is granted to the

requester. This behavior is required because of numerous limitations on the ISA bus,

including:

1.- Absence of a retry mechanism for ISA masters.

2.- Absence of deterministic latencies for ISA masters.

3.- Low speed that translates into large PCI utilization.

The USB interface does not necessarily suffer from the same limitations. However, the

USB and ISA controllers share the same PCI device arbitration, so the PCI arbiter has no

means to differentiate between a request on behalf of an ISA master or the USB controller.

Therefore, when the USB controller arbitrates for memory access and a retry from the

graphic accelerator has occurred, the PCI bus will not be granted to the USB controller

until the pending (retried) transaction is completed.

To remove this limitation, it is possible to redefine the architecture of the South bridge to

accommodate the USB controller as a second PCI device. This change adds an additional

South bridge GNT#/REQ# signal pair to de-couple USB PCI arbitration from any possible

ISA master in the system. Again, the details of such mechanism are not within the scope of

this document. In summary, it appears that de-coupled arbitration for the USB controller

should allow the initial USB request to result in USB access to the memory controller in

the PCI north bridge.

15

This de-coupled arbitration would probably resolve the frame drop situation (USB

controller doing memory writes and not reads); however, it is not sufficient to prevent the

babble condition caused by a delayed IN token. Even when a grant is given to the USB

controller to access memory space, PCI strong ordering rules could still prevent the

transaction completion. To maintain event synchronization, PCI does not allow a memory

write posted in the North bridge (command retried by the graphic accelerator) to be

passed/crossed by a memory read command from PCI (USB controller trying to read the

next TD from the list.) Below is an excerpt from the PCI specification, appendix C, where

these rules are described:

“A read transaction must push ahead of it through the bridge any posted writes originating on the
same side of the bridge and posted before the read. Before the read transaction can complete on its
originating bus, it must pull out of the bridge any posted writes that originated on the opposite
side and were posted before the read command completes on the read-destination bus.”

Therefore, a complete solution to grant the USB controller reasonably quick access to

memory requires addressing the original indiscriminate retries by the graphic accelerator.

PCI Retry Mechanism

The PCI retry mechanism allows a PCI target to tell the master to initiate the transaction

again later. A retry is usually caused by a device being internally busy or incapable of

returning data requested, within the limits of the PCI transaction latency requirements. In

the case of this analysis, the retry condition occurred as a result of a command buffer

(FIFO) in the graphic accelerator being full. The graphic accelerator needs to process a

number of previously queued commands before it is capable of accepting additional

commands. Evidently, the number of consecutive retries that can occur will be a function

of how fast the commands are retired from the graphics controller command pipeline, and

the size of the FIFO . USB frames have a duration of 1 ms; any USB controller access to

memory delayed by more than a significant fraction or larger of this value (as is caused by

the graphic adapter retries) will disrupt USB functionality as described in previous pages.

The PCI specification does not restrict the number of retries nor the maximum time period

during which the retry command is to be accepted by the target. However, it could be

interpreted from the specification a relevant spirit of the specification, an underlying

“good neighbor policy” that should be maintained by all PCI devices. What follows is a

16

possible solution for the graphic accelerator vendors to apply to reduce the impact on PCI

latencies, and hence minimize or eliminate the USB babble condition.

Determining Buffer Requirements

Each PCI device that interfaces to the bus needs buffering to match the rate the device

produces or consumes data. In the case of the graphic accelerator and this analysis,

buffering implies the rate commands are send to the graphics pipeline. Therefore, buffer

capabilities are a function of the specific graphic accelerator efficiency in processing the

commands. A detailed analysis could be performed to determine the specific needs of each

one of the adapters evaluated. A tuned buffer will prevent the misuse of PCI resources and

eliminate the latency limitation of USB transfers. However, the usefulness of any

recommendations from any buffer analysis will be limited by the assumptions made

regarding processor performance and maximum bandwidth availability. As indicated in

this document, the graphic accelerator driver is overwhelming the accelerator command

buffer;, this performance miss-match is possible given the high performance processor

used during the test and the capabilities in the Host to PCI bridge. It is possible that

previous generations of a system configuration would not overrun the command FIFO,

given a slower performance rating. In short, a buffer estimation made based in current

technology may fail in future system configurations. To avoid this problem a second layer

of control between the driver and the graphic accelerator could be implemented.

Driver and Graphic Pipeline Control

As described earlier in this document, some of the graphic adapters evaluated allowed a

configuration that prevented the USB failure. The basic functionality that was enabled in

such a configuration was a second layer of communication between the driver (command

producer) and the graphic accelerator (command consumer.) Under the Producer-Consumer

operational model reflected it this case, it is possible to establish a finer control between

the driver interface and the command pipeline in the graphic accelerator. The driver and

command pipeline could communicate between each other via a flag and a status element.

The graphic accelerator could indicate a “ready” status by setting a flag when the command

pipeline is ready to receive further commands. Likewise, just before the command

17

pipeline has reached an unacceptable level, the same flag could be reset. This ready flag

handshake model could be further enhanced by implementing dynamic flow control in the

command pipeline. The flow control could be based on a pair high/low water mark set.

When the command pipeline reaches below a preset “lower mark” the graphic accelerator

would use the bus mastering capabilities to set the flag in memory. To throttle down the

flow of commands, when command pipeline reached above the “high mark”, the graphic

accelerator would access the read flag again resetting it to not-ready status.

In a well-tuned PCI peripheral, the use of the dynamic control described above would be

as a second-level support for correctly-defined buffer capabilities of the command pipeline.

Figure 4 depicts the Producer-Consumer model and the use of water marks for buffer

control.

Figure 4 Producer-Consumer Model and Water Marks
Usage

Command FIFO

High Water Mark

Low Water Mark

Graphic Accelerator
Ready Flag

Video Driver in Memory

System memory

When commands
reache high water

mark, accelerator reset
ready flag

When commands
reache low water mark,
accelerator set ready

flag

When Ready flag is set, the
driver will continue to send
commands to the graphic
accelerator.
When the ready flag is reset, the
driver will suspend the
commands to the graphic
accelerator.

18

C h a p t e r 3

CONCLUSIONS AND CONSIDERATIONS

About a balanced design

PCI latencies and PCI peripherals’ behavior are definitely factors to consider in a USB-

capable system. When USB peripherals are used that support large isochronous packages,

heavy USB workloads are present. The system designer must consider the use of well

behaved PCI devices, especially PCI graphic accelerators, which must not overuse the PCI

retry mechanism, affecting USB pipes.

There are a number of possible architectural changes that could be applied to improve the

current chip-set design and system specifications. These changes alone could greatly

improve the robustness of the system, but will not be sufficient to protect against an

unbalanced PCI device. It is even possible to define more drastic steps to enforce a “good

neighbor” policy; however, these steps increase restrictions, possibly curtailing designers’

freedom when choosing more cost-effective peripheral implementations.

Finally, it is for us evident that the best solution still resides on the hands of the peripheral

designers. A correctly balanced design should still be capable of performing while

allowing other devices and busses to properly operated in the system.

Further work

At the time the authors are completing this document new and exiting technologies are

emerging. The Accelerated Graphic Port or AGP, is becoming the graphic accelerator

standard. The AGP bus already de-couples the graphic accelerator from the PCI bus and

adds specific functionality to support pipeline mode of operation. At the present time the

authors have not engaged in a study to determine the susceptibility or lack thereof of this

19

new architecture to USB latencies. Such investigation is certainly material of much work,

like the present.

Also, the IEEE 1394-1995 standard is furthering streaming capabilities in the PC

architecture. As in the case of USB, 1394 is susceptible to nuances of PCI peripherals’

operation. While finishing the draft of this document, we were pleased to observe that

techniques similar to this document recommendations are been used in the definition of the

1394 link interface in future generations of south bridge designs.

20

BIBLIOGRAPHY

1 Smith, Mike. “10 ways to improve USB performance”, Training presentation, Folsom, CA: 1996.

2 PCI Special Interest Group. PCI Specification Rev. 2.1, Portland, OR. 1995

3 USB Special Interest Group. USB Specification Rev. 1.0, Portland, OR. 1996

